File size: 21,304 Bytes
2a0cf32 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 |
---
base_model: dunzhang/stella_en_1.5B_v5
datasets: []
language: []
library_name: sentence-transformers
metrics:
- cosine_accuracy@1
- cosine_accuracy@3
- cosine_accuracy@5
- cosine_accuracy@10
- cosine_precision@1
- cosine_precision@3
- cosine_precision@5
- cosine_precision@10
- cosine_recall@1
- cosine_recall@3
- cosine_recall@5
- cosine_recall@10
- cosine_ndcg@10
- cosine_mrr@10
- cosine_map@100
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:693000
- loss:MatryoshkaLoss
- loss:MultipleNegativesRankingLoss
widget:
- source_sentence: Paracrystalline materials are defined as having short and medium
range ordering in their lattice (similar to the liquid crystal phases) but lacking
crystal-like long-range ordering at least in one direction.
sentences:
- 'Instruct: Given a web search query, retrieve relevant passages that answer the
query.
Query: Paracrystalline'
- 'Instruct: Given a web search query, retrieve relevant passages that answer the
query.
Query: Øystein Dahle'
- 'Instruct: Given a web search query, retrieve relevant passages that answer the
query.
Query: Makis Belevonis'
- source_sentence: 'Hạ Trạch is a commune ( xã ) and village in Bố Trạch District
, Quảng Bình Province , in Vietnam . Category : Populated places in Quang Binh
Province Category : Communes of Quang Binh Province'
sentences:
- 'Instruct: Given a web search query, retrieve relevant passages that answer the
query.
Query: The Taill of how this forsaid Tod maid his Confessioun to Freir Wolf Waitskaith'
- 'Instruct: Given a web search query, retrieve relevant passages that answer the
query.
Query: Hạ Trạch'
- 'Instruct: Given a web search query, retrieve relevant passages that answer the
query.
Query: Tadaxa'
- source_sentence: The Golden Mosque (سنهرى مسجد, Sunehri Masjid) is a mosque in Old
Delhi. It is located outside the southwestern corner of Delhi Gate of the Red
Fort, opposite the Netaji Subhash Park.
sentences:
- 'Instruct: Given a web search query, retrieve relevant passages that answer the
query.
Query: Algorithm'
- 'Instruct: Given a web search query, retrieve relevant passages that answer the
query.
Query: Golden Mosque (Red Fort)'
- 'Instruct: Given a web search query, retrieve relevant passages that answer the
query.
Query: Parnaso Español'
- source_sentence: Unibank, S.A. is one of Haiti's two largest private commercial
banks. The bank was founded in 1993 by a group of Haitian investors and is the
main company of "Groupe Financier National (GFN)". It opened its first office
in July 1993 in downtown Port-au-Prince and has 50 branches throughout the country
as of the end of 2016.
sentences:
- 'Instruct: Given a web search query, retrieve relevant passages that answer the
query.
Query: Sky TG24'
- 'Instruct: Given a web search query, retrieve relevant passages that answer the
query.
Query: Ghomijeh'
- 'Instruct: Given a web search query, retrieve relevant passages that answer the
query.
Query: Unibank (Haiti)'
- source_sentence: The Tchaikovsky Symphony Orchestra is a Russian classical music
orchestra established in 1930. It was founded as the Moscow Radio Symphony Orchestra,
and served as the official symphony for the Soviet All-Union Radio network. Following
the dissolution of the, Soviet Union in 1991, the orchestra was renamed in 1993
by the Russian Ministry of Culture in recognition of the central role the music
of Tchaikovsky plays in its repertoire. The current music director is Vladimir
Fedoseyev, who has been in that position since 1974.
sentences:
- 'Instruct: Given a web search query, retrieve relevant passages that answer the
query.
Query: Harald J.W. Mueller-Kirsten'
- 'Instruct: Given a web search query, retrieve relevant passages that answer the
query.
Query: Sierra del Lacandón'
- 'Instruct: Given a web search query, retrieve relevant passages that answer the
query.
Query: Tchaikovsky Symphony Orchestra'
model-index:
- name: SentenceTransformer based on dunzhang/stella_en_1.5B_v5
results:
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: Unknown
type: unknown
metrics:
- type: cosine_accuracy@1
value: 0.9387205387205387
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.9646464646464646
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.9734006734006734
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.9818181818181818
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.9387205387205387
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.32154882154882153
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.19468013468013465
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.09818181818181818
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.9387205387205387
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.9646464646464646
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.9734006734006734
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.9818181818181818
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.9604189096111768
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.9535509860509859
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.9540030317604424
name: Cosine Map@100
- type: cosine_accuracy@1
value: 0.938047138047138
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.9643097643097643
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.9734006734006734
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.9801346801346801
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.938047138047138
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.3214365881032548
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.19468013468013465
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.09801346801346798
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.938047138047138
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.9643097643097643
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.9734006734006734
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.9801346801346801
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.9595228125760605
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.9528592806370585
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.9534396603676074
name: Cosine Map@100
- type: cosine_accuracy@1
value: 0.9387205387205387
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.9622895622895623
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.9703703703703703
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.9787878787878788
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.9387205387205387
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.3207631874298541
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.19407407407407404
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.09787878787878787
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.9387205387205387
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.9622895622895623
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.9703703703703703
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.9787878787878788
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.9588799906525647
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.9525124258457593
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.9530933506069861
name: Cosine Map@100
---
# SentenceTransformer based on dunzhang/stella_en_1.5B_v5
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [dunzhang/stella_en_1.5B_v5](https://huggingface.co/dunzhang/stella_en_1.5B_v5). It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
## Model Details
### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [dunzhang/stella_en_1.5B_v5](https://huggingface.co/dunzhang/stella_en_1.5B_v5) <!-- at revision 129dc50d3ca5f0f5ee0ce8944f65a8553c0f26e0 -->
- **Maximum Sequence Length:** 8096 tokens
- **Output Dimensionality:** 1024 tokens
- **Similarity Function:** Cosine Similarity
<!-- - **Training Dataset:** Unknown -->
<!-- - **Language:** Unknown -->
<!-- - **License:** Unknown -->
### Model Sources
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
### Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 8096, 'do_lower_case': False}) with Transformer model: Qwen2Model
(1): Pooling({'word_embedding_dimension': 1536, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Dense({'in_features': 1536, 'out_features': 1024, 'bias': True, 'activation_function': 'torch.nn.modules.linear.Identity'})
)
```
## Usage
### Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
```bash
pip install -U sentence-transformers
```
Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("sentence_transformers_model_id")
# Run inference
sentences = [
'The Tchaikovsky Symphony Orchestra is a Russian classical music orchestra established in 1930. It was founded as the Moscow Radio Symphony Orchestra, and served as the official symphony for the Soviet All-Union Radio network. Following the dissolution of the, Soviet Union in 1991, the orchestra was renamed in 1993 by the Russian Ministry of Culture in recognition of the central role the music of Tchaikovsky plays in its repertoire. The current music director is Vladimir Fedoseyev, who has been in that position since 1974.',
'Instruct: Given a web search query, retrieve relevant passages that answer the query.\nQuery: Tchaikovsky Symphony Orchestra',
'Instruct: Given a web search query, retrieve relevant passages that answer the query.\nQuery: Sierra del Lacandón',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 1024]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```
<!--
### Direct Usage (Transformers)
<details><summary>Click to see the direct usage in Transformers</summary>
</details>
-->
<!--
### Downstream Usage (Sentence Transformers)
You can finetune this model on your own dataset.
<details><summary>Click to expand</summary>
</details>
-->
<!--
### Out-of-Scope Use
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->
## Evaluation
### Metrics
#### Information Retrieval
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
| Metric | Value |
|:--------------------|:----------|
| cosine_accuracy@1 | 0.9387 |
| cosine_accuracy@3 | 0.9646 |
| cosine_accuracy@5 | 0.9734 |
| cosine_accuracy@10 | 0.9818 |
| cosine_precision@1 | 0.9387 |
| cosine_precision@3 | 0.3215 |
| cosine_precision@5 | 0.1947 |
| cosine_precision@10 | 0.0982 |
| cosine_recall@1 | 0.9387 |
| cosine_recall@3 | 0.9646 |
| cosine_recall@5 | 0.9734 |
| cosine_recall@10 | 0.9818 |
| cosine_ndcg@10 | 0.9604 |
| cosine_mrr@10 | 0.9536 |
| **cosine_map@100** | **0.954** |
#### Information Retrieval
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
| Metric | Value |
|:--------------------|:-----------|
| cosine_accuracy@1 | 0.938 |
| cosine_accuracy@3 | 0.9643 |
| cosine_accuracy@5 | 0.9734 |
| cosine_accuracy@10 | 0.9801 |
| cosine_precision@1 | 0.938 |
| cosine_precision@3 | 0.3214 |
| cosine_precision@5 | 0.1947 |
| cosine_precision@10 | 0.098 |
| cosine_recall@1 | 0.938 |
| cosine_recall@3 | 0.9643 |
| cosine_recall@5 | 0.9734 |
| cosine_recall@10 | 0.9801 |
| cosine_ndcg@10 | 0.9595 |
| cosine_mrr@10 | 0.9529 |
| **cosine_map@100** | **0.9534** |
#### Information Retrieval
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
| Metric | Value |
|:--------------------|:-----------|
| cosine_accuracy@1 | 0.9387 |
| cosine_accuracy@3 | 0.9623 |
| cosine_accuracy@5 | 0.9704 |
| cosine_accuracy@10 | 0.9788 |
| cosine_precision@1 | 0.9387 |
| cosine_precision@3 | 0.3208 |
| cosine_precision@5 | 0.1941 |
| cosine_precision@10 | 0.0979 |
| cosine_recall@1 | 0.9387 |
| cosine_recall@3 | 0.9623 |
| cosine_recall@5 | 0.9704 |
| cosine_recall@10 | 0.9788 |
| cosine_ndcg@10 | 0.9589 |
| cosine_mrr@10 | 0.9525 |
| **cosine_map@100** | **0.9531** |
<!--
## Bias, Risks and Limitations
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->
<!--
### Recommendations
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->
## Training Details
### Training Hyperparameters
#### Non-Default Hyperparameters
- `eval_strategy`: steps
- `per_device_eval_batch_size`: 4
- `gradient_accumulation_steps`: 4
- `learning_rate`: 2e-05
- `max_steps`: 1500
- `lr_scheduler_type`: cosine
- `warmup_ratio`: 0.1
- `warmup_steps`: 5
- `bf16`: True
- `tf32`: True
- `optim`: adamw_torch_fused
- `gradient_checkpointing`: True
- `gradient_checkpointing_kwargs`: {'use_reentrant': False}
- `batch_sampler`: no_duplicates
#### All Hyperparameters
<details><summary>Click to expand</summary>
- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: steps
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 8
- `per_device_eval_batch_size`: 4
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 4
- `eval_accumulation_steps`: None
- `learning_rate`: 2e-05
- `weight_decay`: 0.0
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1.0
- `num_train_epochs`: 3.0
- `max_steps`: 1500
- `lr_scheduler_type`: cosine
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.1
- `warmup_steps`: 5
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: True
- `fp16`: False
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: True
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: True
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: False
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch_fused
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: False
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save
- `hub_private_repo`: False
- `hub_always_push`: False
- `gradient_checkpointing`: True
- `gradient_checkpointing_kwargs`: {'use_reentrant': False}
- `include_inputs_for_metrics`: False
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`:
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `dispatch_batches`: None
- `split_batches`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `batch_sampler`: no_duplicates
- `multi_dataset_batch_sampler`: proportional
</details>
### Training Logs
| Epoch | Step | Training Loss | loss | cosine_map@100 |
|:------:|:----:|:-------------:|:------:|:--------------:|
| 0.0185 | 100 | 0.4835 | 0.0751 | 0.9138 |
| 0.0369 | 200 | 0.0646 | 0.0590 | 0.9384 |
| 0.0554 | 300 | 0.0594 | 0.0519 | 0.9462 |
| 0.0739 | 400 | 0.0471 | 0.0483 | 0.9514 |
| 0.0924 | 500 | 0.0524 | 0.0455 | 0.9531 |
### Framework Versions
- Python: 3.10.12
- Sentence Transformers: 3.0.1
- Transformers: 4.41.2
- PyTorch: 2.2.0+cu121
- Accelerate: 0.33.0
- Datasets: 2.20.0
- Tokenizers: 0.19.1
## Citation
### BibTeX
#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
```
#### MatryoshkaLoss
```bibtex
@misc{kusupati2024matryoshka,
title={Matryoshka Representation Learning},
author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
year={2024},
eprint={2205.13147},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
```
#### MultipleNegativesRankingLoss
```bibtex
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
```
<!--
## Glossary
*Clearly define terms in order to be accessible across audiences.*
-->
<!--
## Model Card Authors
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->
<!--
## Model Card Contact
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
--> |