EvanMath commited on
Commit
f7a2629
·
1 Parent(s): ab4e5a0
.gitattributes CHANGED
@@ -25,3 +25,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
25
  *.zip filter=lfs diff=lfs merge=lfs -text
26
  *.zstandard filter=lfs diff=lfs merge=lfs -text
27
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
25
  *.zip filter=lfs diff=lfs merge=lfs -text
26
  *.zstandard filter=lfs diff=lfs merge=lfs -text
27
  *tfevents* filter=lfs diff=lfs merge=lfs -text
28
+ *.mp4 filter=lfs diff=lfs merge=lfs -text
Lunarlander-DQN1M.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:fbe0c8c0eacc3120ebc0bae3da12e4875bbf72ff9e7d51f6063daf64fdb39758
3
+ size 108648
Lunarlander-DQN1M/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.5.0
Lunarlander-DQN1M/data ADDED
@@ -0,0 +1,115 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVMAAAAAAAAACMHnN0YWJsZV9iYXNlbGluZXMzLmRxbi5wb2xpY2llc5SMCURRTlBvbGljeZSTlC4=",
5
+ "__module__": "stable_baselines3.dqn.policies",
6
+ "__doc__": "\n Policy class with Q-Value Net and target net for DQN\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function DQNPolicy.__init__ at 0x7f83cf33f0e0>",
8
+ "_build": "<function DQNPolicy._build at 0x7f83cf33f170>",
9
+ "make_q_net": "<function DQNPolicy.make_q_net at 0x7f83cf33f200>",
10
+ "forward": "<function DQNPolicy.forward at 0x7f83cf33f290>",
11
+ "_predict": "<function DQNPolicy._predict at 0x7f83cf33f320>",
12
+ "_get_constructor_parameters": "<function DQNPolicy._get_constructor_parameters at 0x7f83cf33f3b0>",
13
+ "set_training_mode": "<function DQNPolicy.set_training_mode at 0x7f83cf33f440>",
14
+ "__abstractmethods__": "frozenset()",
15
+ "_abc_impl": "<_abc_data object at 0x7f83cf33d180>"
16
+ },
17
+ "verbose": 1,
18
+ "policy_kwargs": {},
19
+ "observation_space": {
20
+ ":type:": "<class 'gym.spaces.box.Box'>",
21
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
22
+ "dtype": "float32",
23
+ "_shape": [
24
+ 8
25
+ ],
26
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
27
+ "high": "[inf inf inf inf inf inf inf inf]",
28
+ "bounded_below": "[False False False False False False False False]",
29
+ "bounded_above": "[False False False False False False False False]",
30
+ "_np_random": null
31
+ },
32
+ "action_space": {
33
+ ":type:": "<class 'gym.spaces.discrete.Discrete'>",
34
+ ":serialized:": "gAWVLwsAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZSMFG51bXB5LnJhbmRvbS5fcGlja2xllIwSX19yYW5kb21zdGF0ZV9jdG9ylJOUjAdNVDE5OTM3lIWUUpR9lCiMDWJpdF9nZW5lcmF0b3KUaBOMBXN0YXRllH2UKIwDa2V5lIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QolsAJAAAAAAAA6YBI7jkEkkwDLNifszrMGADzi/6kbSsSBELGKmyzn6yQ4OCReUtLwgnvhfRmRFuUg49/AXtmuKDk0s5SLoamR+wLxmYjYc+FuMDBszB/HAD8Xhgc8+p1CTkT+pR2wLCbSekW9qII4qmltAvaaRz+I9i8tkxyypOsAqy+rr/wQ2X7v/vZhdj7BUe4WtXDDC3SO/db6LZCGQ9edEw5Q/tBQH4peo6yp99bBh9ZqJtk7iA9tvNWKP5hrMHS+huB2JjstNvzjXFjMsdLy220VLxtY9SHdyr0EV++XjB6pI7YJ9kf5xUoFVh4YTuHz8vQzagC5Zyrsy6DZihgpBAPqzCCY49syXZj+N25SRxVdKILxksAedwVE5O85EeBP6cisWjsx+2unw1WvwBFJhD4a7tvVSobVza2PC4K9j6OBQcpJuut6fZsIXSysChefXGf9s0WK3FoCNMxfsyKeJ/sTKqIvi1xW4mYu0fVhraw0gmmRj9qF47EfLqN352ptmBc1LdHWyX6RJFvLHu0PUxkwmFoGSn3N4Dvev8SBJQ5pm8MRW6QhgExfWoPWFnNqRM+Hzr3aSF0AfOm/r0DlOsfcgoueOeYS99Hk4XbxxBGC79uLX0lk9ZleweN0extrJcV/MPFPodavdni/PtLhTtWy0hAi2NLP6cQGaDZo5Vl+nBQqA6XQ5QlXAeOngnMJYXBhQNB++HZUgu4njqTnLZ+egkRLkMVCcNgI9w60zpUuvhvaE00ODchMD/AaJdhHuB3r42crjb0Sxt8z8K2gpOES3Mxkb3GTHzZ07HRgnfWSdD+4eeG6MDfKit/iR/MBmRKNIbuEl+24HAcT7Ay6G9n5/zJ4liuWn4mFEUu0WRqK3b/AKBatcN/eN/T1oaolxK5Lchh0Jo6NDKjCZx+cfEywLbA64UGLbXsr7fi375yGXPwiojelgsQpswPbWMQsB/RV1kFB0mJNHMe3yUWechGlWhLXMPnKci3NxtAXRVrqYMwgut8NU73H7ErktwT6WfwMAjdIAcAO0/ZInWwO44yNYM5Z1XlXfEA3zwRBgMqm0uJ1PdzVkpebJY3lomHdVSvGgb0Ewh2CIP6bLN3maSgB3RJTIfYSoFYjkWEVNtNK42Be7eN09tO+tQtqEWeTzmoWYRWb27UP9zBv4+Tk2cvub2R5HRrSamcLhGMWSjK0zpmiodm28DshYbdvkpazBdqI51hyicM+5QEQA4Xm4ouflGlxM32Czhkmsml39/8SuGge4L+qgVbxCqfC0YcUgGkwa//g6ie8tFydtUtNwpxX4Y9YtJpQyv4lgeutOL93Deu/bA7m07ESDxc9jOEZKo8TvG04yHQf+qRx6kwNL5223pqJEtKCx/IUiDJU2HN1rdbw8knQ2AL+42ZW4brgfc7chIHO7FCqtIGuasLu7qIn6W2hqvK912tV8GLk6tl9H4CX68YZi6Klf+/uznbQQqiaslmVXLo5QQ/VFCj8in2mJlGcXHeZPl2h4H+DDuKhjUJntst4BFnkkN3eISlKSqcyaGMKX09RwgMoBVUkyypaMlyM5bJt9mkYWL/vsNSNqxjffjWIocvu5T4hY+fMrqkMqfIplJESgB9BwkM/fR6Czi/1OLHJm9VmAHUpw/eFGe6m1lxS9h3zDl5t4vVXQc1fnVVFdz1lOZRQuLhCG6mXJw91Ipq7DpwMUzlzQrZ0jSGvgLG689bw5NpybF8EcFuYUF9CX8FVa4WVb7r7YnNnE44m7xC8ynrl5VuVfmlpA2nWjksTveXVyOEDRyRCn+OBX/Sxrhu9y8vTDzaCMj0ONBUOZbmeWVAeCUtp6esMR0QyTTZBroEvu36j+Nck0ksbAJvxVgW2kc/2BPK6Pvx9wb/a7uCNyyTMtgP2NDTUmNwqbebWFYICTSZG09vf1ekPelEo13Q+ppG87FHrjQvKpcdPAQOL8z0A6Y+S0d8Po/dboK+GQTQc1FdoSoIWFnqpijIqC/Zk/9CgN5D3G48++8HSlE/vP9cCyqP2fGRU+bLpvxOv8CfIGh7JxH7SJxYplylV3fv1tvH0thiS5JWN0H3SZcT9/IoLHRqyNwp6mDHeObc6ag6snQyki7W1LFq/YbSE7tbngICdyeOwOGMOfjpDoWmeFSg4q7HTvDRqOjRXPz+Qb1pku/fVWtluDUUNJhwDUlDlODLP/uLlD6lsRU/DBHcDbK2hAT0srM3MtRW46ROSCKKeGawMmkRgDdPFQvZxla/EW0c0LhqVfvVkW3xBpmrLmsVN/38ql3dFV4W6iJW+maJDBzGBubgN/9vIZ0wHozvynP0+ASy1Ie6xUC73RIYJl6naM4wGNmHf9qVhT3LwkvdD7TCOVzSELeBjbsiUU+O7ILScanj1DRKkI9EZt7izqEfz3n0mjS3LajOdPpew7z6pY1JUUv0C9q2oXyLnx188Ete+NsoWWSBvG0971GQpcodjRStyF4KUzWU6dEj2rs/e/XL2l9/E5w7ZNFgEcHolbPzep4sucrGKhM7B+U9meXpipQRK1DbCYlHmi+EavGm7erD8RsfCYYNru1OcwcSr6bnxC4B0BfJejppeWavBD1WvBkO1zbghjCrMCUkpyFp8EciRjG4qFYUSlm5ngE3MpMl2oQ/rXgFT4MnndUjUTtmMo7ftuTe5/UOe5ci+4KIFOv4G+CTYpLpqjq6rcGvqhZJvhY9NPnnBGSnLRLTsaaGNhqTaS8MOw0cU3kKSUnJ/gfDEtsGJU09Z+jHiA2sC9O3lSe0AA8/CAtZB1/j+V5VVDI1AyUSS0qIL9FouuG1vBjU+Wy5ET6TIq615tK/DgaLCKGXKkrIoNzZ9Fp9t2eiLfATkdl4MQlWWJYcCxZGRySAFB4GDUDH5tE4pCqXxHRG0mfXf32FTctbtX7/jaPo6SvmRwVYM+j/fin171ZdXYRyi3Y47PTECWZhJM/9nVtUf9bhDZK4+zN04sbtBY/bKuFAoecN++oTYmapz7nee7UnCCl9zZJ986DIV004/g3ZPZNkY1JrY5nyqMky336sLd3pVCyw9d3Zw6G0YDnj1lzFLJVh4rpciefT3AzEKKE0zWxoHtzL0fMKNyPd4WfX5CRbjmnok25B2wnV1I5+iOga3cp3FKs8QNCv1m+HikIXVe1o2GULD34YVlaj3jA9EZ8/p651mafphB9y1J/2npBh5jGRUVA1wDZHUg3TxBCvYjJwbr4smfYB2eixd6sKdLYiR8IbLxi2GAvp5oBFjTCrk/yGLOIBuVMZkQtTkvf64XMSKstOO1LW0NWeSeaV2vvXM1xerdsAvbgos68Fyuy/dLkQAti4S3cwlGgJjAJ1NJSJiIeUUpQoSwNoDU5OTkr/////Sv////9LAHSUYk1wAoWUjAFDlHSUUpSMA3Bvc5RNMAF1jAloYXNfZ2F1c3OUSwCMBWdhdXNzlEcAAAAAAAAAAHVidWIu",
35
+ "n": 4,
36
+ "_shape": [],
37
+ "dtype": "int64",
38
+ "_np_random": "RandomState(MT19937)"
39
+ },
40
+ "n_envs": 16,
41
+ "num_timesteps": 1000000,
42
+ "_total_timesteps": 1000000,
43
+ "_num_timesteps_at_start": 0,
44
+ "seed": null,
45
+ "action_noise": null,
46
+ "start_time": 1651912262.826383,
47
+ "learning_rate": 0.0001,
48
+ "tensorboard_log": null,
49
+ "lr_schedule": {
50
+ ":type:": "<class 'function'>",
51
+ ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8aNuLrHEMthZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
52
+ },
53
+ "_last_obs": {
54
+ ":type:": "<class 'numpy.ndarray'>",
55
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAGNi6b5i1Us/dl3uvYVF971wlI870R+wvAAAAAAAAAAA2mpivrGATz9b5d69kWjhvfKF3rzAOvq8AAAAAAAAAADN3i+9dKOWP9WxITuO9VG9k0xnvDUoaj0AAAAAAAAAAN3KuT5nz0k/zWxXPksW771lpJy8zjcfPQAAAAAAAAAAzWzuPMWntD9F0BA/agRHvWNsZbzEIbI8AAAAAAAAAADQETo/9aYePxH3kD5c+oW+B6PVvMN7mDsAAAAAAAAAADPu6L2PIT4/yRaLPG9EJr2IOK07dsGwvAAAAAAAAAAAFqx8v4+x/T7TrqO+Uz9jvuyMkTy8YEy8AAAAAAAAAAAmUf4+4R8pPyAacD6DSh++ngWpu0sBW7wAAAAAAAAAAJUjIL+esWY/Bloivknn6L1v7AU8yvQNPQAAAAAAAAAAVls/P+HUqj1SwGI+K2arvm1dXr2msaa8AAAAAAAAAABwKF8/rz/xvfYPHj6qsqS+ogygPlGNqT8AAIA/AAAAAGA9sT6UlEQ/OMyBPnf1Nb4sO5A8FheWvAAAAAAAAAAAWpv6PelSYD9iMxs+gXpUvWZ2sjzc6Lu8AAAAAAAAAACrRca+iyx9P1juwbxOdpO94N4nPasoXj0AAAAAAAAAAFOpKz9suIg8JqG+ujHXMzsAxAQ/gFBAvAAAgD8AAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
56
+ },
57
+ "_last_episode_starts": {
58
+ ":type:": "<class 'numpy.ndarray'>",
59
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAEBAQEBAQEBAQEBAQEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
60
+ },
61
+ "_last_original_obs": {
62
+ ":type:": "<class 'numpy.ndarray'>",
63
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAGjI6L5qh0w/dl3uvXWowL3xzbI73x+wvAAAAAAAAAAAfUlhvvIiUD9a5d69dMuqvQcD0rzFOvq8AAAAAAAAAAAAFzC9RMmWP/hZ9ruR7aW9tBCLvLYrSD0AAAAAAAAAAIa0uD6We0o/KgdIPkSEE75ZkKy8e2nUPAAAAAAAAAAAZv6/PJrLtD8fyBI/T7y2vBo8d7xFbBW8AAAAAAAAAAAdWDk/0CggP9mrkz4lcIS+CYvXvBAWLzwAAAAAAAAAAIBB6b1tXT4/qCgFPT+sgr1YktA7yzHkuwAAAAAAAAAAKNp7vwYgAD/Svp6+rZdgvvKoljzSEHe7AAAAAAAAAAC2Hv0+QgUqP2Vycz6rT0q+Dh+Tu2ffH7wAAAAAAAAAANS8H79MWWc/BloiviRKsr2LENM7y/QNPQAAAAAAAAAA48o+P4RBuj1OwGI+5r6dvpIyWr2qsaa8AAAAAAAAAAANmV4/Zf3ivSwhKT50bJ6+bkh8Pjb3lD8AAIA/AAAAAE3yrz6fmkU/OMyBPvGmGr5ZvJc8EReWvAAAAAAAAAAAzYb3PW6fYD9GFC4+yme0vanbuzyQKOq7AAAAAAAAAAA9Ksa+m5Z9PygjCb2wg7K9PMMcPT+tLT0AAAAAAAAAAJ2qKz9FQIg8ZSefO6UZBTxr6gQ/75uuvAAAgD8AAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
64
+ },
65
+ "_episode_num": 2948,
66
+ "use_sde": false,
67
+ "sde_sample_freq": -1,
68
+ "_current_progress_remaining": 0.0,
69
+ "ep_info_buffer": {
70
+ ":type:": "<class 'collections.deque'>",
71
+ ":serialized:": "gAWVdhAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIp5IBoIqrW8CUhpRSlIwBbJRNdAGMAXSUR0DCt50KXv6TdX2UKGgGaAloD0MIobskzopvZ8CUhpRSlGgVTV8CaBZHQMK30wfQrtp1fZQoaAZoCWgPQwi/K4L/rRZWwJSGlFKUaBVL/WgWR0DCuCx1q33IdX2UKGgGaAloD0MIxttKr02xYMCUhpRSlGgVTSICaBZHQMK4QcRL9Mt1fZQoaAZoCWgPQwjVk/lH39ldwJSGlFKUaBVNlAFoFkdAwrhgJ66as3V9lChoBmgJaA9DCH44SIjyDVTAlIaUUpRoFU0MAWgWR0DCuMcxGlQ/dX2UKGgGaAloD0MISbpm8s1gWMCUhpRSlGgVTVsBaBZHQMK5NM6BAfN1fZQoaAZoCWgPQwh6/Ul87ptVwJSGlFKUaBVNCAFoFkdAwrlU7lq8DnV9lChoBmgJaA9DCEzEW+dfNGPAlIaUUpRoFU1oAmgWR0DCuZq4FzMidX2UKGgGaAloD0MI5ZzYQ/sAX8CUhpRSlGgVTcABaBZHQMK6FZVOsT51fZQoaAZoCWgPQwgaNPRPcHlhwJSGlFKUaBVN3AFoFkdAwrp9WT5ft3V9lChoBmgJaA9DCP9AuW3fGlvAlIaUUpRoFU2IAWgWR0DCu2Xfj0cwdX2UKGgGaAloD0MIDr3Fw3sCWUCUhpRSlGgVTZEDaBZHQMK8GwGnn+11fZQoaAZoCWgPQwhtAaH18BFcwJSGlFKUaBVNDAJoFkdAwrw6WO6un3V9lChoBmgJaA9DCHV1x2KbmmDAlIaUUpRoFU2FAmgWR0DCvD+mrKeTdX2UKGgGaAloD0MIKUAUzJjKXcCUhpRSlGgVTaABaBZHQMK8QgCGN711fZQoaAZoCWgPQwhCtFa0OTlZwJSGlFKUaBVNZwFoFkdAwrx1rzoUz3V9lChoBmgJaA9DCBrh7UEIbl/AlIaUUpRoFU2yAWgWR0DCvIVf3N9qdX2UKGgGaAloD0MI/wQXK2qNYsCUhpRSlGgVTZ8CaBZHQMK8i1ndweh1fZQoaAZoCWgPQwgpzlFHx69ZwJSGlFKUaBVNRQFoFkdAwr1NeY2KmHV9lChoBmgJaA9DCAiwyK8fEVNAlIaUUpRoFU3TA2gWR0DCvXk4BFNMdX2UKGgGaAloD0MITS7GwDqXWcCUhpRSlGgVTS8CaBZHQMK9pTBInSh1fZQoaAZoCWgPQwgN/RNcrJVfwJSGlFKUaBVNsQFoFkdAwr3Fgk1MunV9lChoBmgJaA9DCMDPuHAgkltAlIaUUpRoFU26AmgWR0DCveA+hXbNdX2UKGgGaAloD0MIRFILJZMaV8CUhpRSlGgVS/FoFkdAwr4OD15B1XV9lChoBmgJaA9DCPPLYIxIXlnAlIaUUpRoFU0iAWgWR0DCvsaKJl8PdX2UKGgGaAloD0MIEoWWdX/WYcCUhpRSlGgVTd4BaBZHQMK+yxe1KGt1fZQoaAZoCWgPQwgJpMSu7cZqwJSGlFKUaBVNbgJoFkdAwr8Bf2saKnV9lChoBmgJaA9DCAskKH4MLGPAlIaUUpRoFU2BAmgWR0DCvw+/ag27dX2UKGgGaAloD0MIvvbMkgCyV8CUhpRSlGgVS9xoFkdAwr9PSb6P83V9lChoBmgJaA9DCP5/nDBhq2LAlIaUUpRoFU2rAWgWR0DCv8iiwjdIdX2UKGgGaAloD0MIFW9kHnmxYMCUhpRSlGgVTcgBaBZHQMK/1Y+KTB91fZQoaAZoCWgPQwi1NSIYB3lhwJSGlFKUaBVNCgJoFkdAwsBjgCwKSnV9lChoBmgJaA9DCCMT8Gsk12HAlIaUUpRoFU1KAWgWR0DCwMAm5UcXdX2UKGgGaAloD0MIhSaJJeWAZcCUhpRSlGgVTV4CaBZHQMLBPk2P1ct1fZQoaAZoCWgPQwiGr691qTFgwJSGlFKUaBVNMQFoFkdAwsHGE8q4IHV9lChoBmgJaA9DCC/f+rDe3WHAlIaUUpRoFU0hAmgWR0DCwppgTh5xdX2UKGgGaAloD0MIob5lTpcCVkCUhpRSlGgVTckCaBZHQMLCv6HCXQd1fZQoaAZoCWgPQwh2pWWkXj1mwJSGlFKUaBVNKQJoFkdAwsLZ3TNMXnV9lChoBmgJaA9DCNNPOLu1ilrAlIaUUpRoFU3SAWgWR0DCwybEBKcvdX2UKGgGaAloD0MI0Amhgy6CaMCUhpRSlGgVTYoCaBZHQMLDRvnr6cl1fZQoaAZoCWgPQwhATMKFPJhiQJSGlFKUaBVNdgNoFkdAwsNq46wMY3V9lChoBmgJaA9DCMb83NCUTlbAlIaUUpRoFU2qAWgWR0DCw3DkKeCkdX2UKGgGaAloD0MIrJDyk2pZW8CUhpRSlGgVTWsBaBZHQMLDdtzS1E51fZQoaAZoCWgPQwhtrS8S2qZZwJSGlFKUaBVNAAJoFkdAwsOUjB2wFHV9lChoBmgJaA9DCD5BYrv7ymDAlIaUUpRoFU2eAWgWR0DCxFd/x2B8dX2UKGgGaAloD0MIGZKTiVsDZsCUhpRSlGgVTTIDaBZHQMLEc83l0YF1fZQoaAZoCWgPQwiazHhbaThlwJSGlFKUaBVNeAJoFkdAwsS0FOfukXV9lChoBmgJaA9DCDelvFZCQ1fAlIaUUpRoFUvCaBZHQMLEtBlUZNx1fZQoaAZoCWgPQwiFCDiEqptlwJSGlFKUaBVN2QFoFkdAwsUWlP8AJnV9lChoBmgJaA9DCOFh2jf3+1XAlIaUUpRoFUvKaBZHQMLFH1opQUJ1fZQoaAZoCWgPQwjzxklh3o5YwJSGlFKUaBVNwQFoFkdAwsVEs+3YtnV9lChoBmgJaA9DCPiMRGgERWjAlIaUUpRoFU1hAmgWR0DCxUvgDRtxdX2UKGgGaAloD0MItABtq1l2XsCUhpRSlGgVTTABaBZHQMLFTayB06p1fZQoaAZoCWgPQwi5x9KHLtBZwJSGlFKUaBVNngFoFkdAwsaQw1zhgnV9lChoBmgJaA9DCDpcqz3szVLAlIaUUpRoFUuzaBZHQMLGrt9hJAd1fZQoaAZoCWgPQwjdlPJaCfNewJSGlFKUaBVNvwFoFkdAwsa+kZ75VXV9lChoBmgJaA9DCCFAho4dtVnAlIaUUpRoFU06AWgWR0DCxuQkzGgjdX2UKGgGaAloD0MIx6ATQgcCWsCUhpRSlGgVTTgBaBZHQMLHM0ihWYF1fZQoaAZoCWgPQwgPXru04RtgwJSGlFKUaBVNagJoFkdAwsfMSHM2WXV9lChoBmgJaA9DCKT9D7DWGWHAlIaUUpRoFU10AWgWR0DCx88LBsQ/dX2UKGgGaAloD0MIrHKh8q/0XMCUhpRSlGgVTR0CaBZHQMLH3Jrk8zR1fZQoaAZoCWgPQwhrn47HjKpgwJSGlFKUaBVNzgJoFkdAwsgKCKaXr3V9lChoBmgJaA9DCDBJZYo5V1zAlIaUUpRoFU1VAWgWR0DCyDVjVhCudX2UKGgGaAloD0MIxciSORZxZ8CUhpRSlGgVTVUCaBZHQMLIVZg5R0l1fZQoaAZoCWgPQwifH0YID51jwJSGlFKUaBVNpAJoFkdAwshg77sOXnV9lChoBmgJaA9DCHx/g/bq9WHAlIaUUpRoFU0sAmgWR0DCyMomCyyEdX2UKGgGaAloD0MIUBpqFJKDZ8CUhpRSlGgVTfABaBZHQMLJA7zK9wp1fZQoaAZoCWgPQwjaOjjYG5VhwJSGlFKUaBVN+AFoFkdAwsk7klNUO3V9lChoBmgJaA9DCPDfvDjxrVrAlIaUUpRoFU1DAWgWR0DCyWNDx9XtdX2UKGgGaAloD0MIX0GasWgsXsCUhpRSlGgVTVkBaBZHQMLKihXjlxR1fZQoaAZoCWgPQwjGT+Pe/LlcwJSGlFKUaBVN3QFoFkdAwsqLEYO2A3V9lChoBmgJaA9DCGmLa3wmUV3AlIaUUpRoFU2jAWgWR0DCywmjKxLTdX2UKGgGaAloD0MI/5WVJqV2WcCUhpRSlGgVTWYBaBZHQMLLEXta6jF1fZQoaAZoCWgPQwh7vfvjvQhWwJSGlFKUaBVNMwFoFkdAwstL32VVxXV9lChoBmgJaA9DCGyzsRJzzmHAlIaUUpRoFU0NAmgWR0DCy36PIXCTdX2UKGgGaAloD0MIkj1CzZC4UsCUhpRSlGgVTQMBaBZHQMLLw4DTz/Z1fZQoaAZoCWgPQwhNwK+RJLQ5QJSGlFKUaBVNMwNoFkdAwsvhmBe5WnV9lChoBmgJaA9DCN6SHLCrUlfAlIaUUpRoFU2BAWgWR0DCzHF/lQuVdX2UKGgGaAloD0MIBvaYSOmYYMCUhpRSlGgVTe8BaBZHQMLMfz9S/CZ1fZQoaAZoCWgPQwgpWU5CaYVjwJSGlFKUaBVNOQJoFkdAwsyXxpcopnV9lChoBmgJaA9DCACQEyaMa1XAlIaUUpRoFUvyaBZHQMLM8ebd8At1fZQoaAZoCWgPQwgCDwwgfJ9kwJSGlFKUaBVNcAJoFkdAws0Njfek6HV9lChoBmgJaA9DCKIIqdvZEltAlIaUUpRoFU1jAmgWR0DCzWH1L8JldX2UKGgGaAloD0MIEAcJUb5xXsCUhpRSlGgVTU0DaBZHQMLN7lglWwN1fZQoaAZoCWgPQwgtPgXAeKxhwJSGlFKUaBVNAQJoFkdAws3wmKqGUXV9lChoBmgJaA9DCCKq8Gd4uWJAlIaUUpRoFU1nA2gWR0DCzjnc8DB/dX2UKGgGaAloD0MI1qvI6ICtUsCUhpRSlGgVS9FoFkdAws5ZmSQo1HV9lChoBmgJaA9DCCDQmbSpyFfAlIaUUpRoFUvyaBZHQMLOkqR+z+p1fZQoaAZoCWgPQwhEUDV6Nd9RwJSGlFKUaBVL5mgWR0DCzpaGJvYOdX2UKGgGaAloD0MI8YRefxLjXMCUhpRSlGgVTWwBaBZHQMLOn7ihnJ11fZQoaAZoCWgPQwiponiVtTtewJSGlFKUaBVNjgFoFkdAws6uRqXWv3V9lChoBmgJaA9DCDeOWItPm1fAlIaUUpRoFU2UAWgWR0DCzwtmQKa5dX2UKGgGaAloD0MI4+MTsnOCYsCUhpRSlGgVTckBaBZHQMLPHK4YrJ91fZQoaAZoCWgPQwhpi2t8pmhiwJSGlFKUaBVNegFoFkdAws8f+3H7xnV9lChoBmgJaA9DCN5y9WOTalxAlIaUUpRoFU1GAmgWR0DCz4j/bTMJdX2UKGgGaAloD0MI+MYQABxRTsCUhpRSlGgVTU0BaBZHQMLPkDOcDr91fZQoaAZoCWgPQwiaQXxgxxdVwJSGlFKUaBVL+mgWR0DCz6QvpQk5dX2UKGgGaAloD0MIOiLfpdRXXcCUhpRSlGgVTbYBaBZHQMLQJXqRlpZ1fZQoaAZoCWgPQwhsJt9scxBYwJSGlFKUaBVNDAFoFkdAwtDy+PikwnVlLg=="
72
+ },
73
+ "ep_success_buffer": {
74
+ ":type:": "<class 'collections.deque'>",
75
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
76
+ },
77
+ "_n_updates": 14844,
78
+ "buffer_size": 1000000,
79
+ "batch_size": 32,
80
+ "learning_starts": 50000,
81
+ "tau": 1.0,
82
+ "gamma": 0.99,
83
+ "gradient_steps": 1,
84
+ "optimize_memory_usage": false,
85
+ "replay_buffer_class": {
86
+ ":type:": "<class 'abc.ABCMeta'>",
87
+ ":serialized:": "gAWVNQAAAAAAAACMIHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5idWZmZXJzlIwMUmVwbGF5QnVmZmVylJOULg==",
88
+ "__module__": "stable_baselines3.common.buffers",
89
+ "__doc__": "\n Replay buffer used in off-policy algorithms like SAC/TD3.\n\n :param buffer_size: Max number of element in the buffer\n :param observation_space: Observation space\n :param action_space: Action space\n :param device:\n :param n_envs: Number of parallel environments\n :param optimize_memory_usage: Enable a memory efficient variant\n of the replay buffer which reduces by almost a factor two the memory used,\n at a cost of more complexity.\n See https://github.com/DLR-RM/stable-baselines3/issues/37#issuecomment-637501195\n and https://github.com/DLR-RM/stable-baselines3/pull/28#issuecomment-637559274\n :param handle_timeout_termination: Handle timeout termination (due to timelimit)\n separately and treat the task as infinite horizon task.\n https://github.com/DLR-RM/stable-baselines3/issues/284\n ",
90
+ "__init__": "<function ReplayBuffer.__init__ at 0x7f83cf393c20>",
91
+ "add": "<function ReplayBuffer.add at 0x7f83cf393cb0>",
92
+ "sample": "<function ReplayBuffer.sample at 0x7f83cf393d40>",
93
+ "_get_samples": "<function ReplayBuffer._get_samples at 0x7f83cf393dd0>",
94
+ "__abstractmethods__": "frozenset()",
95
+ "_abc_impl": "<_abc_data object at 0x7f83cf397060>"
96
+ },
97
+ "replay_buffer_kwargs": {},
98
+ "train_freq": {
99
+ ":type:": "<class 'stable_baselines3.common.type_aliases.TrainFreq'>",
100
+ ":serialized:": "gAWVYQAAAAAAAACMJXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi50eXBlX2FsaWFzZXOUjAlUcmFpbkZyZXGUk5RLBGgAjBJUcmFpbkZyZXF1ZW5jeVVuaXSUk5SMBHN0ZXCUhZRSlIaUgZQu"
101
+ },
102
+ "actor": null,
103
+ "use_sde_at_warmup": false,
104
+ "exploration_initial_eps": 1.0,
105
+ "exploration_final_eps": 0.05,
106
+ "exploration_fraction": 0.1,
107
+ "target_update_interval": 625,
108
+ "_n_calls": 62500,
109
+ "max_grad_norm": 10,
110
+ "exploration_rate": 0.05,
111
+ "exploration_schedule": {
112
+ ":type:": "<class 'function'>",
113
+ ":serialized:": "gAWVYwMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsESxNDLGQBfAAYAIgBawRyEIgAUwCIAmQBfAAYAIgAiAIYABQAiAEbABcAUwBkAFMAlE5LAYaUKYwScHJvZ3Jlc3NfcmVtYWluaW5nlIWUjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEtuQwYAAQwBBAKUjANlbmSUjAxlbmRfZnJhY3Rpb26UjAVzdGFydJSHlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpRoHilSlGgeKVKUh5R0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCR9lH2UKGgZaA6MDF9fcXVhbG5hbWVfX5SMG2dldF9saW5lYXJfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lChoC4wIYnVpbHRpbnOUjAVmbG9hdJSTlIwGcmV0dXJulGgwdYwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBqMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP6mZmZmZmZqFlFKUaDhHP7mZmZmZmZqFlFKUaDhHP/AAAAAAAACFlFKUh5SMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
114
+ }
115
+ }
Lunarlander-DQN1M/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7827cdbe6efa0f3e25de319742f4f978a49e2c294f695208db6a9e58b7ec273c
3
+ size 43265
Lunarlander-DQN1M/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e0f0c28a1e95ac7ba09db8da47dd78cdba536bec420f885d7ad8b1468dd94f25
3
+ size 44033
Lunarlander-DQN1M/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
Lunarlander-DQN1M/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ OS: Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022
2
+ Python: 3.7.13
3
+ Stable-Baselines3: 1.5.0
4
+ PyTorch: 1.11.0+cu113
5
+ GPU Enabled: True
6
+ Numpy: 1.21.6
7
+ Gym: 0.21.0
README.md ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: DQN1M
10
+ results:
11
+ - metrics:
12
+ - type: mean_reward
13
+ value: -2.85 +/- 131.17
14
+ name: mean_reward
15
+ task:
16
+ type: reinforcement-learning
17
+ name: reinforcement-learning
18
+ dataset:
19
+ name: LunarLander-v2
20
+ type: LunarLander-v2
21
+ ---
22
+
23
+ # **DQN1M** Agent playing **LunarLander-v2**
24
+ This is a trained model of a **DQN1M** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
25
+
26
+ ## Usage (with Stable-baselines3)
27
+ TODO: Add your code
28
+
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVMAAAAAAAAACMHnN0YWJsZV9iYXNlbGluZXMzLmRxbi5wb2xpY2llc5SMCURRTlBvbGljeZSTlC4=", "__module__": "stable_baselines3.dqn.policies", "__doc__": "\n Policy class with Q-Value Net and target net for DQN\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function DQNPolicy.__init__ at 0x7f83cf33f0e0>", "_build": "<function DQNPolicy._build at 0x7f83cf33f170>", "make_q_net": "<function DQNPolicy.make_q_net at 0x7f83cf33f200>", "forward": "<function DQNPolicy.forward at 0x7f83cf33f290>", "_predict": "<function DQNPolicy._predict at 0x7f83cf33f320>", "_get_constructor_parameters": "<function DQNPolicy._get_constructor_parameters at 0x7f83cf33f3b0>", "set_training_mode": "<function DQNPolicy.set_training_mode at 0x7f83cf33f440>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f83cf33d180>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVLwsAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZSMFG51bXB5LnJhbmRvbS5fcGlja2xllIwSX19yYW5kb21zdGF0ZV9jdG9ylJOUjAdNVDE5OTM3lIWUUpR9lCiMDWJpdF9nZW5lcmF0b3KUaBOMBXN0YXRllH2UKIwDa2V5lIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QolsAJAAAAAAAA6YBI7jkEkkwDLNifszrMGADzi/6kbSsSBELGKmyzn6yQ4OCReUtLwgnvhfRmRFuUg49/AXtmuKDk0s5SLoamR+wLxmYjYc+FuMDBszB/HAD8Xhgc8+p1CTkT+pR2wLCbSekW9qII4qmltAvaaRz+I9i8tkxyypOsAqy+rr/wQ2X7v/vZhdj7BUe4WtXDDC3SO/db6LZCGQ9edEw5Q/tBQH4peo6yp99bBh9ZqJtk7iA9tvNWKP5hrMHS+huB2JjstNvzjXFjMsdLy220VLxtY9SHdyr0EV++XjB6pI7YJ9kf5xUoFVh4YTuHz8vQzagC5Zyrsy6DZihgpBAPqzCCY49syXZj+N25SRxVdKILxksAedwVE5O85EeBP6cisWjsx+2unw1WvwBFJhD4a7tvVSobVza2PC4K9j6OBQcpJuut6fZsIXSysChefXGf9s0WK3FoCNMxfsyKeJ/sTKqIvi1xW4mYu0fVhraw0gmmRj9qF47EfLqN352ptmBc1LdHWyX6RJFvLHu0PUxkwmFoGSn3N4Dvev8SBJQ5pm8MRW6QhgExfWoPWFnNqRM+Hzr3aSF0AfOm/r0DlOsfcgoueOeYS99Hk4XbxxBGC79uLX0lk9ZleweN0extrJcV/MPFPodavdni/PtLhTtWy0hAi2NLP6cQGaDZo5Vl+nBQqA6XQ5QlXAeOngnMJYXBhQNB++HZUgu4njqTnLZ+egkRLkMVCcNgI9w60zpUuvhvaE00ODchMD/AaJdhHuB3r42crjb0Sxt8z8K2gpOES3Mxkb3GTHzZ07HRgnfWSdD+4eeG6MDfKit/iR/MBmRKNIbuEl+24HAcT7Ay6G9n5/zJ4liuWn4mFEUu0WRqK3b/AKBatcN/eN/T1oaolxK5Lchh0Jo6NDKjCZx+cfEywLbA64UGLbXsr7fi375yGXPwiojelgsQpswPbWMQsB/RV1kFB0mJNHMe3yUWechGlWhLXMPnKci3NxtAXRVrqYMwgut8NU73H7ErktwT6WfwMAjdIAcAO0/ZInWwO44yNYM5Z1XlXfEA3zwRBgMqm0uJ1PdzVkpebJY3lomHdVSvGgb0Ewh2CIP6bLN3maSgB3RJTIfYSoFYjkWEVNtNK42Be7eN09tO+tQtqEWeTzmoWYRWb27UP9zBv4+Tk2cvub2R5HRrSamcLhGMWSjK0zpmiodm28DshYbdvkpazBdqI51hyicM+5QEQA4Xm4ouflGlxM32Czhkmsml39/8SuGge4L+qgVbxCqfC0YcUgGkwa//g6ie8tFydtUtNwpxX4Y9YtJpQyv4lgeutOL93Deu/bA7m07ESDxc9jOEZKo8TvG04yHQf+qRx6kwNL5223pqJEtKCx/IUiDJU2HN1rdbw8knQ2AL+42ZW4brgfc7chIHO7FCqtIGuasLu7qIn6W2hqvK912tV8GLk6tl9H4CX68YZi6Klf+/uznbQQqiaslmVXLo5QQ/VFCj8in2mJlGcXHeZPl2h4H+DDuKhjUJntst4BFnkkN3eISlKSqcyaGMKX09RwgMoBVUkyypaMlyM5bJt9mkYWL/vsNSNqxjffjWIocvu5T4hY+fMrqkMqfIplJESgB9BwkM/fR6Czi/1OLHJm9VmAHUpw/eFGe6m1lxS9h3zDl5t4vVXQc1fnVVFdz1lOZRQuLhCG6mXJw91Ipq7DpwMUzlzQrZ0jSGvgLG689bw5NpybF8EcFuYUF9CX8FVa4WVb7r7YnNnE44m7xC8ynrl5VuVfmlpA2nWjksTveXVyOEDRyRCn+OBX/Sxrhu9y8vTDzaCMj0ONBUOZbmeWVAeCUtp6esMR0QyTTZBroEvu36j+Nck0ksbAJvxVgW2kc/2BPK6Pvx9wb/a7uCNyyTMtgP2NDTUmNwqbebWFYICTSZG09vf1ekPelEo13Q+ppG87FHrjQvKpcdPAQOL8z0A6Y+S0d8Po/dboK+GQTQc1FdoSoIWFnqpijIqC/Zk/9CgN5D3G48++8HSlE/vP9cCyqP2fGRU+bLpvxOv8CfIGh7JxH7SJxYplylV3fv1tvH0thiS5JWN0H3SZcT9/IoLHRqyNwp6mDHeObc6ag6snQyki7W1LFq/YbSE7tbngICdyeOwOGMOfjpDoWmeFSg4q7HTvDRqOjRXPz+Qb1pku/fVWtluDUUNJhwDUlDlODLP/uLlD6lsRU/DBHcDbK2hAT0srM3MtRW46ROSCKKeGawMmkRgDdPFQvZxla/EW0c0LhqVfvVkW3xBpmrLmsVN/38ql3dFV4W6iJW+maJDBzGBubgN/9vIZ0wHozvynP0+ASy1Ie6xUC73RIYJl6naM4wGNmHf9qVhT3LwkvdD7TCOVzSELeBjbsiUU+O7ILScanj1DRKkI9EZt7izqEfz3n0mjS3LajOdPpew7z6pY1JUUv0C9q2oXyLnx188Ete+NsoWWSBvG0971GQpcodjRStyF4KUzWU6dEj2rs/e/XL2l9/E5w7ZNFgEcHolbPzep4sucrGKhM7B+U9meXpipQRK1DbCYlHmi+EavGm7erD8RsfCYYNru1OcwcSr6bnxC4B0BfJejppeWavBD1WvBkO1zbghjCrMCUkpyFp8EciRjG4qFYUSlm5ngE3MpMl2oQ/rXgFT4MnndUjUTtmMo7ftuTe5/UOe5ci+4KIFOv4G+CTYpLpqjq6rcGvqhZJvhY9NPnnBGSnLRLTsaaGNhqTaS8MOw0cU3kKSUnJ/gfDEtsGJU09Z+jHiA2sC9O3lSe0AA8/CAtZB1/j+V5VVDI1AyUSS0qIL9FouuG1vBjU+Wy5ET6TIq615tK/DgaLCKGXKkrIoNzZ9Fp9t2eiLfATkdl4MQlWWJYcCxZGRySAFB4GDUDH5tE4pCqXxHRG0mfXf32FTctbtX7/jaPo6SvmRwVYM+j/fin171ZdXYRyi3Y47PTECWZhJM/9nVtUf9bhDZK4+zN04sbtBY/bKuFAoecN++oTYmapz7nee7UnCCl9zZJ986DIV004/g3ZPZNkY1JrY5nyqMky336sLd3pVCyw9d3Zw6G0YDnj1lzFLJVh4rpciefT3AzEKKE0zWxoHtzL0fMKNyPd4WfX5CRbjmnok25B2wnV1I5+iOga3cp3FKs8QNCv1m+HikIXVe1o2GULD34YVlaj3jA9EZ8/p651mafphB9y1J/2npBh5jGRUVA1wDZHUg3TxBCvYjJwbr4smfYB2eixd6sKdLYiR8IbLxi2GAvp5oBFjTCrk/yGLOIBuVMZkQtTkvf64XMSKstOO1LW0NWeSeaV2vvXM1xerdsAvbgos68Fyuy/dLkQAti4S3cwlGgJjAJ1NJSJiIeUUpQoSwNoDU5OTkr/////Sv////9LAHSUYk1wAoWUjAFDlHSUUpSMA3Bvc5RNMAF1jAloYXNfZ2F1c3OUSwCMBWdhdXNzlEcAAAAAAAAAAHVidWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": "RandomState(MT19937)"}, "n_envs": 16, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1651912262.826383, "learning_rate": 0.0001, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8aNuLrHEMthZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAGNi6b5i1Us/dl3uvYVF971wlI870R+wvAAAAAAAAAAA2mpivrGATz9b5d69kWjhvfKF3rzAOvq8AAAAAAAAAADN3i+9dKOWP9WxITuO9VG9k0xnvDUoaj0AAAAAAAAAAN3KuT5nz0k/zWxXPksW771lpJy8zjcfPQAAAAAAAAAAzWzuPMWntD9F0BA/agRHvWNsZbzEIbI8AAAAAAAAAADQETo/9aYePxH3kD5c+oW+B6PVvMN7mDsAAAAAAAAAADPu6L2PIT4/yRaLPG9EJr2IOK07dsGwvAAAAAAAAAAAFqx8v4+x/T7TrqO+Uz9jvuyMkTy8YEy8AAAAAAAAAAAmUf4+4R8pPyAacD6DSh++ngWpu0sBW7wAAAAAAAAAAJUjIL+esWY/Bloivknn6L1v7AU8yvQNPQAAAAAAAAAAVls/P+HUqj1SwGI+K2arvm1dXr2msaa8AAAAAAAAAABwKF8/rz/xvfYPHj6qsqS+ogygPlGNqT8AAIA/AAAAAGA9sT6UlEQ/OMyBPnf1Nb4sO5A8FheWvAAAAAAAAAAAWpv6PelSYD9iMxs+gXpUvWZ2sjzc6Lu8AAAAAAAAAACrRca+iyx9P1juwbxOdpO94N4nPasoXj0AAAAAAAAAAFOpKz9suIg8JqG+ujHXMzsAxAQ/gFBAvAAAgD8AAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAEBAQEBAQEBAQEBAQEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAGjI6L5qh0w/dl3uvXWowL3xzbI73x+wvAAAAAAAAAAAfUlhvvIiUD9a5d69dMuqvQcD0rzFOvq8AAAAAAAAAAAAFzC9RMmWP/hZ9ruR7aW9tBCLvLYrSD0AAAAAAAAAAIa0uD6We0o/KgdIPkSEE75ZkKy8e2nUPAAAAAAAAAAAZv6/PJrLtD8fyBI/T7y2vBo8d7xFbBW8AAAAAAAAAAAdWDk/0CggP9mrkz4lcIS+CYvXvBAWLzwAAAAAAAAAAIBB6b1tXT4/qCgFPT+sgr1YktA7yzHkuwAAAAAAAAAAKNp7vwYgAD/Svp6+rZdgvvKoljzSEHe7AAAAAAAAAAC2Hv0+QgUqP2Vycz6rT0q+Dh+Tu2ffH7wAAAAAAAAAANS8H79MWWc/BloiviRKsr2LENM7y/QNPQAAAAAAAAAA48o+P4RBuj1OwGI+5r6dvpIyWr2qsaa8AAAAAAAAAAANmV4/Zf3ivSwhKT50bJ6+bkh8Pjb3lD8AAIA/AAAAAE3yrz6fmkU/OMyBPvGmGr5ZvJc8EReWvAAAAAAAAAAAzYb3PW6fYD9GFC4+yme0vanbuzyQKOq7AAAAAAAAAAA9Ksa+m5Z9PygjCb2wg7K9PMMcPT+tLT0AAAAAAAAAAJ2qKz9FQIg8ZSefO6UZBTxr6gQ/75uuvAAAgD8AAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_episode_num": 2948, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVdhAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIp5IBoIqrW8CUhpRSlIwBbJRNdAGMAXSUR0DCt50KXv6TdX2UKGgGaAloD0MIobskzopvZ8CUhpRSlGgVTV8CaBZHQMK30wfQrtp1fZQoaAZoCWgPQwi/K4L/rRZWwJSGlFKUaBVL/WgWR0DCuCx1q33IdX2UKGgGaAloD0MIxttKr02xYMCUhpRSlGgVTSICaBZHQMK4QcRL9Mt1fZQoaAZoCWgPQwjVk/lH39ldwJSGlFKUaBVNlAFoFkdAwrhgJ66as3V9lChoBmgJaA9DCH44SIjyDVTAlIaUUpRoFU0MAWgWR0DCuMcxGlQ/dX2UKGgGaAloD0MISbpm8s1gWMCUhpRSlGgVTVsBaBZHQMK5NM6BAfN1fZQoaAZoCWgPQwh6/Ul87ptVwJSGlFKUaBVNCAFoFkdAwrlU7lq8DnV9lChoBmgJaA9DCEzEW+dfNGPAlIaUUpRoFU1oAmgWR0DCuZq4FzMidX2UKGgGaAloD0MI5ZzYQ/sAX8CUhpRSlGgVTcABaBZHQMK6FZVOsT51fZQoaAZoCWgPQwgaNPRPcHlhwJSGlFKUaBVN3AFoFkdAwrp9WT5ft3V9lChoBmgJaA9DCP9AuW3fGlvAlIaUUpRoFU2IAWgWR0DCu2Xfj0cwdX2UKGgGaAloD0MIDr3Fw3sCWUCUhpRSlGgVTZEDaBZHQMK8GwGnn+11fZQoaAZoCWgPQwhtAaH18BFcwJSGlFKUaBVNDAJoFkdAwrw6WO6un3V9lChoBmgJaA9DCHV1x2KbmmDAlIaUUpRoFU2FAmgWR0DCvD+mrKeTdX2UKGgGaAloD0MIKUAUzJjKXcCUhpRSlGgVTaABaBZHQMK8QgCGN711fZQoaAZoCWgPQwhCtFa0OTlZwJSGlFKUaBVNZwFoFkdAwrx1rzoUz3V9lChoBmgJaA9DCBrh7UEIbl/AlIaUUpRoFU2yAWgWR0DCvIVf3N9qdX2UKGgGaAloD0MI/wQXK2qNYsCUhpRSlGgVTZ8CaBZHQMK8i1ndweh1fZQoaAZoCWgPQwgpzlFHx69ZwJSGlFKUaBVNRQFoFkdAwr1NeY2KmHV9lChoBmgJaA9DCAiwyK8fEVNAlIaUUpRoFU3TA2gWR0DCvXk4BFNMdX2UKGgGaAloD0MITS7GwDqXWcCUhpRSlGgVTS8CaBZHQMK9pTBInSh1fZQoaAZoCWgPQwgN/RNcrJVfwJSGlFKUaBVNsQFoFkdAwr3Fgk1MunV9lChoBmgJaA9DCMDPuHAgkltAlIaUUpRoFU26AmgWR0DCveA+hXbNdX2UKGgGaAloD0MIRFILJZMaV8CUhpRSlGgVS/FoFkdAwr4OD15B1XV9lChoBmgJaA9DCPPLYIxIXlnAlIaUUpRoFU0iAWgWR0DCvsaKJl8PdX2UKGgGaAloD0MIEoWWdX/WYcCUhpRSlGgVTd4BaBZHQMK+yxe1KGt1fZQoaAZoCWgPQwgJpMSu7cZqwJSGlFKUaBVNbgJoFkdAwr8Bf2saKnV9lChoBmgJaA9DCAskKH4MLGPAlIaUUpRoFU2BAmgWR0DCvw+/ag27dX2UKGgGaAloD0MIvvbMkgCyV8CUhpRSlGgVS9xoFkdAwr9PSb6P83V9lChoBmgJaA9DCP5/nDBhq2LAlIaUUpRoFU2rAWgWR0DCv8iiwjdIdX2UKGgGaAloD0MIFW9kHnmxYMCUhpRSlGgVTcgBaBZHQMK/1Y+KTB91fZQoaAZoCWgPQwi1NSIYB3lhwJSGlFKUaBVNCgJoFkdAwsBjgCwKSnV9lChoBmgJaA9DCCMT8Gsk12HAlIaUUpRoFU1KAWgWR0DCwMAm5UcXdX2UKGgGaAloD0MIhSaJJeWAZcCUhpRSlGgVTV4CaBZHQMLBPk2P1ct1fZQoaAZoCWgPQwiGr691qTFgwJSGlFKUaBVNMQFoFkdAwsHGE8q4IHV9lChoBmgJaA9DCC/f+rDe3WHAlIaUUpRoFU0hAmgWR0DCwppgTh5xdX2UKGgGaAloD0MIob5lTpcCVkCUhpRSlGgVTckCaBZHQMLCv6HCXQd1fZQoaAZoCWgPQwh2pWWkXj1mwJSGlFKUaBVNKQJoFkdAwsLZ3TNMXnV9lChoBmgJaA9DCNNPOLu1ilrAlIaUUpRoFU3SAWgWR0DCwybEBKcvdX2UKGgGaAloD0MI0Amhgy6CaMCUhpRSlGgVTYoCaBZHQMLDRvnr6cl1fZQoaAZoCWgPQwhATMKFPJhiQJSGlFKUaBVNdgNoFkdAwsNq46wMY3V9lChoBmgJaA9DCMb83NCUTlbAlIaUUpRoFU2qAWgWR0DCw3DkKeCkdX2UKGgGaAloD0MIrJDyk2pZW8CUhpRSlGgVTWsBaBZHQMLDdtzS1E51fZQoaAZoCWgPQwhtrS8S2qZZwJSGlFKUaBVNAAJoFkdAwsOUjB2wFHV9lChoBmgJaA9DCD5BYrv7ymDAlIaUUpRoFU2eAWgWR0DCxFd/x2B8dX2UKGgGaAloD0MIGZKTiVsDZsCUhpRSlGgVTTIDaBZHQMLEc83l0YF1fZQoaAZoCWgPQwiazHhbaThlwJSGlFKUaBVNeAJoFkdAwsS0FOfukXV9lChoBmgJaA9DCDelvFZCQ1fAlIaUUpRoFUvCaBZHQMLEtBlUZNx1fZQoaAZoCWgPQwiFCDiEqptlwJSGlFKUaBVN2QFoFkdAwsUWlP8AJnV9lChoBmgJaA9DCOFh2jf3+1XAlIaUUpRoFUvKaBZHQMLFH1opQUJ1fZQoaAZoCWgPQwjzxklh3o5YwJSGlFKUaBVNwQFoFkdAwsVEs+3YtnV9lChoBmgJaA9DCPiMRGgERWjAlIaUUpRoFU1hAmgWR0DCxUvgDRtxdX2UKGgGaAloD0MItABtq1l2XsCUhpRSlGgVTTABaBZHQMLFTayB06p1fZQoaAZoCWgPQwi5x9KHLtBZwJSGlFKUaBVNngFoFkdAwsaQw1zhgnV9lChoBmgJaA9DCDpcqz3szVLAlIaUUpRoFUuzaBZHQMLGrt9hJAd1fZQoaAZoCWgPQwjdlPJaCfNewJSGlFKUaBVNvwFoFkdAwsa+kZ75VXV9lChoBmgJaA9DCCFAho4dtVnAlIaUUpRoFU06AWgWR0DCxuQkzGgjdX2UKGgGaAloD0MIx6ATQgcCWsCUhpRSlGgVTTgBaBZHQMLHM0ihWYF1fZQoaAZoCWgPQwgPXru04RtgwJSGlFKUaBVNagJoFkdAwsfMSHM2WXV9lChoBmgJaA9DCKT9D7DWGWHAlIaUUpRoFU10AWgWR0DCx88LBsQ/dX2UKGgGaAloD0MIrHKh8q/0XMCUhpRSlGgVTR0CaBZHQMLH3Jrk8zR1fZQoaAZoCWgPQwhrn47HjKpgwJSGlFKUaBVNzgJoFkdAwsgKCKaXr3V9lChoBmgJaA9DCDBJZYo5V1zAlIaUUpRoFU1VAWgWR0DCyDVjVhCudX2UKGgGaAloD0MIxciSORZxZ8CUhpRSlGgVTVUCaBZHQMLIVZg5R0l1fZQoaAZoCWgPQwifH0YID51jwJSGlFKUaBVNpAJoFkdAwshg77sOXnV9lChoBmgJaA9DCHx/g/bq9WHAlIaUUpRoFU0sAmgWR0DCyMomCyyEdX2UKGgGaAloD0MIUBpqFJKDZ8CUhpRSlGgVTfABaBZHQMLJA7zK9wp1fZQoaAZoCWgPQwjaOjjYG5VhwJSGlFKUaBVN+AFoFkdAwsk7klNUO3V9lChoBmgJaA9DCPDfvDjxrVrAlIaUUpRoFU1DAWgWR0DCyWNDx9XtdX2UKGgGaAloD0MIX0GasWgsXsCUhpRSlGgVTVkBaBZHQMLKihXjlxR1fZQoaAZoCWgPQwjGT+Pe/LlcwJSGlFKUaBVN3QFoFkdAwsqLEYO2A3V9lChoBmgJaA9DCGmLa3wmUV3AlIaUUpRoFU2jAWgWR0DCywmjKxLTdX2UKGgGaAloD0MI/5WVJqV2WcCUhpRSlGgVTWYBaBZHQMLLEXta6jF1fZQoaAZoCWgPQwh7vfvjvQhWwJSGlFKUaBVNMwFoFkdAwstL32VVxXV9lChoBmgJaA9DCGyzsRJzzmHAlIaUUpRoFU0NAmgWR0DCy36PIXCTdX2UKGgGaAloD0MIkj1CzZC4UsCUhpRSlGgVTQMBaBZHQMLLw4DTz/Z1fZQoaAZoCWgPQwhNwK+RJLQ5QJSGlFKUaBVNMwNoFkdAwsvhmBe5WnV9lChoBmgJaA9DCN6SHLCrUlfAlIaUUpRoFU2BAWgWR0DCzHF/lQuVdX2UKGgGaAloD0MIBvaYSOmYYMCUhpRSlGgVTe8BaBZHQMLMfz9S/CZ1fZQoaAZoCWgPQwgpWU5CaYVjwJSGlFKUaBVNOQJoFkdAwsyXxpcopnV9lChoBmgJaA9DCACQEyaMa1XAlIaUUpRoFUvyaBZHQMLM8ebd8At1fZQoaAZoCWgPQwgCDwwgfJ9kwJSGlFKUaBVNcAJoFkdAws0Njfek6HV9lChoBmgJaA9DCKIIqdvZEltAlIaUUpRoFU1jAmgWR0DCzWH1L8JldX2UKGgGaAloD0MIEAcJUb5xXsCUhpRSlGgVTU0DaBZHQMLN7lglWwN1fZQoaAZoCWgPQwgtPgXAeKxhwJSGlFKUaBVNAQJoFkdAws3wmKqGUXV9lChoBmgJaA9DCCKq8Gd4uWJAlIaUUpRoFU1nA2gWR0DCzjnc8DB/dX2UKGgGaAloD0MI1qvI6ICtUsCUhpRSlGgVS9FoFkdAws5ZmSQo1HV9lChoBmgJaA9DCCDQmbSpyFfAlIaUUpRoFUvyaBZHQMLOkqR+z+p1fZQoaAZoCWgPQwhEUDV6Nd9RwJSGlFKUaBVL5mgWR0DCzpaGJvYOdX2UKGgGaAloD0MI8YRefxLjXMCUhpRSlGgVTWwBaBZHQMLOn7ihnJ11fZQoaAZoCWgPQwiponiVtTtewJSGlFKUaBVNjgFoFkdAws6uRqXWv3V9lChoBmgJaA9DCDeOWItPm1fAlIaUUpRoFU2UAWgWR0DCzwtmQKa5dX2UKGgGaAloD0MI4+MTsnOCYsCUhpRSlGgVTckBaBZHQMLPHK4YrJ91fZQoaAZoCWgPQwhpi2t8pmhiwJSGlFKUaBVNegFoFkdAws8f+3H7xnV9lChoBmgJaA9DCN5y9WOTalxAlIaUUpRoFU1GAmgWR0DCz4j/bTMJdX2UKGgGaAloD0MI+MYQABxRTsCUhpRSlGgVTU0BaBZHQMLPkDOcDr91fZQoaAZoCWgPQwiaQXxgxxdVwJSGlFKUaBVL+mgWR0DCz6QvpQk5dX2UKGgGaAloD0MIOiLfpdRXXcCUhpRSlGgVTbYBaBZHQMLQJXqRlpZ1fZQoaAZoCWgPQwhsJt9scxBYwJSGlFKUaBVNDAFoFkdAwtDy+PikwnVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 14844, "buffer_size": 1000000, "batch_size": 32, "learning_starts": 50000, "tau": 1.0, "gamma": 0.99, "gradient_steps": 1, "optimize_memory_usage": false, "replay_buffer_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVNQAAAAAAAACMIHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5idWZmZXJzlIwMUmVwbGF5QnVmZmVylJOULg==", "__module__": "stable_baselines3.common.buffers", "__doc__": "\n Replay buffer used in off-policy algorithms like SAC/TD3.\n\n :param buffer_size: Max number of element in the buffer\n :param observation_space: Observation space\n :param action_space: Action space\n :param device:\n :param n_envs: Number of parallel environments\n :param optimize_memory_usage: Enable a memory efficient variant\n of the replay buffer which reduces by almost a factor two the memory used,\n at a cost of more complexity.\n See https://github.com/DLR-RM/stable-baselines3/issues/37#issuecomment-637501195\n and https://github.com/DLR-RM/stable-baselines3/pull/28#issuecomment-637559274\n :param handle_timeout_termination: Handle timeout termination (due to timelimit)\n separately and treat the task as infinite horizon task.\n https://github.com/DLR-RM/stable-baselines3/issues/284\n ", "__init__": "<function ReplayBuffer.__init__ at 0x7f83cf393c20>", "add": "<function ReplayBuffer.add at 0x7f83cf393cb0>", "sample": "<function ReplayBuffer.sample at 0x7f83cf393d40>", "_get_samples": "<function ReplayBuffer._get_samples at 0x7f83cf393dd0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f83cf397060>"}, "replay_buffer_kwargs": {}, "train_freq": {":type:": "<class 'stable_baselines3.common.type_aliases.TrainFreq'>", ":serialized:": "gAWVYQAAAAAAAACMJXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi50eXBlX2FsaWFzZXOUjAlUcmFpbkZyZXGUk5RLBGgAjBJUcmFpbkZyZXF1ZW5jeVVuaXSUk5SMBHN0ZXCUhZRSlIaUgZQu"}, "actor": null, "use_sde_at_warmup": false, "exploration_initial_eps": 1.0, "exploration_final_eps": 0.05, "exploration_fraction": 0.1, "target_update_interval": 625, "_n_calls": 62500, "max_grad_norm": 10, "exploration_rate": 0.05, "exploration_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVYwMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsESxNDLGQBfAAYAIgBawRyEIgAUwCIAmQBfAAYAIgAiAIYABQAiAEbABcAUwBkAFMAlE5LAYaUKYwScHJvZ3Jlc3NfcmVtYWluaW5nlIWUjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEtuQwYAAQwBBAKUjANlbmSUjAxlbmRfZnJhY3Rpb26UjAVzdGFydJSHlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpRoHilSlGgeKVKUh5R0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCR9lH2UKGgZaA6MDF9fcXVhbG5hbWVfX5SMG2dldF9saW5lYXJfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lChoC4wIYnVpbHRpbnOUjAVmbG9hdJSTlIwGcmV0dXJulGgwdYwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBqMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP6mZmZmZmZqFlFKUaDhHP7mZmZmZmZqFlFKUaDhHP/AAAAAAAACFlFKUh5SMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
replay.mp4 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5e559fc291ce4cabe6ff09ae60feecb7a32bc705ce4af13295980320f9815327
3
+ size 212154
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": -2.8542637270207165, "std_reward": 131.1730048192561, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-05-07T08:51:10.421831"}