Commit
·
4c3b9f1
1
Parent(s):
8e99796
End of training
Browse files
README.md
CHANGED
@@ -15,7 +15,7 @@ should probably proofread and complete it, then remove this comment. -->
|
|
15 |
|
16 |
This model is a fine-tuned version of [microsoft/phi-1_5](https://huggingface.co/microsoft/phi-1_5) on the None dataset.
|
17 |
It achieves the following results on the evaluation set:
|
18 |
-
- Loss: 1.
|
19 |
|
20 |
## Model description
|
21 |
|
@@ -34,78 +34,138 @@ More information needed
|
|
34 |
### Training hyperparameters
|
35 |
|
36 |
The following hyperparameters were used during training:
|
37 |
-
- learning_rate: 0.
|
38 |
- train_batch_size: 4
|
39 |
- eval_batch_size: 4
|
40 |
- seed: 42
|
41 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
42 |
- lr_scheduler_type: linear
|
43 |
-
- training_steps:
|
44 |
|
45 |
### Training results
|
46 |
|
47 |
-
| Training Loss | Epoch | Step
|
48 |
-
|
49 |
-
| 2.3757 | 0.04 | 100
|
50 |
-
| 2.0269 | 0.08 | 200
|
51 |
-
| 1.9535 | 0.12 | 300
|
52 |
-
| 1.9136 | 0.16 | 400
|
53 |
-
| 1.892 | 0.2 | 500
|
54 |
-
| 1.8753 | 0.24 | 600
|
55 |
-
| 1.8507 | 0.28 | 700
|
56 |
-
| 1.8759 | 0.32 | 800
|
57 |
-
| 1.8166 | 0.36 | 900
|
58 |
-
| 1.8224 | 0.4 | 1000
|
59 |
-
| 1.7852 | 0.44 | 1100
|
60 |
-
| 1.8164 | 0.48 | 1200
|
61 |
-
| 1.7632 | 0.52 | 1300
|
62 |
-
| 1.8485 | 0.56 | 1400
|
63 |
-
| 1.7712 | 0.6 | 1500
|
64 |
-
| 1.7632 | 0.64 | 1600
|
65 |
-
| 1.7378 | 0.68 | 1700
|
66 |
-
| 1.7581 | 0.72 | 1800
|
67 |
-
| 1.7261 | 0.76 | 1900
|
68 |
-
| 1.7243 | 0.8 | 2000
|
69 |
-
| 1.7311 | 0.84 | 2100
|
70 |
-
| 1.7554 | 0.88 | 2200
|
71 |
-
| 1.7026 | 0.92 | 2300
|
72 |
-
| 1.7193 | 0.96 | 2400
|
73 |
-
| 1.6861 | 1.0 | 2500
|
74 |
-
| 1.68 | 1.04 | 2600
|
75 |
-
| 1.5931 | 1.08 | 2700
|
76 |
-
| 1.6655 | 1.12 | 2800
|
77 |
-
| 1.629 | 1.16 | 2900
|
78 |
-
| 1.6567 | 1.2 | 3000
|
79 |
-
| 1.6225 | 1.24 | 3100
|
80 |
-
| 1.6249 | 1.28 | 3200
|
81 |
-
| 1.6263 | 1.32 | 3300
|
82 |
-
| 1.6055 | 1.36 | 3400
|
83 |
-
| 1.6338 | 1.4 | 3500
|
84 |
-
| 1.6032 | 1.44 | 3600
|
85 |
-
| 1.6447 | 1.48 | 3700
|
86 |
-
| 1.6063 | 1.52 | 3800
|
87 |
-
| 1.5933 | 1.56 | 3900
|
88 |
-
| 1.6267 | 1.6 | 4000
|
89 |
-
| 1.6151 | 1.64 | 4100
|
90 |
-
| 1.6047 | 1.68 | 4200
|
91 |
-
| 1.5811 | 1.72 | 4300
|
92 |
-
| 1.5877 | 1.76 | 4400
|
93 |
-
| 1.6321 | 1.8 | 4500
|
94 |
-
| 1.5969 | 1.84 | 4600
|
95 |
-
| 1.5971 | 1.88 | 4700
|
96 |
-
| 1.622 | 1.92 | 4800
|
97 |
-
| 1.6265 | 1.96 | 4900
|
98 |
-
| 1.6145 | 2.0 | 5000
|
99 |
-
| 1.526 | 2.04 | 5100
|
100 |
-
| 1.5793 | 2.08 | 5200
|
101 |
-
| 1.5714 | 2.12 | 5300
|
102 |
-
| 1.5228 | 2.16 | 5400
|
103 |
-
| 1.5383 | 2.2 | 5500
|
104 |
-
| 1.5117 | 2.24 | 5600
|
105 |
-
| 1.5427 | 2.28 | 5700
|
106 |
-
| 1.4959 | 2.32 | 5800
|
107 |
-
| 1.5456 | 2.36 | 5900
|
108 |
-
| 1.5175 | 2.4 | 6000
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
109 |
|
110 |
|
111 |
### Framework versions
|
|
|
15 |
|
16 |
This model is a fine-tuned version of [microsoft/phi-1_5](https://huggingface.co/microsoft/phi-1_5) on the None dataset.
|
17 |
It achieves the following results on the evaluation set:
|
18 |
+
- Loss: 1.4066
|
19 |
|
20 |
## Model description
|
21 |
|
|
|
34 |
### Training hyperparameters
|
35 |
|
36 |
The following hyperparameters were used during training:
|
37 |
+
- learning_rate: 0.0006
|
38 |
- train_batch_size: 4
|
39 |
- eval_batch_size: 4
|
40 |
- seed: 42
|
41 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
42 |
- lr_scheduler_type: linear
|
43 |
+
- training_steps: 12000
|
44 |
|
45 |
### Training results
|
46 |
|
47 |
+
| Training Loss | Epoch | Step | Validation Loss |
|
48 |
+
|:-------------:|:-----:|:-----:|:---------------:|
|
49 |
+
| 2.3757 | 0.04 | 100 | 2.0747 |
|
50 |
+
| 2.0269 | 0.08 | 200 | 1.9990 |
|
51 |
+
| 1.9535 | 0.12 | 300 | 1.9450 |
|
52 |
+
| 1.9136 | 0.16 | 400 | 1.9067 |
|
53 |
+
| 1.892 | 0.2 | 500 | 1.8757 |
|
54 |
+
| 1.8753 | 0.24 | 600 | 1.8574 |
|
55 |
+
| 1.8507 | 0.28 | 700 | 1.8359 |
|
56 |
+
| 1.8759 | 0.32 | 800 | 1.8167 |
|
57 |
+
| 1.8166 | 0.36 | 900 | 1.8054 |
|
58 |
+
| 1.8224 | 0.4 | 1000 | 1.7818 |
|
59 |
+
| 1.7852 | 0.44 | 1100 | 1.7814 |
|
60 |
+
| 1.8164 | 0.48 | 1200 | 1.7664 |
|
61 |
+
| 1.7632 | 0.52 | 1300 | 1.7598 |
|
62 |
+
| 1.8485 | 0.56 | 1400 | 1.7439 |
|
63 |
+
| 1.7712 | 0.6 | 1500 | 1.7303 |
|
64 |
+
| 1.7632 | 0.64 | 1600 | 1.7277 |
|
65 |
+
| 1.7378 | 0.68 | 1700 | 1.7135 |
|
66 |
+
| 1.7581 | 0.72 | 1800 | 1.7075 |
|
67 |
+
| 1.7261 | 0.76 | 1900 | 1.6933 |
|
68 |
+
| 1.7243 | 0.8 | 2000 | 1.6891 |
|
69 |
+
| 1.7311 | 0.84 | 2100 | 1.6837 |
|
70 |
+
| 1.7554 | 0.88 | 2200 | 1.6808 |
|
71 |
+
| 1.7026 | 0.92 | 2300 | 1.6646 |
|
72 |
+
| 1.7193 | 0.96 | 2400 | 1.6664 |
|
73 |
+
| 1.6861 | 1.0 | 2500 | 1.6577 |
|
74 |
+
| 1.68 | 1.04 | 2600 | 1.6470 |
|
75 |
+
| 1.5931 | 1.08 | 2700 | 1.6425 |
|
76 |
+
| 1.6655 | 1.12 | 2800 | 1.6352 |
|
77 |
+
| 1.629 | 1.16 | 2900 | 1.6298 |
|
78 |
+
| 1.6567 | 1.2 | 3000 | 1.6236 |
|
79 |
+
| 1.6225 | 1.24 | 3100 | 1.6242 |
|
80 |
+
| 1.6249 | 1.28 | 3200 | 1.6150 |
|
81 |
+
| 1.6263 | 1.32 | 3300 | 1.6077 |
|
82 |
+
| 1.6055 | 1.36 | 3400 | 1.6034 |
|
83 |
+
| 1.6338 | 1.4 | 3500 | 1.5996 |
|
84 |
+
| 1.6032 | 1.44 | 3600 | 1.5947 |
|
85 |
+
| 1.6447 | 1.48 | 3700 | 1.5882 |
|
86 |
+
| 1.6063 | 1.52 | 3800 | 1.5877 |
|
87 |
+
| 1.5933 | 1.56 | 3900 | 1.5850 |
|
88 |
+
| 1.6267 | 1.6 | 4000 | 1.5814 |
|
89 |
+
| 1.6151 | 1.64 | 4100 | 1.5709 |
|
90 |
+
| 1.6047 | 1.68 | 4200 | 1.5683 |
|
91 |
+
| 1.5811 | 1.72 | 4300 | 1.5661 |
|
92 |
+
| 1.5877 | 1.76 | 4400 | 1.5648 |
|
93 |
+
| 1.6321 | 1.8 | 4500 | 1.5645 |
|
94 |
+
| 1.5969 | 1.84 | 4600 | 1.5584 |
|
95 |
+
| 1.5971 | 1.88 | 4700 | 1.5565 |
|
96 |
+
| 1.622 | 1.92 | 4800 | 1.5547 |
|
97 |
+
| 1.6265 | 1.96 | 4900 | 1.5496 |
|
98 |
+
| 1.6145 | 2.0 | 5000 | 1.5466 |
|
99 |
+
| 1.526 | 2.04 | 5100 | 1.5427 |
|
100 |
+
| 1.5793 | 2.08 | 5200 | 1.5390 |
|
101 |
+
| 1.5714 | 2.12 | 5300 | 1.5375 |
|
102 |
+
| 1.5228 | 2.16 | 5400 | 1.5360 |
|
103 |
+
| 1.5383 | 2.2 | 5500 | 1.5343 |
|
104 |
+
| 1.5117 | 2.24 | 5600 | 1.5322 |
|
105 |
+
| 1.5427 | 2.28 | 5700 | 1.5316 |
|
106 |
+
| 1.4959 | 2.32 | 5800 | 1.5306 |
|
107 |
+
| 1.5456 | 2.36 | 5900 | 1.5299 |
|
108 |
+
| 1.5175 | 2.4 | 6000 | 1.5295 |
|
109 |
+
| 1.5823 | 2.44 | 6100 | 1.5498 |
|
110 |
+
| 1.5615 | 2.48 | 6200 | 1.5447 |
|
111 |
+
| 1.5326 | 2.52 | 6300 | 1.5463 |
|
112 |
+
| 1.567 | 2.56 | 6400 | 1.5450 |
|
113 |
+
| 1.5243 | 2.6 | 6500 | 1.5456 |
|
114 |
+
| 1.5214 | 2.64 | 6600 | 1.5383 |
|
115 |
+
| 1.6086 | 2.68 | 6700 | 1.5393 |
|
116 |
+
| 1.5391 | 2.72 | 6800 | 1.5285 |
|
117 |
+
| 1.5224 | 2.76 | 6900 | 1.5318 |
|
118 |
+
| 1.5567 | 2.8 | 7000 | 1.5292 |
|
119 |
+
| 1.5525 | 2.84 | 7100 | 1.5207 |
|
120 |
+
| 1.5399 | 2.88 | 7200 | 1.5135 |
|
121 |
+
| 1.5399 | 2.92 | 7300 | 1.5104 |
|
122 |
+
| 1.5765 | 2.96 | 7400 | 1.5085 |
|
123 |
+
| 1.556 | 3.0 | 7500 | 1.5042 |
|
124 |
+
| 1.4977 | 3.04 | 7600 | 1.4997 |
|
125 |
+
| 1.4818 | 3.08 | 7700 | 1.4930 |
|
126 |
+
| 1.4912 | 3.12 | 7800 | 1.4908 |
|
127 |
+
| 1.517 | 3.16 | 7900 | 1.4933 |
|
128 |
+
| 1.4971 | 3.2 | 8000 | 1.4857 |
|
129 |
+
| 1.4827 | 3.24 | 8100 | 1.4805 |
|
130 |
+
| 1.5096 | 3.28 | 8200 | 1.4804 |
|
131 |
+
| 1.4788 | 3.32 | 8300 | 1.4756 |
|
132 |
+
| 1.457 | 3.36 | 8400 | 1.4728 |
|
133 |
+
| 1.4819 | 3.4 | 8500 | 1.4717 |
|
134 |
+
| 1.5241 | 3.44 | 8600 | 1.4678 |
|
135 |
+
| 1.5081 | 3.48 | 8700 | 1.4676 |
|
136 |
+
| 1.5173 | 3.52 | 8800 | 1.4657 |
|
137 |
+
| 1.4765 | 3.56 | 8900 | 1.4643 |
|
138 |
+
| 1.4691 | 3.6 | 9000 | 1.4603 |
|
139 |
+
| 1.5034 | 3.64 | 9100 | 1.4577 |
|
140 |
+
| 1.4997 | 3.68 | 9200 | 1.4552 |
|
141 |
+
| 1.4849 | 3.72 | 9300 | 1.4504 |
|
142 |
+
| 1.5144 | 3.76 | 9400 | 1.4518 |
|
143 |
+
| 1.4972 | 3.8 | 9500 | 1.4469 |
|
144 |
+
| 1.4695 | 3.84 | 9600 | 1.4474 |
|
145 |
+
| 1.5088 | 3.88 | 9700 | 1.4468 |
|
146 |
+
| 1.4772 | 3.92 | 9800 | 1.4418 |
|
147 |
+
| 1.5207 | 3.96 | 9900 | 1.4390 |
|
148 |
+
| 1.5088 | 4.0 | 10000 | 1.4378 |
|
149 |
+
| 1.4915 | 4.04 | 10100 | 1.4324 |
|
150 |
+
| 1.4356 | 4.08 | 10200 | 1.4305 |
|
151 |
+
| 1.4388 | 4.12 | 10300 | 1.4268 |
|
152 |
+
| 1.4004 | 4.16 | 10400 | 1.4251 |
|
153 |
+
| 1.3909 | 4.2 | 10500 | 1.4225 |
|
154 |
+
| 1.4284 | 4.24 | 10600 | 1.4218 |
|
155 |
+
| 1.4422 | 4.28 | 10700 | 1.4213 |
|
156 |
+
| 1.4301 | 4.32 | 10800 | 1.4198 |
|
157 |
+
| 1.4309 | 4.36 | 10900 | 1.4174 |
|
158 |
+
| 1.415 | 4.4 | 11000 | 1.4147 |
|
159 |
+
| 1.4697 | 4.44 | 11100 | 1.4136 |
|
160 |
+
| 1.4241 | 4.48 | 11200 | 1.4123 |
|
161 |
+
| 1.4416 | 4.52 | 11300 | 1.4100 |
|
162 |
+
| 1.4229 | 4.56 | 11400 | 1.4094 |
|
163 |
+
| 1.4498 | 4.6 | 11500 | 1.4091 |
|
164 |
+
| 1.4023 | 4.64 | 11600 | 1.4083 |
|
165 |
+
| 1.4197 | 4.68 | 11700 | 1.4075 |
|
166 |
+
| 1.4165 | 4.72 | 11800 | 1.4070 |
|
167 |
+
| 1.4103 | 4.76 | 11900 | 1.4067 |
|
168 |
+
| 1.4214 | 4.8 | 12000 | 1.4066 |
|
169 |
|
170 |
|
171 |
### Framework versions
|