File size: 13,014 Bytes
af50acb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 |
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Train with Pytorch"
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"/home/huggingface/lib/python3.10/site-packages/tqdm/auto.py:21: TqdmWarning: IProgress not found. Please update jupyter and ipywidgets. See https://ipywidgets.readthedocs.io/en/stable/user_install.html\n",
" from .autonotebook import tqdm as notebook_tqdm\n",
"/home/huggingface/lib/python3.10/site-packages/huggingface_hub/file_download.py:1150: FutureWarning: `resume_download` is deprecated and will be removed in version 1.0.0. Downloads always resume when possible. If you want to force a new download, use `force_download=True`.\n",
" warnings.warn(\n",
"Map: 100%|ββββββββββ| 872/872 [00:00<00:00, 15492.15 examples/s]\n"
]
}
],
"source": [
"from datasets import load_dataset\n",
"from transformers import AutoTokenizer, DataCollatorWithPadding, AutoModelForSequenceClassification\n",
"\n",
"raw_dataset = load_dataset(\"glue\", \"sst2\")\n",
"checkpoint = \"bert-base-uncased\"\n",
"\n",
"tokenizer = AutoTokenizer.from_pretrained(checkpoint)\n",
"\n",
"# # For MRPC\n",
"# def tokenize_function(sample):\n",
"# return tokenizer(sample[\"sentence1\"], sample[\"sentence2\"], truncation = True)\n",
"\n",
"# For SST2\n",
"def tokenize_function(sample):\n",
" return tokenizer(sample[\"sentence\"], truncation = True)\n",
"\n",
"\n",
"tokenized_dataset = raw_dataset.map(tokenize_function, batched = True)\n",
"data_collator = DataCollatorWithPadding(tokenizer = tokenizer)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Preprocess the dataset "
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"{'train': ['labels', 'input_ids', 'token_type_ids', 'attention_mask'],\n",
" 'validation': ['labels', 'input_ids', 'token_type_ids', 'attention_mask'],\n",
" 'test': ['labels', 'input_ids', 'token_type_ids', 'attention_mask']}"
]
},
"execution_count": 2,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# Remove unwanted columns which are not to be uitilized during pytorch dataloading\n",
"# # For MRPC\n",
"# tokenized_dataset = tokenized_dataset.remove_columns([\"sentence1\", \"sentence2\", \"idx\"])\n",
"\n",
"# For SST2\n",
"tokenized_dataset = tokenized_dataset.remove_columns([\"sentence\", \"idx\"])\n",
"\n",
"# Rename the target column appropriately\n",
"tokenized_dataset = tokenized_dataset.rename_column(\"label\", \"labels\")\n",
"\n",
"# Set the format to return tensors instead of lists\n",
"tokenized_dataset.set_format(\"torch\")\n",
"\n",
"tokenized_dataset.column_names"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [],
"source": [
"from torch.utils.data import DataLoader\n",
"\n",
"train_dataloader = DataLoader(tokenized_dataset[\"train\"], shuffle = True, batch_size = 64, collate_fn = data_collator)\n",
"eval_dataloader = DataLoader(tokenized_dataset[\"validation\"], batch_size = 64, collate_fn= data_collator)"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"You're using a BertTokenizerFast tokenizer. Please note that with a fast tokenizer, using the `__call__` method is faster than using a method to encode the text followed by a call to the `pad` method to get a padded encoding.\n"
]
},
{
"data": {
"text/plain": [
"{'labels': torch.Size([64]),\n",
" 'input_ids': torch.Size([64, 41]),\n",
" 'token_type_ids': torch.Size([64, 41]),\n",
" 'attention_mask': torch.Size([64, 41])}"
]
},
"execution_count": 4,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"one_batch = next(iter(train_dataloader))\n",
"{k: v.shape for k, v in one_batch.items()}"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Define the model and start training"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"Some weights of the model checkpoint at bert-base-uncased were not used when initializing BertForSequenceClassification: ['cls.seq_relationship.weight', 'cls.predictions.transform.dense.bias', 'cls.predictions.transform.LayerNorm.weight', 'cls.predictions.transform.dense.weight', 'cls.seq_relationship.bias', 'cls.predictions.transform.LayerNorm.bias', 'cls.predictions.bias']\n",
"- This IS expected if you are initializing BertForSequenceClassification from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n",
"- This IS NOT expected if you are initializing BertForSequenceClassification from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).\n",
"Some weights of BertForSequenceClassification were not initialized from the model checkpoint at bert-base-uncased and are newly initialized: ['classifier.weight', 'classifier.bias']\n",
"You should probably TRAIN this model on a down-stream task to be able to use it for predictions and inference.\n"
]
}
],
"source": [
"model = AutoModelForSequenceClassification.from_pretrained(checkpoint, num_labels = 2)"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"SequenceClassifierOutput(loss=tensor(0.7528), logits=tensor([[-0.4735, 0.2345],\n",
" [-0.5462, 0.2849],\n",
" [-0.8623, 0.6073],\n",
" [-0.6334, 0.3747],\n",
" [-0.5882, 0.4656],\n",
" [-0.1711, 0.1957],\n",
" [-0.4656, 0.2387],\n",
" [-0.8434, 0.6939],\n",
" [-0.4384, 0.2810],\n",
" [-0.5239, 0.2832],\n",
" [-0.4431, 0.2877],\n",
" [-0.5974, 0.2958],\n",
" [-0.7655, 0.6273],\n",
" [-0.7656, 0.6703],\n",
" [-0.7001, 0.4183],\n",
" [-0.3617, 0.2145],\n",
" [-0.6250, 0.3684],\n",
" [-0.5722, 0.4677],\n",
" [-0.1536, 0.1978],\n",
" [-0.5606, 0.3755],\n",
" [-0.6292, 0.3662],\n",
" [-0.7420, 0.3527],\n",
" [-0.4581, 0.2733],\n",
" [-0.6560, 0.4098],\n",
" [-0.2436, 0.1589],\n",
" [-0.5316, 0.2916],\n",
" [-0.6136, 0.3340],\n",
" [-0.6650, 0.3447],\n",
" [-0.6319, 0.4982],\n",
" [-0.7093, 0.4292],\n",
" [-0.3495, 0.2136],\n",
" [-0.5344, 0.2056],\n",
" [-0.2243, 0.2376],\n",
" [-0.2150, 0.2638],\n",
" [-0.6236, 0.4449],\n",
" [-0.3363, 0.2330],\n",
" [-0.7103, 0.5592],\n",
" [-0.6709, 0.4674],\n",
" [-0.6250, 0.4823],\n",
" [-0.8934, 0.8637],\n",
" [-0.7147, 0.4695],\n",
" [-0.4029, 0.2238],\n",
" [-0.6455, 0.4327],\n",
" [-0.2547, 0.2432],\n",
" [-0.3518, 0.3581],\n",
" [-0.1312, 0.1507],\n",
" [-0.5558, 0.4219],\n",
" [-0.4881, 0.3416],\n",
" [-0.6623, 0.4497],\n",
" [-0.5963, 0.4848],\n",
" [-0.5053, 0.3500],\n",
" [-0.1152, 0.1482],\n",
" [-0.6302, 0.3531],\n",
" [-0.6268, 0.4978],\n",
" [-0.4811, 0.2927],\n",
" [ 0.0057, 0.1694],\n",
" [-0.6268, 0.3306],\n",
" [-0.5859, 0.4029],\n",
" [-0.3552, 0.2425],\n",
" [-0.5622, 0.4161],\n",
" [-0.7670, 0.5203],\n",
" [-0.6624, 0.5146],\n",
" [-0.6089, 0.4091],\n",
" [-0.4992, 0.2702]]), hidden_states=None, attentions=None)\n"
]
}
],
"source": [
"import torch\n",
"model.eval()\n",
"with torch.no_grad():\n",
" print(model(**one_batch))"
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"/home/huggingface/lib/python3.10/site-packages/transformers/optimization.py:391: FutureWarning: This implementation of AdamW is deprecated and will be removed in a future version. Use the PyTorch implementation torch.optim.AdamW instead, or set `no_deprecation_warning=True` to disable this warning\n",
" warnings.warn(\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"2106\n"
]
}
],
"source": [
"from transformers import AdamW\n",
"from transformers import get_scheduler\n",
"\n",
"# Define the optimizer here\n",
"optimizer = AdamW(model.parameters(), lr = 5e-5)\n",
"\n",
"# Define the learning rate scheduler here\n",
"num_epochs = 2\n",
"num_training_steps = num_epochs * len(train_dataloader)\n",
"lr_scheduler = get_scheduler(\n",
" \"linear\",\n",
" optimizer=optimizer,\n",
" num_warmup_steps=0,\n",
" num_training_steps=num_training_steps,\n",
")\n",
"print(num_training_steps)\n"
]
},
{
"cell_type": "code",
"execution_count": 8,
"metadata": {},
"outputs": [],
"source": [
"# Use GPU if available\n",
"device = torch.device(\"cuda:0\") if torch.cuda.is_available() else torch.device(\"cpu\")\n",
"model.to(device);"
]
},
{
"cell_type": "code",
"execution_count": 9,
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
" 50%|βββββ | 1054/2106 [03:48<13:25, 1.31it/s]"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Metrics at end of epoch 0:\n",
"{'accuracy': 0.9288990825688074}\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"100%|ββββββββββ| 2105/2106 [07:35<00:00, 4.98it/s]"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Metrics at end of epoch 1:\n",
"{'accuracy': 0.926605504587156}\n"
]
}
],
"source": [
"from tqdm.auto import tqdm\n",
"import evaluate\n",
"progress_bar = tqdm(range(num_training_steps))\n",
"\n",
"for epoch_id in range(num_epochs):\n",
"\n",
" # Train for one epoch\n",
" model.train()\n",
" for batch in train_dataloader:\n",
" batch = {k: v.to(device) for k, v in batch.items()}\n",
" outputs = model(**batch)\n",
" outputs.loss.backward()\n",
"\n",
" optimizer.step()\n",
" lr_scheduler.step()\n",
" optimizer.zero_grad()\n",
" progress_bar.update(1)\n",
"\n",
" # Evaluate at the end of epoch\n",
" model.eval()\n",
" # # For MRPC\n",
" # metric = evaluate.load(\"glue\", \"mrpc\")\n",
"\n",
" # For SST2\n",
" metric = evaluate.load(\"glue\", \"sst2\")\n",
"\n",
" with torch.no_grad():\n",
" for batch in eval_dataloader:\n",
" batch = {k: v.to(device) for k, v in batch.items()}\n",
" outputs = model(**batch)\n",
" logits = outputs.logits\n",
" predictions = logits.argmax(dim = -1)\n",
" metric.add_batch(predictions = predictions, references = batch[\"labels\"])\n",
" m = metric.compute()\n",
"\n",
" print(f\"Metrics at end of epoch {epoch_id}:\\n{m}\")\n"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.14"
}
},
"nbformat": 4,
"nbformat_minor": 2
}
|