Elliotte commited on
Commit
ea736d4
·
1 Parent(s): 538caca

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +67 -0
README.md ADDED
@@ -0,0 +1,67 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ tags:
4
+ - generated_from_trainer
5
+ datasets:
6
+ - superb
7
+ model-index:
8
+ - name: Hubert-base-superb
9
+ results: []
10
+ ---
11
+
12
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
13
+ should probably proofread and complete it, then remove this comment. -->
14
+
15
+ # Hubert-base-superb
16
+
17
+ This model is a fine-tuned version of [ntu-spml/distilhubert](https://huggingface.co/ntu-spml/distilhubert) on the superb dataset.
18
+ It achieves the following results on the evaluation set:
19
+ - Loss: 0.6712
20
+ - Wer: 0.4781
21
+
22
+ ## Model description
23
+
24
+ More information needed
25
+
26
+ ## Intended uses & limitations
27
+
28
+ More information needed
29
+
30
+ ## Training and evaluation data
31
+
32
+ More information needed
33
+
34
+ ## Training procedure
35
+
36
+ ### Training hyperparameters
37
+
38
+ The following hyperparameters were used during training:
39
+ - learning_rate: 0.001
40
+ - train_batch_size: 16
41
+ - eval_batch_size: 8
42
+ - seed: 42
43
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
44
+ - lr_scheduler_type: linear
45
+ - lr_scheduler_warmup_steps: 250
46
+ - num_epochs: 7
47
+
48
+ ### Training results
49
+
50
+ | Training Loss | Epoch | Step | Validation Loss | Wer |
51
+ |:-------------:|:-----:|:----:|:---------------:|:------:|
52
+ | 1.7884 | 0.8 | 500 | 0.8900 | 0.6940 |
53
+ | 0.6603 | 1.6 | 1000 | 0.7378 | 0.6103 |
54
+ | 0.5401 | 2.4 | 1500 | 0.7107 | 0.5762 |
55
+ | 0.4604 | 3.2 | 2000 | 0.6563 | 0.5320 |
56
+ | 0.3936 | 4.0 | 2500 | 0.6315 | 0.5244 |
57
+ | 0.3186 | 4.8 | 3000 | 0.6525 | 0.5007 |
58
+ | 0.2727 | 5.6 | 3500 | 0.6553 | 0.4855 |
59
+ | 0.2296 | 6.4 | 4000 | 0.6712 | 0.4781 |
60
+
61
+
62
+ ### Framework versions
63
+
64
+ - Transformers 4.20.1
65
+ - Pytorch 1.11.0+cu113
66
+ - Datasets 2.3.2
67
+ - Tokenizers 0.12.1