FINGU-AI commited on
Commit
1b42810
โ€ข
1 Parent(s): edb8dc4

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +73 -195
README.md CHANGED
@@ -1,202 +1,80 @@
1
  ---
2
  base_model: Qwen/Qwen2.5-32B-Instruct
3
  library_name: peft
 
 
 
 
 
 
 
 
 
 
 
 
4
  ---
 
5
 
6
- # Model Card for Model ID
7
-
8
- <!-- Provide a quick summary of what the model is/does. -->
9
-
10
-
11
 
12
  ## Model Details
13
-
14
- ### Model Description
15
-
16
- <!-- Provide a longer summary of what this model is. -->
17
-
18
-
19
-
20
- - **Developed by:** [More Information Needed]
21
- - **Funded by [optional]:** [More Information Needed]
22
- - **Shared by [optional]:** [More Information Needed]
23
- - **Model type:** [More Information Needed]
24
- - **Language(s) (NLP):** [More Information Needed]
25
- - **License:** [More Information Needed]
26
- - **Finetuned from model [optional]:** [More Information Needed]
27
-
28
- ### Model Sources [optional]
29
-
30
- <!-- Provide the basic links for the model. -->
31
-
32
- - **Repository:** [More Information Needed]
33
- - **Paper [optional]:** [More Information Needed]
34
- - **Demo [optional]:** [More Information Needed]
35
-
36
- ## Uses
37
-
38
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
-
40
- ### Direct Use
41
-
42
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
-
44
- [More Information Needed]
45
-
46
- ### Downstream Use [optional]
47
-
48
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
-
50
- [More Information Needed]
51
-
52
- ### Out-of-Scope Use
53
-
54
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
-
56
- [More Information Needed]
57
-
58
- ## Bias, Risks, and Limitations
59
-
60
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
-
62
- [More Information Needed]
63
-
64
- ### Recommendations
65
-
66
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
-
68
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
-
70
- ## How to Get Started with the Model
71
-
72
- Use the code below to get started with the model.
73
-
74
- [More Information Needed]
75
-
76
- ## Training Details
77
-
78
- ### Training Data
79
-
80
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
-
82
- [More Information Needed]
83
-
84
- ### Training Procedure
85
-
86
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
-
88
- #### Preprocessing [optional]
89
-
90
- [More Information Needed]
91
-
92
-
93
- #### Training Hyperparameters
94
-
95
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
-
97
- #### Speeds, Sizes, Times [optional]
98
-
99
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
-
101
- [More Information Needed]
102
-
103
- ## Evaluation
104
-
105
- <!-- This section describes the evaluation protocols and provides the results. -->
106
-
107
- ### Testing Data, Factors & Metrics
108
-
109
- #### Testing Data
110
-
111
- <!-- This should link to a Dataset Card if possible. -->
112
-
113
- [More Information Needed]
114
-
115
- #### Factors
116
-
117
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
-
119
- [More Information Needed]
120
-
121
- #### Metrics
122
-
123
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
-
125
- [More Information Needed]
126
-
127
- ### Results
128
-
129
- [More Information Needed]
130
-
131
- #### Summary
132
-
133
-
134
-
135
- ## Model Examination [optional]
136
-
137
- <!-- Relevant interpretability work for the model goes here -->
138
-
139
- [More Information Needed]
140
-
141
- ## Environmental Impact
142
-
143
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
-
145
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
-
147
- - **Hardware Type:** [More Information Needed]
148
- - **Hours used:** [More Information Needed]
149
- - **Cloud Provider:** [More Information Needed]
150
- - **Compute Region:** [More Information Needed]
151
- - **Carbon Emitted:** [More Information Needed]
152
-
153
- ## Technical Specifications [optional]
154
-
155
- ### Model Architecture and Objective
156
-
157
- [More Information Needed]
158
-
159
- ### Compute Infrastructure
160
-
161
- [More Information Needed]
162
-
163
- #### Hardware
164
-
165
- [More Information Needed]
166
-
167
- #### Software
168
-
169
- [More Information Needed]
170
-
171
- ## Citation [optional]
172
-
173
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
-
175
- **BibTeX:**
176
-
177
- [More Information Needed]
178
-
179
- **APA:**
180
-
181
- [More Information Needed]
182
-
183
- ## Glossary [optional]
184
-
185
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
-
187
- [More Information Needed]
188
-
189
- ## More Information [optional]
190
-
191
- [More Information Needed]
192
-
193
- ## Model Card Authors [optional]
194
-
195
- [More Information Needed]
196
-
197
- ## Model Card Contact
198
-
199
- [More Information Needed]
200
- ### Framework versions
201
-
202
- - PEFT 0.13.3.dev0
 
1
  ---
2
  base_model: Qwen/Qwen2.5-32B-Instruct
3
  library_name: peft
4
+ license: mit
5
+ language:
6
+ - en
7
+ - ko
8
+ - zh
9
+ - pt
10
+ - ja
11
+ - uz
12
+ - tl
13
+ - th
14
+ - vi
15
+ - id
16
  ---
17
+ # FINGU-AI/Qwen2.5-32B-Lora-HQ-e-4
18
 
19
+ ## Overview
20
+ `FINGU-AI/Qwen2.5-32B-Lora-HQ-e-4` is a powerful causal language model designed for a variety of natural language processing (NLP) tasks, including machine translation, text generation, and chat-based applications. This model is particularly useful for translating between Korean and Uzbek, as well as supporting other custom NLP tasks through flexible input.
 
 
 
21
 
22
  ## Model Details
23
+ - **Model ID**: `FINGU-AI/Qwen2.5-32B-Lora-HQ-e-4`
24
+ - **Architecture**: Causal Language Model (LM)
25
+ - **Parameters**: 32 billion
26
+ - **Precision**: Torch BF16 for efficient GPU memory usage
27
+ - **Attention**: SDPA (Scaled Dot-Product Attention)
28
+ - **Primary Use Case**: Translation (e.g., Korean to Uzbek), text generation, and dialogue systems.
29
+
30
+ ## Example Usage
31
+
32
+ ### Installation
33
+ Make sure to install the required packages:
34
+
35
+ ```bash
36
+ pip install torch transformers
37
+ ```
38
+ ### Loading the Model
39
+
40
+ ```python
41
+ from transformers import AutoTokenizer, AutoModelForCausalLM
42
+ import torch
43
+
44
+ # Model and Tokenizer
45
+ model_id = 'FINGU-AI/Qwen2.5-32B-Lora-HQ-e-4'
46
+ model = AutoModelForCausalLM.from_pretrained(model_id, attn_implementation="sdpa", torch_dtype=torch.bfloat16)
47
+ tokenizer = AutoTokenizer.from_pretrained(model_id)
48
+ model.to('cuda')
49
+
50
+ # Input Messages for Translation
51
+ messages = [
52
+ {"role": "system", "content": "translate korean to Uzbek"},
53
+ {"role": "user", "content": """์ƒˆ๋กœ์šด ์€ํ–‰ ๊ณ„์ขŒ๋ฅผ ๊ฐœ์„คํ•˜๋Š” ์ ˆ์ฐจ๋Š” ๋‹ค์Œ๊ณผ ๊ฐ™์Šต๋‹ˆ๋‹ค:
54
+
55
+ 1. ๊ณ„์ขŒ ๊ฐœ์„ค ๋ชฉ์ ๊ณผ ์‹ ๋ถ„ ํ™•์ธ์„ ์œ„ํ•œ ์„œ๋ฅ˜ ์ œ์ถœ
56
+ 2. ์„œ๋ฅ˜ ๊ฒ€ํ†  ๊ณผ์ •์„ ๊ฑฐ์น˜๋Š” ๊ฒƒ
57
+ 3. ๊ณ ๊ฐ๋‹˜์˜ ์‹ ์› ํ™•์ธ ์ ˆ์ฐจ๋ฅผ ์ง„ํ–‰ํ•˜๋Š” ๊ฒƒ
58
+ 4. ๋ชจ๋“  ์ ˆ์ฐจ๊ฐ€ ์™„๋ฃŒ๋˜๋ฉด ๊ณ„์ขŒ ๊ฐœ์„ค์ด ๊ฐ€๋Šฅํ•ฉ๋‹ˆ๋‹ค.
59
+
60
+ ๊ณ„์ขŒ ๊ฐœ์„ค์„ ์›ํ•˜์‹œ๋Š” ๊ฒฝ์šฐ, ์‹ ๋ถ„์ฆ๊ณผ ํ•จ๊ป˜ ๋ฐฉ๋ฌธํ•ด ์ฃผ์‹œ๋ฉด ๋ฉ๋‹ˆ๋‹ค.
61
+ """},
62
+ ]
63
+
64
+ # Tokenize and Generate Response
65
+ input_ids = tokenizer.apply_chat_template(
66
+ messages,
67
+ add_generation_prompt=True,
68
+ return_tensors="pt"
69
+ ).to('cuda')
70
+
71
+ outputs = model.generate(
72
+ input_ids,
73
+ max_new_tokens=500,
74
+ do_sample=True,
75
+ )
76
+
77
+ # Decode and Print the Translation
78
+ response = outputs[0][input_ids.shape[-1]:]
79
+ print(tokenizer.decode(response, skip_special_tokens=True))
80
+ ```