File size: 1,244 Bytes
ea9a32f ca708c2 e1993c7 ca708c2 e1993c7 ea9a32f ca708c2 ea9a32f ca708c2 701fb85 ca708c2 701fb85 ca708c2 ea9a32f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 |
---
library_name: keras
license: mit
metrics:
- accuracy
- f1
- precision
tags:
- biology
pipeline_tag: image-classification
---
## Model description
This is Vision Transformer model trained for cancer classification. To make single model to predict any cancer, I trained this ViT model. following are the cancer types that model can predict:
* Brain cancer
* Breast Cancer (histopathology)
* Lung & Colon Cancer (histopathology)
* Cervical Caner
* Kidney Cancer
* Lymphoma
* Oral
## Intended uses & limitations
More information needed
## Training and evaluation data
Confusion matrix and classification report attached below:
<details>
<summary>Confusion Matrix</summary>
![Model Image](./cm.png)
</details>
<details>
<summary>Classification Report</summary>
![Model Image](./vit_acc.PNG)
</details>
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
| Hyperparameters | Value |
| :-- | :-- |
| name | Adam |
| learning_rate | 0.0001 |
| decay | 0.0 |
| beta_1 | 0.9 |
| beta_2 | 0.999 |
| epsilon | 1e-07 |
| amsgrad | False |
| training_precision | float32 |
## Model Plot
<details>
<summary>View Model Plot</summary>
![Model Image](./model.png)
</details> |