FinguMv3 / trainer_state.json
FINGU-AI's picture
Upload folder using huggingface_hub
e6213f7 verified
{
"best_metric": null,
"best_model_checkpoint": null,
"epoch": 0.27705947543405984,
"eval_steps": 100,
"global_step": 1500,
"is_hyper_param_search": false,
"is_local_process_zero": true,
"is_world_process_zero": true,
"log_history": [
{
"epoch": 0.01847063169560399,
"grad_norm": 17.696088790893555,
"learning_rate": 1.980139427847242e-05,
"loss": 0.4835,
"step": 100
},
{
"epoch": 0.01847063169560399,
"eval_cosine_accuracy@1": 0.8868686868686869,
"eval_cosine_accuracy@10": 0.9579124579124579,
"eval_cosine_accuracy@3": 0.9343434343434344,
"eval_cosine_accuracy@5": 0.9454545454545454,
"eval_cosine_map@100": 0.9137674463447905,
"eval_cosine_mrr@10": 0.9124690021912245,
"eval_cosine_ndcg@10": 0.9236137131767355,
"eval_cosine_precision@1": 0.8868686868686869,
"eval_cosine_precision@10": 0.09579124579124577,
"eval_cosine_precision@3": 0.3114478114478115,
"eval_cosine_precision@5": 0.18909090909090906,
"eval_cosine_recall@1": 0.8868686868686869,
"eval_cosine_recall@10": 0.9579124579124579,
"eval_cosine_recall@3": 0.9343434343434344,
"eval_cosine_recall@5": 0.9454545454545454,
"eval_loss": 0.07506837695837021,
"eval_runtime": 49.7303,
"eval_samples_per_second": 140.759,
"eval_sequential_score": 0.9137674463447905,
"eval_steps_per_second": 8.808,
"step": 100
},
{
"epoch": 0.03694126339120798,
"grad_norm": 2.3271963596343994,
"learning_rate": 1.917211301505453e-05,
"loss": 0.0646,
"step": 200
},
{
"epoch": 0.03694126339120798,
"eval_cosine_accuracy@1": 0.9195286195286195,
"eval_cosine_accuracy@10": 0.967003367003367,
"eval_cosine_accuracy@3": 0.9518518518518518,
"eval_cosine_accuracy@5": 0.9612794612794613,
"eval_cosine_map@100": 0.9383862806127067,
"eval_cosine_mrr@10": 0.937248810859922,
"eval_cosine_ndcg@10": 0.9445895366693552,
"eval_cosine_precision@1": 0.9195286195286195,
"eval_cosine_precision@10": 0.0967003367003367,
"eval_cosine_precision@3": 0.317283950617284,
"eval_cosine_precision@5": 0.19225589225589226,
"eval_cosine_recall@1": 0.9195286195286195,
"eval_cosine_recall@10": 0.967003367003367,
"eval_cosine_recall@3": 0.9518518518518518,
"eval_cosine_recall@5": 0.9612794612794613,
"eval_loss": 0.05896875262260437,
"eval_runtime": 51.3489,
"eval_samples_per_second": 136.322,
"eval_sequential_score": 0.9383862806127067,
"eval_steps_per_second": 8.53,
"step": 200
},
{
"epoch": 0.05541189508681197,
"grad_norm": 3.7376925945281982,
"learning_rate": 1.8139290433532415e-05,
"loss": 0.0594,
"step": 300
},
{
"epoch": 0.05541189508681197,
"eval_cosine_accuracy@1": 0.9303030303030303,
"eval_cosine_accuracy@10": 0.9737373737373738,
"eval_cosine_accuracy@3": 0.9579124579124579,
"eval_cosine_accuracy@5": 0.9656565656565657,
"eval_cosine_map@100": 0.9462389210939364,
"eval_cosine_mrr@10": 0.9454570840681954,
"eval_cosine_ndcg@10": 0.9523521034308455,
"eval_cosine_precision@1": 0.9303030303030303,
"eval_cosine_precision@10": 0.09737373737373735,
"eval_cosine_precision@3": 0.31930415263748596,
"eval_cosine_precision@5": 0.1931313131313131,
"eval_cosine_recall@1": 0.9303030303030303,
"eval_cosine_recall@10": 0.9737373737373738,
"eval_cosine_recall@3": 0.9579124579124579,
"eval_cosine_recall@5": 0.9656565656565657,
"eval_loss": 0.051894593983888626,
"eval_runtime": 49.496,
"eval_samples_per_second": 141.426,
"eval_sequential_score": 0.9462389210939364,
"eval_steps_per_second": 8.849,
"step": 300
},
{
"epoch": 0.07388252678241596,
"grad_norm": 0.3877984583377838,
"learning_rate": 1.6748367163042577e-05,
"loss": 0.0471,
"step": 400
},
{
"epoch": 0.07388252678241596,
"eval_cosine_accuracy@1": 0.9367003367003367,
"eval_cosine_accuracy@10": 0.9750841750841751,
"eval_cosine_accuracy@3": 0.9612794612794613,
"eval_cosine_accuracy@5": 0.969023569023569,
"eval_cosine_map@100": 0.9513700816079773,
"eval_cosine_mrr@10": 0.9505351130351131,
"eval_cosine_ndcg@10": 0.9565510675566292,
"eval_cosine_precision@1": 0.9367003367003367,
"eval_cosine_precision@10": 0.09750841750841752,
"eval_cosine_precision@3": 0.3204264870931538,
"eval_cosine_precision@5": 0.19380471380471379,
"eval_cosine_recall@1": 0.9367003367003367,
"eval_cosine_recall@10": 0.9750841750841751,
"eval_cosine_recall@3": 0.9612794612794613,
"eval_cosine_recall@5": 0.969023569023569,
"eval_loss": 0.04832224175333977,
"eval_runtime": 49.2695,
"eval_samples_per_second": 142.076,
"eval_sequential_score": 0.9513700816079773,
"eval_steps_per_second": 8.89,
"step": 400
},
{
"epoch": 0.09235315847801995,
"grad_norm": 0.9424126744270325,
"learning_rate": 1.5060539027168317e-05,
"loss": 0.0524,
"step": 500
},
{
"epoch": 0.09235315847801995,
"eval_cosine_accuracy@1": 0.9387205387205387,
"eval_cosine_accuracy@10": 0.9787878787878788,
"eval_cosine_accuracy@3": 0.9622895622895623,
"eval_cosine_accuracy@5": 0.9703703703703703,
"eval_cosine_map@100": 0.9530933506069861,
"eval_cosine_mrr@10": 0.9525124258457593,
"eval_cosine_ndcg@10": 0.9588799906525647,
"eval_cosine_precision@1": 0.9387205387205387,
"eval_cosine_precision@10": 0.09787878787878787,
"eval_cosine_precision@3": 0.3207631874298541,
"eval_cosine_precision@5": 0.19407407407407404,
"eval_cosine_recall@1": 0.9387205387205387,
"eval_cosine_recall@10": 0.9787878787878788,
"eval_cosine_recall@3": 0.9622895622895623,
"eval_cosine_recall@5": 0.9703703703703703,
"eval_loss": 0.04548173025250435,
"eval_runtime": 49.8784,
"eval_samples_per_second": 140.341,
"eval_sequential_score": 0.9530933506069861,
"eval_steps_per_second": 8.781,
"step": 500
},
{
"epoch": 0.11082379017362394,
"grad_norm": 1.4559208154678345,
"learning_rate": 1.315006463889948e-05,
"loss": 0.0435,
"step": 600
},
{
"epoch": 0.11082379017362394,
"eval_cosine_accuracy@1": 0.94006734006734,
"eval_cosine_accuracy@10": 0.9784511784511785,
"eval_cosine_accuracy@3": 0.965993265993266,
"eval_cosine_accuracy@5": 0.9713804713804713,
"eval_cosine_map@100": 0.9545577685553948,
"eval_cosine_mrr@10": 0.953849339960451,
"eval_cosine_ndcg@10": 0.9598872198067653,
"eval_cosine_precision@1": 0.94006734006734,
"eval_cosine_precision@10": 0.09784511784511785,
"eval_cosine_precision@3": 0.32199775533108865,
"eval_cosine_precision@5": 0.19427609427609427,
"eval_cosine_recall@1": 0.94006734006734,
"eval_cosine_recall@10": 0.9784511784511785,
"eval_cosine_recall@3": 0.965993265993266,
"eval_cosine_recall@5": 0.9713804713804713,
"eval_loss": 0.03971650078892708,
"eval_runtime": 50.0185,
"eval_samples_per_second": 139.948,
"eval_sequential_score": 0.9545577685553948,
"eval_steps_per_second": 8.757,
"step": 600
},
{
"epoch": 0.12929442186922793,
"grad_norm": 4.4629669189453125,
"learning_rate": 1.1100998277940316e-05,
"loss": 0.0336,
"step": 700
},
{
"epoch": 0.12929442186922793,
"eval_cosine_accuracy@1": 0.9404040404040404,
"eval_cosine_accuracy@10": 0.9804713804713805,
"eval_cosine_accuracy@3": 0.9646464646464646,
"eval_cosine_accuracy@5": 0.9717171717171718,
"eval_cosine_map@100": 0.9549470882860054,
"eval_cosine_mrr@10": 0.9544308160974829,
"eval_cosine_ndcg@10": 0.9607541640834583,
"eval_cosine_precision@1": 0.9404040404040404,
"eval_cosine_precision@10": 0.09804713804713802,
"eval_cosine_precision@3": 0.32154882154882153,
"eval_cosine_precision@5": 0.19434343434343435,
"eval_cosine_recall@1": 0.9404040404040404,
"eval_cosine_recall@10": 0.9804713804713805,
"eval_cosine_recall@3": 0.9646464646464646,
"eval_cosine_recall@5": 0.9717171717171718,
"eval_loss": 0.03936752304434776,
"eval_runtime": 49.3604,
"eval_samples_per_second": 141.814,
"eval_sequential_score": 0.9549470882860054,
"eval_steps_per_second": 8.874,
"step": 700
},
{
"epoch": 0.1477650535648319,
"grad_norm": 18.81490135192871,
"learning_rate": 9.003491792488438e-06,
"loss": 0.0344,
"step": 800
},
{
"epoch": 0.1477650535648319,
"eval_cosine_accuracy@1": 0.9424242424242424,
"eval_cosine_accuracy@10": 0.9791245791245792,
"eval_cosine_accuracy@3": 0.9673400673400674,
"eval_cosine_accuracy@5": 0.9730639730639731,
"eval_cosine_map@100": 0.9565285707123049,
"eval_cosine_mrr@10": 0.9558751536529315,
"eval_cosine_ndcg@10": 0.9615848253233655,
"eval_cosine_precision@1": 0.9424242424242424,
"eval_cosine_precision@10": 0.0979124579124579,
"eval_cosine_precision@3": 0.32244668911335583,
"eval_cosine_precision@5": 0.19461279461279463,
"eval_cosine_recall@1": 0.9424242424242424,
"eval_cosine_recall@10": 0.9791245791245792,
"eval_cosine_recall@3": 0.9673400673400674,
"eval_cosine_recall@5": 0.9730639730639731,
"eval_loss": 0.03738004341721535,
"eval_runtime": 50.7853,
"eval_samples_per_second": 137.835,
"eval_sequential_score": 0.9565285707123049,
"eval_steps_per_second": 8.625,
"step": 800
},
{
"epoch": 0.16623568526043592,
"grad_norm": 40.96598434448242,
"learning_rate": 6.9498282290438235e-06,
"loss": 0.0393,
"step": 900
},
{
"epoch": 0.16623568526043592,
"eval_cosine_accuracy@1": 0.9430976430976431,
"eval_cosine_accuracy@10": 0.9801346801346801,
"eval_cosine_accuracy@3": 0.9666666666666667,
"eval_cosine_accuracy@5": 0.9723905723905724,
"eval_cosine_map@100": 0.9567946373289521,
"eval_cosine_mrr@10": 0.9561974239752019,
"eval_cosine_ndcg@10": 0.9620315668852821,
"eval_cosine_precision@1": 0.9430976430976431,
"eval_cosine_precision@10": 0.098013468013468,
"eval_cosine_precision@3": 0.32222222222222224,
"eval_cosine_precision@5": 0.19447811447811444,
"eval_cosine_recall@1": 0.9430976430976431,
"eval_cosine_recall@10": 0.9801346801346801,
"eval_cosine_recall@3": 0.9666666666666667,
"eval_cosine_recall@5": 0.9723905723905724,
"eval_loss": 0.036062091588974,
"eval_runtime": 50.1457,
"eval_samples_per_second": 139.593,
"eval_sequential_score": 0.9567946373289521,
"eval_steps_per_second": 8.735,
"step": 900
},
{
"epoch": 0.1847063169560399,
"grad_norm": 7.633666038513184,
"learning_rate": 5.030361696847706e-06,
"loss": 0.0451,
"step": 1000
},
{
"epoch": 0.1847063169560399,
"eval_cosine_accuracy@1": 0.9447811447811448,
"eval_cosine_accuracy@10": 0.9804713804713805,
"eval_cosine_accuracy@3": 0.9673400673400674,
"eval_cosine_accuracy@5": 0.9720538720538721,
"eval_cosine_map@100": 0.9577987764578036,
"eval_cosine_mrr@10": 0.9572219549997326,
"eval_cosine_ndcg@10": 0.9628692157043424,
"eval_cosine_precision@1": 0.9447811447811448,
"eval_cosine_precision@10": 0.09804713804713805,
"eval_cosine_precision@3": 0.32244668911335583,
"eval_cosine_precision@5": 0.19441077441077437,
"eval_cosine_recall@1": 0.9447811447811448,
"eval_cosine_recall@10": 0.9804713804713805,
"eval_cosine_recall@3": 0.9673400673400674,
"eval_cosine_recall@5": 0.9720538720538721,
"eval_loss": 0.03610473498702049,
"eval_runtime": 49.6014,
"eval_samples_per_second": 141.125,
"eval_sequential_score": 0.9577987764578036,
"eval_steps_per_second": 8.83,
"step": 1000
},
{
"epoch": 0.20317694865164387,
"grad_norm": 4.241499900817871,
"learning_rate": 3.329542098903674e-06,
"loss": 0.0278,
"step": 1100
},
{
"epoch": 0.20317694865164387,
"eval_cosine_accuracy@1": 0.9430976430976431,
"eval_cosine_accuracy@10": 0.9804713804713805,
"eval_cosine_accuracy@3": 0.9666666666666667,
"eval_cosine_accuracy@5": 0.9717171717171718,
"eval_cosine_map@100": 0.9568101043018846,
"eval_cosine_mrr@10": 0.9562193362193362,
"eval_cosine_ndcg@10": 0.9621111011663721,
"eval_cosine_precision@1": 0.9430976430976431,
"eval_cosine_precision@10": 0.09804713804713805,
"eval_cosine_precision@3": 0.32222222222222224,
"eval_cosine_precision@5": 0.19434343434343435,
"eval_cosine_recall@1": 0.9430976430976431,
"eval_cosine_recall@10": 0.9804713804713805,
"eval_cosine_recall@3": 0.9666666666666667,
"eval_cosine_recall@5": 0.9717171717171718,
"eval_loss": 0.035753391683101654,
"eval_runtime": 50.7364,
"eval_samples_per_second": 137.968,
"eval_sequential_score": 0.9568101043018846,
"eval_steps_per_second": 8.633,
"step": 1100
},
{
"epoch": 0.22164758034724788,
"grad_norm": 10.087759971618652,
"learning_rate": 1.9221996276968523e-06,
"loss": 0.0332,
"step": 1200
},
{
"epoch": 0.22164758034724788,
"eval_cosine_accuracy@1": 0.9437710437710438,
"eval_cosine_accuracy@10": 0.9801346801346801,
"eval_cosine_accuracy@3": 0.9666666666666667,
"eval_cosine_accuracy@5": 0.9720538720538721,
"eval_cosine_map@100": 0.9572367070457485,
"eval_cosine_mrr@10": 0.9566237774571107,
"eval_cosine_ndcg@10": 0.9623501597917694,
"eval_cosine_precision@1": 0.9437710437710438,
"eval_cosine_precision@10": 0.09801346801346802,
"eval_cosine_precision@3": 0.32222222222222224,
"eval_cosine_precision@5": 0.19441077441077437,
"eval_cosine_recall@1": 0.9437710437710438,
"eval_cosine_recall@10": 0.9801346801346801,
"eval_cosine_recall@3": 0.9666666666666667,
"eval_cosine_recall@5": 0.9720538720538721,
"eval_loss": 0.03558042645454407,
"eval_runtime": 50.0835,
"eval_samples_per_second": 139.767,
"eval_sequential_score": 0.9572367070457485,
"eval_steps_per_second": 8.745,
"step": 1200
},
{
"epoch": 0.24011821204285186,
"grad_norm": 17.43052864074707,
"learning_rate": 8.702524949765645e-07,
"loss": 0.0317,
"step": 1300
},
{
"epoch": 0.24011821204285186,
"eval_cosine_accuracy@1": 0.9441077441077441,
"eval_cosine_accuracy@10": 0.9797979797979798,
"eval_cosine_accuracy@3": 0.9673400673400674,
"eval_cosine_accuracy@5": 0.9720538720538721,
"eval_cosine_map@100": 0.9574821374909939,
"eval_cosine_mrr@10": 0.9568467746245525,
"eval_cosine_ndcg@10": 0.9624426218971004,
"eval_cosine_precision@1": 0.9441077441077441,
"eval_cosine_precision@10": 0.09797979797979799,
"eval_cosine_precision@3": 0.32244668911335583,
"eval_cosine_precision@5": 0.19441077441077437,
"eval_cosine_recall@1": 0.9441077441077441,
"eval_cosine_recall@10": 0.9797979797979798,
"eval_cosine_recall@3": 0.9673400673400674,
"eval_cosine_recall@5": 0.9720538720538721,
"eval_loss": 0.03541325777769089,
"eval_runtime": 49.4999,
"eval_samples_per_second": 141.414,
"eval_sequential_score": 0.9574821374909939,
"eval_steps_per_second": 8.848,
"step": 1300
},
{
"epoch": 0.25858884373845586,
"grad_norm": 0.8455698490142822,
"learning_rate": 2.199827441298863e-07,
"loss": 0.026,
"step": 1400
},
{
"epoch": 0.25858884373845586,
"eval_cosine_accuracy@1": 0.9441077441077441,
"eval_cosine_accuracy@10": 0.9797979797979798,
"eval_cosine_accuracy@3": 0.9673400673400674,
"eval_cosine_accuracy@5": 0.9720538720538721,
"eval_cosine_map@100": 0.9574340839544937,
"eval_cosine_mrr@10": 0.9567861151194483,
"eval_cosine_ndcg@10": 0.9624031906320126,
"eval_cosine_precision@1": 0.9441077441077441,
"eval_cosine_precision@10": 0.09797979797979799,
"eval_cosine_precision@3": 0.32244668911335583,
"eval_cosine_precision@5": 0.19441077441077437,
"eval_cosine_recall@1": 0.9441077441077441,
"eval_cosine_recall@10": 0.9797979797979798,
"eval_cosine_recall@3": 0.9673400673400674,
"eval_cosine_recall@5": 0.9720538720538721,
"eval_loss": 0.035498470067977905,
"eval_runtime": 50.8752,
"eval_samples_per_second": 137.592,
"eval_sequential_score": 0.9574340839544937,
"eval_steps_per_second": 8.609,
"step": 1400
},
{
"epoch": 0.27705947543405984,
"grad_norm": 3.3353021144866943,
"learning_rate": 0.0,
"loss": 0.0442,
"step": 1500
},
{
"epoch": 0.27705947543405984,
"eval_cosine_accuracy@1": 0.9437710437710438,
"eval_cosine_accuracy@10": 0.9801346801346801,
"eval_cosine_accuracy@3": 0.967003367003367,
"eval_cosine_accuracy@5": 0.9723905723905724,
"eval_cosine_map@100": 0.9572829070357247,
"eval_cosine_mrr@10": 0.9566718775052107,
"eval_cosine_ndcg@10": 0.9623908732460177,
"eval_cosine_precision@1": 0.9437710437710438,
"eval_cosine_precision@10": 0.09801346801346802,
"eval_cosine_precision@3": 0.322334455667789,
"eval_cosine_precision@5": 0.19447811447811444,
"eval_cosine_recall@1": 0.9437710437710438,
"eval_cosine_recall@10": 0.9801346801346801,
"eval_cosine_recall@3": 0.967003367003367,
"eval_cosine_recall@5": 0.9723905723905724,
"eval_loss": 0.035526029765605927,
"eval_runtime": 45.9521,
"eval_samples_per_second": 152.333,
"eval_sequential_score": 0.9572829070357247,
"eval_steps_per_second": 9.532,
"step": 1500
}
],
"logging_steps": 100,
"max_steps": 1500,
"num_input_tokens_seen": 0,
"num_train_epochs": 1,
"save_steps": 500,
"stateful_callbacks": {
"TrainerControl": {
"args": {
"should_epoch_stop": false,
"should_evaluate": false,
"should_log": false,
"should_save": true,
"should_training_stop": true
},
"attributes": {}
}
},
"total_flos": 0.0,
"train_batch_size": 8,
"trial_name": null,
"trial_params": null
}