Upload 2 files
Browse filesHere is the prediction source
- model.py +111 -0
- predict.py +412 -0
model.py
ADDED
@@ -0,0 +1,111 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import warnings
|
2 |
+
from typing import Optional, Tuple
|
3 |
+
|
4 |
+
import torch
|
5 |
+
import torch.nn.functional as F
|
6 |
+
import torch.utils.checkpoint
|
7 |
+
from transformers import Wav2Vec2Model, Wav2Vec2PreTrainedModel
|
8 |
+
from transformers.modeling_outputs import CausalLMOutput
|
9 |
+
from torch import nn
|
10 |
+
|
11 |
+
class Wav2Vec2ForCTCnCLS(Wav2Vec2PreTrainedModel):
|
12 |
+
|
13 |
+
def __init__(self, config, cls_len=2, alpha=0.01):
|
14 |
+
super().__init__(config)
|
15 |
+
self.wav2vec2 = Wav2Vec2Model(config)
|
16 |
+
self.dropout = nn.Dropout(config.final_dropout)
|
17 |
+
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size)
|
18 |
+
self.cls_head = nn.Linear(config.hidden_size, cls_len)
|
19 |
+
self.init_weights()
|
20 |
+
self.alpha = alpha
|
21 |
+
|
22 |
+
|
23 |
+
def freeze_feature_extractor(self):
|
24 |
+
self.wav2vec2.feature_extractor._freeze_parameters()
|
25 |
+
|
26 |
+
|
27 |
+
def _ctc_loss(self, logits, labels, input_values, attention_mask=None):
|
28 |
+
loss = None
|
29 |
+
if labels is not None:
|
30 |
+
|
31 |
+
# retrieve loss input_lengths from attention_mask
|
32 |
+
attention_mask = (
|
33 |
+
attention_mask if attention_mask is not None else torch.ones_like(input_values, dtype=torch.long)
|
34 |
+
)
|
35 |
+
input_lengths = self._get_feat_extract_output_lengths(attention_mask.sum(-1))
|
36 |
+
|
37 |
+
# assuming that padded tokens are filled with -100
|
38 |
+
# when not being attended to
|
39 |
+
labels_mask = labels >= 0
|
40 |
+
target_lengths = labels_mask.sum(-1)
|
41 |
+
flattened_targets = labels.masked_select(labels_mask)
|
42 |
+
|
43 |
+
log_probs = F.log_softmax(logits, dim=-1).transpose(0, 1)
|
44 |
+
|
45 |
+
with torch.backends.cudnn.flags(enabled=False):
|
46 |
+
loss = F.ctc_loss(
|
47 |
+
log_probs,
|
48 |
+
flattened_targets,
|
49 |
+
input_lengths,
|
50 |
+
target_lengths,
|
51 |
+
blank=self.config.pad_token_id,
|
52 |
+
reduction=self.config.ctc_loss_reduction,
|
53 |
+
zero_infinity=self.config.ctc_zero_infinity,
|
54 |
+
)
|
55 |
+
|
56 |
+
return loss
|
57 |
+
|
58 |
+
|
59 |
+
def _cls_loss(self, logits, cls_labels): # sum hidden_states over dim 1 (the sequence length), then feed into self.cls
|
60 |
+
loss = None
|
61 |
+
if cls_labels is not None:
|
62 |
+
loss = F.cross_entropy(logits, cls_labels.to(logits.device))
|
63 |
+
return loss
|
64 |
+
|
65 |
+
|
66 |
+
def forward(
|
67 |
+
self,
|
68 |
+
input_values,
|
69 |
+
attention_mask=None,
|
70 |
+
output_attentions=None,
|
71 |
+
output_hidden_states=None,
|
72 |
+
return_dict=None,
|
73 |
+
labels=None, # tuple: (ctc_labels, cls_labels), shape=(batch_size, target_length)
|
74 |
+
if_ctc=True,
|
75 |
+
if_cls=True,
|
76 |
+
):
|
77 |
+
|
78 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
79 |
+
|
80 |
+
outputs = self.wav2vec2(
|
81 |
+
input_values,
|
82 |
+
attention_mask=attention_mask,
|
83 |
+
output_attentions=output_attentions,
|
84 |
+
output_hidden_states=output_hidden_states,
|
85 |
+
return_dict=return_dict,
|
86 |
+
)
|
87 |
+
|
88 |
+
hidden_states = outputs[0] # this is the last layer's hidden states
|
89 |
+
hidden_states = self.dropout(hidden_states)
|
90 |
+
|
91 |
+
logits_ctc = self.lm_head(hidden_states)
|
92 |
+
logits_cls = self.cls_head(torch.mean(hidden_states, dim=1))
|
93 |
+
|
94 |
+
loss = None
|
95 |
+
if labels is not None:
|
96 |
+
if if_ctc:
|
97 |
+
loss_ctc = self._ctc_loss(logits_ctc, labels[0], input_values, attention_mask)
|
98 |
+
if if_cls:
|
99 |
+
loss_cls = self._cls_loss(logits_cls, labels[1])
|
100 |
+
|
101 |
+
loss = loss_cls + self.alpha * loss_ctc
|
102 |
+
|
103 |
+
# if not return_dict:
|
104 |
+
# output = (logits,) + outputs[1:]
|
105 |
+
# return ((loss,) + output) if loss is not None else output
|
106 |
+
|
107 |
+
return CausalLMOutput(
|
108 |
+
loss=loss, logits=(logits_ctc, logits_cls), hidden_states=outputs.hidden_states, attentions=outputs.attentions
|
109 |
+
)
|
110 |
+
|
111 |
+
|
predict.py
ADDED
@@ -0,0 +1,412 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python3
|
2 |
+
import logging
|
3 |
+
import pathlib
|
4 |
+
import re
|
5 |
+
import sys
|
6 |
+
import time
|
7 |
+
import csv
|
8 |
+
from dataclasses import dataclass, field
|
9 |
+
from typing import Any, Callable, Dict, List, Optional, Set, Union
|
10 |
+
|
11 |
+
import datasets
|
12 |
+
import numpy as np
|
13 |
+
import torch
|
14 |
+
import torch.nn as nn
|
15 |
+
import torch.nn.functional as F
|
16 |
+
from packaging import version
|
17 |
+
from torch.cuda.amp import GradScaler, autocast
|
18 |
+
|
19 |
+
import librosa
|
20 |
+
from lang_trans import arabic
|
21 |
+
from datasets import Dataset
|
22 |
+
|
23 |
+
import soundfile as sf
|
24 |
+
from model import Wav2Vec2ForCTCnCLS
|
25 |
+
from transformers.trainer_utils import get_last_checkpoint
|
26 |
+
|
27 |
+
from transformers import (
|
28 |
+
HfArgumentParser,
|
29 |
+
Trainer,
|
30 |
+
TrainingArguments,
|
31 |
+
Wav2Vec2CTCTokenizer,
|
32 |
+
Wav2Vec2FeatureExtractor,
|
33 |
+
Wav2Vec2Processor,
|
34 |
+
is_apex_available,
|
35 |
+
trainer_utils,
|
36 |
+
)
|
37 |
+
|
38 |
+
|
39 |
+
local_model_path = "local_model"
|
40 |
+
|
41 |
+
if is_apex_available():
|
42 |
+
from apex import amp
|
43 |
+
|
44 |
+
if version.parse(torch.__version__) >= version.parse("1.6"):
|
45 |
+
_is_native_amp_available = True
|
46 |
+
from torch.cuda.amp import autocast
|
47 |
+
|
48 |
+
|
49 |
+
logger = logging.getLogger(__name__)
|
50 |
+
|
51 |
+
|
52 |
+
@dataclass
|
53 |
+
class ModelArguments:
|
54 |
+
"""
|
55 |
+
Arguments pertaining to which model/config/tokenizer we are going to fine-tune from.
|
56 |
+
"""
|
57 |
+
|
58 |
+
model_name_or_path: str = field(
|
59 |
+
default="local_model",
|
60 |
+
metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"}
|
61 |
+
)
|
62 |
+
cache_dir: Optional[str] = field(
|
63 |
+
default=None,
|
64 |
+
metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"},
|
65 |
+
)
|
66 |
+
freeze_feature_extractor: Optional[bool] = field(
|
67 |
+
default=False, metadata={"help": "Whether to freeze the feature extractor layers of the model."}
|
68 |
+
)
|
69 |
+
verbose_logging: Optional[bool] = field(
|
70 |
+
default=False,
|
71 |
+
metadata={"help": "Whether to log verbose messages or not."},
|
72 |
+
)
|
73 |
+
|
74 |
+
tokenizer: Optional[str] = field(
|
75 |
+
default="checkpoint-33000",
|
76 |
+
metadata={"help": "Path to pretrained tokenizer"}
|
77 |
+
|
78 |
+
)
|
79 |
+
|
80 |
+
def configure_logger(model_args: ModelArguments, training_args: TrainingArguments):
|
81 |
+
logging.basicConfig(
|
82 |
+
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
|
83 |
+
datefmt="%m/%d/%Y %H:%M:%S",
|
84 |
+
handlers=[logging.StreamHandler(sys.stdout)],
|
85 |
+
)
|
86 |
+
logging_level = logging.WARNING
|
87 |
+
if model_args.verbose_logging:
|
88 |
+
logging_level = logging.DEBUG
|
89 |
+
elif trainer_utils.is_main_process(training_args.local_rank):
|
90 |
+
logging_level = logging.INFO
|
91 |
+
logger.setLevel(logging_level)
|
92 |
+
|
93 |
+
|
94 |
+
@dataclass
|
95 |
+
class DataTrainingArguments:
|
96 |
+
"""
|
97 |
+
Arguments pertaining to what data we are going to input our model for training and eval.
|
98 |
+
|
99 |
+
Using `HfArgumentParser` we can turn this class
|
100 |
+
into argparse arguments to be able to specify them on
|
101 |
+
the command line.
|
102 |
+
"""
|
103 |
+
|
104 |
+
dataset_name: str = field(
|
105 |
+
default='emotion', metadata={"help": "The name of the dataset to use (via the datasets library)."}
|
106 |
+
)
|
107 |
+
dataset_config_name: Optional[str] = field(
|
108 |
+
default=None, metadata={"help": "The configuration name of the dataset to use (via the datasets library)."}
|
109 |
+
)
|
110 |
+
train_split_name: Optional[str] = field(
|
111 |
+
default="train",
|
112 |
+
metadata={
|
113 |
+
"help": "The name of the training data set split to use (via the datasets library). Defaults to 'train'"
|
114 |
+
},
|
115 |
+
)
|
116 |
+
validation_split_name: Optional[str] = field(
|
117 |
+
default="validation",
|
118 |
+
metadata={
|
119 |
+
"help": "The name of the validation data set split to use (via the datasets library). Defaults to 'validation'"
|
120 |
+
},
|
121 |
+
)
|
122 |
+
target_text_column: Optional[str] = field(
|
123 |
+
default="text",
|
124 |
+
metadata={"help": "Column in the dataset that contains label (target text). Defaults to 'text'"},
|
125 |
+
)
|
126 |
+
speech_file_column: Optional[str] = field(
|
127 |
+
default="file",
|
128 |
+
metadata={"help": "Column in the dataset that contains speech file path. Defaults to 'file'"},
|
129 |
+
)
|
130 |
+
target_feature_extractor_sampling_rate: Optional[bool] = field(
|
131 |
+
default=False,
|
132 |
+
metadata={"help": "Resample loaded audio to target feature extractor's sampling rate or not."},
|
133 |
+
)
|
134 |
+
max_duration_in_seconds: Optional[float] = field(
|
135 |
+
default=None,
|
136 |
+
metadata={"help": "Filters out examples longer than specified. Defaults to no filtering."},
|
137 |
+
)
|
138 |
+
orthography: Optional[str] = field(
|
139 |
+
default="librispeech",
|
140 |
+
metadata={
|
141 |
+
"help": "Orthography used for normalization and tokenization: 'librispeech' (default), 'timit', or 'buckwalter'."
|
142 |
+
},
|
143 |
+
)
|
144 |
+
overwrite_cache: bool = field(
|
145 |
+
default=False, metadata={"help": "Overwrite the cached preprocessed datasets or not."}
|
146 |
+
)
|
147 |
+
preprocessing_num_workers: Optional[int] = field(
|
148 |
+
default=8,
|
149 |
+
metadata={"help": "The number of processes to use for the preprocessing."},
|
150 |
+
)
|
151 |
+
|
152 |
+
output_file: Optional[str] = field(
|
153 |
+
default=None,
|
154 |
+
metadata={"help": "Output file."},
|
155 |
+
)
|
156 |
+
|
157 |
+
|
158 |
+
@dataclass
|
159 |
+
class Orthography:
|
160 |
+
"""
|
161 |
+
Orthography scheme used for text normalization and tokenization.
|
162 |
+
|
163 |
+
Args:
|
164 |
+
do_lower_case (:obj:`bool`, `optional`, defaults to :obj:`False`):
|
165 |
+
Whether or not to accept lowercase input and lowercase the output when decoding.
|
166 |
+
vocab_file (:obj:`str`, `optional`, defaults to :obj:`None`):
|
167 |
+
File containing the vocabulary.
|
168 |
+
word_delimiter_token (:obj:`str`, `optional`, defaults to :obj:`"|"`):
|
169 |
+
The token used for delimiting words; it needs to be in the vocabulary.
|
170 |
+
translation_table (:obj:`Dict[str, str]`, `optional`, defaults to :obj:`{}`):
|
171 |
+
Table to use with `str.translate()` when preprocessing text (e.g., "-" -> " ").
|
172 |
+
words_to_remove (:obj:`Set[str]`, `optional`, defaults to :obj:`set()`):
|
173 |
+
Words to remove when preprocessing text (e.g., "sil").
|
174 |
+
untransliterator (:obj:`Callable[[str], str]`, `optional`, defaults to :obj:`None`):
|
175 |
+
Function that untransliterates text back into native writing system.
|
176 |
+
tokenizer (:obj:`str`, `optional`, defaults to :obj:`None`):
|
177 |
+
Tokenizer type, e.g., 'jieba' for Chinese.
|
178 |
+
"""
|
179 |
+
|
180 |
+
do_lower_case: bool = False
|
181 |
+
vocab_file: Optional[str] = None
|
182 |
+
word_delimiter_token: Optional[str] = "|"
|
183 |
+
translation_table: Optional[Dict[str, str]] = field(default_factory=dict)
|
184 |
+
words_to_remove: Optional[Set[str]] = field(default_factory=set)
|
185 |
+
tokenizer: Optional[str] = None
|
186 |
+
untransliterator: Optional[Callable[[str], str]] = None
|
187 |
+
@classmethod
|
188 |
+
def from_name(cls, name: str):
|
189 |
+
if name == "librispeech":
|
190 |
+
return cls()
|
191 |
+
else:
|
192 |
+
raise ValueError(f"Unsupported orthography: '{name}'.")
|
193 |
+
|
194 |
+
|
195 |
+
|
196 |
+
def create_processor(self, model_args: ModelArguments) -> Wav2Vec2Processor:
|
197 |
+
feature_extractor = Wav2Vec2FeatureExtractor.from_pretrained(
|
198 |
+
local_model_path, cache_dir=model_args.cache_dir
|
199 |
+
)
|
200 |
+
if self.vocab_file:
|
201 |
+
tokenizer = Wav2Vec2CTCTokenizer(
|
202 |
+
self.vocab_file,
|
203 |
+
cache_dir=model_args.cache_dir,
|
204 |
+
do_lower_case=self.do_lower_case,
|
205 |
+
word_delimiter_token=self.word_delimiter_token,
|
206 |
+
)
|
207 |
+
else:
|
208 |
+
tokenizer = Wav2Vec2CTCTokenizer.from_pretrained(
|
209 |
+
local_model_path,
|
210 |
+
# self.tokenizer,
|
211 |
+
cache_dir=model_args.cache_dir,
|
212 |
+
do_lower_case=self.do_lower_case,
|
213 |
+
word_delimiter_token=self.word_delimiter_token,
|
214 |
+
device_map="cuda:0",
|
215 |
+
)
|
216 |
+
return Wav2Vec2Processor(feature_extractor, tokenizer)
|
217 |
+
|
218 |
+
|
219 |
+
@dataclass
|
220 |
+
class TrainingArguments(TrainingArguments):
|
221 |
+
output_dir: str = field(
|
222 |
+
default="output/angry_tmp", metadata={"help": "The store of your output."})
|
223 |
+
do_predict: bool = field(
|
224 |
+
default=True, metadata={"help": "The store of your output."})
|
225 |
+
do_eval: bool = field(
|
226 |
+
default=False, metadata={"help": "The store of your output."})
|
227 |
+
overwrite_output_dir: str = field(
|
228 |
+
default='overwrite_output_dir', metadata={"help": "The store of your output."} )
|
229 |
+
per_device_eval_batch_size: int = field(
|
230 |
+
default=2, metadata={"help": "The store of your output."})
|
231 |
+
warmup_ratio: float = field(
|
232 |
+
default=0.1, metadata={"help": "Linear warmup over warmup_ratio fraction of total steps."}
|
233 |
+
)
|
234 |
+
|
235 |
+
|
236 |
+
|
237 |
+
@dataclass
|
238 |
+
class DataCollatorCTCWithPadding:
|
239 |
+
"""
|
240 |
+
Data collator that will dynamically pad the inputs received.
|
241 |
+
Args:
|
242 |
+
processor (:class:`~transformers.Wav2Vec2Processor`)
|
243 |
+
The processor used for proccessing the data.
|
244 |
+
padding (:obj:`bool`, :obj:`str` or :class:`~transformers.tokenization_utils_base.PaddingStrategy`, `optional`, defaults to :obj:`True`):
|
245 |
+
Select a strategy to pad the returned sequences (according to the model's padding side and padding index)
|
246 |
+
among:
|
247 |
+
* :obj:`True` or :obj:`'longest'`: Pad to the longest sequence in the batch (or no padding if only a single
|
248 |
+
sequence if provided).
|
249 |
+
* :obj:`'max_length'`: Pad to a maximum length specified with the argument :obj:`max_length` or to the
|
250 |
+
maximum acceptable input length for the model if that argument is not provided.
|
251 |
+
* :obj:`False` or :obj:`'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of
|
252 |
+
different lengths).
|
253 |
+
max_length (:obj:`int`, `optional`):
|
254 |
+
Maximum length of the ``input_values`` of the returned list and optionally padding length (see above).
|
255 |
+
max_length_labels (:obj:`int`, `optional`):
|
256 |
+
Maximum length of the ``labels`` returned list and optionally padding length (see above).
|
257 |
+
pad_to_multiple_of (:obj:`int`, `optional`):
|
258 |
+
If set will pad the sequence to a multiple of the provided value.
|
259 |
+
This is especially useful to enable the use of Tensor Cores on NVIDIA hardware with compute capability >=
|
260 |
+
7.5 (Volta).
|
261 |
+
"""
|
262 |
+
|
263 |
+
processor: Wav2Vec2Processor
|
264 |
+
padding: Union[bool, str] = True
|
265 |
+
max_length: Optional[int] = None
|
266 |
+
max_length_labels: Optional[int] = None
|
267 |
+
pad_to_multiple_of: Optional[int] = None
|
268 |
+
pad_to_multiple_of_labels: Optional[int] = None
|
269 |
+
audio_only = False
|
270 |
+
duration = 6
|
271 |
+
sample_rate = 16000
|
272 |
+
|
273 |
+
|
274 |
+
def __call__(self, features: List[Dict[str, Union[List[int], torch.Tensor]]]) -> Dict[str, torch.Tensor]:
|
275 |
+
# split inputs and labels since they have to be of different lenghts and need
|
276 |
+
# different padding methods
|
277 |
+
input_features = [{"input_values": feature["input_values"]} for feature in features]
|
278 |
+
|
279 |
+
batch = self.processor.pad(
|
280 |
+
input_features,
|
281 |
+
padding=self.padding,
|
282 |
+
# max_length=self.max_length,
|
283 |
+
max_length=self.duration*self.sample_rate,
|
284 |
+
pad_to_multiple_of=self.pad_to_multiple_of,
|
285 |
+
return_tensors="pt",
|
286 |
+
)
|
287 |
+
|
288 |
+
return batch
|
289 |
+
|
290 |
+
|
291 |
+
class CTCTrainer(Trainer):
|
292 |
+
def _prepare_inputs(self, inputs: Dict[str, Union[torch.Tensor, Any]]) -> Dict[str, Union[torch.Tensor, Any]]:
|
293 |
+
self.use_amp = False
|
294 |
+
self.use_apex = False
|
295 |
+
self.deepspeed = False
|
296 |
+
self.scaler = GradScaler()
|
297 |
+
for k, v in inputs.items():
|
298 |
+
if isinstance(v, torch.Tensor):
|
299 |
+
kwargs = dict(device=self.args.device)
|
300 |
+
if self.deepspeed and inputs[k].dtype != torch.int64:
|
301 |
+
kwargs.update(dict(dtype=self.args.hf_deepspeed_config.dtype()))
|
302 |
+
inputs[k] = v.to(**kwargs)
|
303 |
+
|
304 |
+
if self.args.past_index >= 0 and self._past is not None:
|
305 |
+
inputs["mems"] = self._past
|
306 |
+
|
307 |
+
return inputs
|
308 |
+
|
309 |
+
|
310 |
+
def create_dataset(audio_path):
|
311 |
+
data = {
|
312 |
+
'file': [audio_path]
|
313 |
+
}
|
314 |
+
dataset = Dataset.from_dict(data)
|
315 |
+
return dataset
|
316 |
+
|
317 |
+
|
318 |
+
def exeute_angry_predict(audio_path):
|
319 |
+
# See all possible arguments in src/transformers/training_args.py
|
320 |
+
# or by passing the --help flag to this script.
|
321 |
+
# We now keep distinct sets of args, for a cleaner separation of concerns.
|
322 |
+
|
323 |
+
target_sr = 16000
|
324 |
+
|
325 |
+
parser = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments))
|
326 |
+
|
327 |
+
model_args, data_args, training_args = parser.parse_args_into_dataclasses()
|
328 |
+
configure_logger(model_args, training_args)
|
329 |
+
|
330 |
+
|
331 |
+
orthography = Orthography.from_name(data_args.orthography.lower())
|
332 |
+
orthography.tokenizer = model_args.tokenizer
|
333 |
+
processor = orthography.create_processor(model_args)
|
334 |
+
|
335 |
+
if data_args.dataset_name == 'emotion':
|
336 |
+
val_dataset = create_dataset(audio_path)
|
337 |
+
cls_label_map = {"neutral":0, "angry":1}
|
338 |
+
|
339 |
+
model = Wav2Vec2ForCTCnCLS.from_pretrained(
|
340 |
+
local_model_path,
|
341 |
+
gradient_checkpointing=True, # training_args.gradient_checkpointing,
|
342 |
+
cls_len=len(cls_label_map),
|
343 |
+
)
|
344 |
+
|
345 |
+
def prepare_example(example, audio_only=False): # TODO(elgeish) make use of multiprocessing?
|
346 |
+
example["speech"], example["sampling_rate"] = librosa.load(example[data_args.speech_file_column], sr=target_sr)
|
347 |
+
orig_sample_rate = example["sampling_rate"]
|
348 |
+
target_sample_rate = target_sr
|
349 |
+
if orig_sample_rate != target_sample_rate:
|
350 |
+
example["speech"] = librosa.resample(example["speech"], orig_sr=orig_sample_rate, target_sr=target_sample_rate)
|
351 |
+
if data_args.max_duration_in_seconds is not None:
|
352 |
+
example["duration_in_seconds"] = len(example["speech"]) / example["sampling_rate"]
|
353 |
+
return example
|
354 |
+
|
355 |
+
|
356 |
+
if training_args.do_predict:
|
357 |
+
val_dataset = val_dataset.map(prepare_example, fn_kwargs={'audio_only':True})
|
358 |
+
|
359 |
+
|
360 |
+
def prepare_dataset(batch, audio_only=False):
|
361 |
+
# check that all files have the correct sampling rate
|
362 |
+
assert (
|
363 |
+
len(set(batch["sampling_rate"])) == 1
|
364 |
+
), f"Make sure all inputs have the same sampling rate of {processor.feature_extractor.sampling_rate}."
|
365 |
+
|
366 |
+
batch["input_values"] = processor(batch["speech"], sampling_rate=batch["sampling_rate"][0]).input_values
|
367 |
+
return batch
|
368 |
+
|
369 |
+
|
370 |
+
if training_args.do_predict:
|
371 |
+
val_dataset = val_dataset.map(
|
372 |
+
prepare_dataset,
|
373 |
+
fn_kwargs={'audio_only':True},
|
374 |
+
batch_size=training_args.per_device_eval_batch_size,
|
375 |
+
batched=True,
|
376 |
+
num_proc=data_args.preprocessing_num_workers,
|
377 |
+
)
|
378 |
+
|
379 |
+
data_collator = DataCollatorCTCWithPadding(processor=processor, padding=True)
|
380 |
+
|
381 |
+
if model_args.freeze_feature_extractor:
|
382 |
+
model.freeze_feature_extractor()
|
383 |
+
|
384 |
+
trainer = CTCTrainer(
|
385 |
+
model=model,
|
386 |
+
args=training_args,
|
387 |
+
eval_dataset=val_dataset,
|
388 |
+
tokenizer=processor.feature_extractor,
|
389 |
+
)
|
390 |
+
|
391 |
+
|
392 |
+
if training_args.do_predict:
|
393 |
+
logger.info('******* Predict ********')
|
394 |
+
data_collator.audio_only=True
|
395 |
+
results= {}
|
396 |
+
result= ''
|
397 |
+
predictions, labels, metrics = trainer.predict(val_dataset, metric_key_prefix="predict")
|
398 |
+
logits_ctc, logits_cls = predictions
|
399 |
+
pred_ids = np.argmax(logits_cls, axis=-1)
|
400 |
+
if pred_ids==0:
|
401 |
+
result = "非愤怒"
|
402 |
+
if pred_ids==1:
|
403 |
+
result = "愤怒"
|
404 |
+
results[audio_path] = result
|
405 |
+
print("results", results)
|
406 |
+
|
407 |
+
|
408 |
+
if __name__ == "__main__":
|
409 |
+
audio_path = 'audio.mp3'
|
410 |
+
exeute_angry_predict(audio_path)
|
411 |
+
|
412 |
+
|