Ekjaer commited on
Commit
f0ba7e2
·
1 Parent(s): 8f51864

pushing files to the repo from the example!

Browse files
Files changed (2) hide show
  1. README.md +1 -1
  2. init_repo_MLstructureMining.py +3 -18
README.md CHANGED
@@ -1269,7 +1269,7 @@ The model is trained with below hyperparameters.
1269
 
1270
  The model plot is below.
1271
 
1272
- <style>#sk-913bd997-a708-43ce-9527-b1095a5811c6 {color: black;background-color: white;}#sk-913bd997-a708-43ce-9527-b1095a5811c6 pre{padding: 0;}#sk-913bd997-a708-43ce-9527-b1095a5811c6 div.sk-toggleable {background-color: white;}#sk-913bd997-a708-43ce-9527-b1095a5811c6 label.sk-toggleable__label {cursor: pointer;display: block;width: 100%;margin-bottom: 0;padding: 0.3em;box-sizing: border-box;text-align: center;}#sk-913bd997-a708-43ce-9527-b1095a5811c6 label.sk-toggleable__label-arrow:before {content: "▸";float: left;margin-right: 0.25em;color: #696969;}#sk-913bd997-a708-43ce-9527-b1095a5811c6 label.sk-toggleable__label-arrow:hover:before {color: black;}#sk-913bd997-a708-43ce-9527-b1095a5811c6 div.sk-estimator:hover label.sk-toggleable__label-arrow:before {color: black;}#sk-913bd997-a708-43ce-9527-b1095a5811c6 div.sk-toggleable__content {max-height: 0;max-width: 0;overflow: hidden;text-align: left;background-color: #f0f8ff;}#sk-913bd997-a708-43ce-9527-b1095a5811c6 div.sk-toggleable__content pre {margin: 0.2em;color: black;border-radius: 0.25em;background-color: #f0f8ff;}#sk-913bd997-a708-43ce-9527-b1095a5811c6 input.sk-toggleable__control:checked~div.sk-toggleable__content {max-height: 200px;max-width: 100%;overflow: auto;}#sk-913bd997-a708-43ce-9527-b1095a5811c6 input.sk-toggleable__control:checked~label.sk-toggleable__label-arrow:before {content: "▾";}#sk-913bd997-a708-43ce-9527-b1095a5811c6 div.sk-estimator input.sk-toggleable__control:checked~label.sk-toggleable__label {background-color: #d4ebff;}#sk-913bd997-a708-43ce-9527-b1095a5811c6 div.sk-label input.sk-toggleable__control:checked~label.sk-toggleable__label {background-color: #d4ebff;}#sk-913bd997-a708-43ce-9527-b1095a5811c6 input.sk-hidden--visually {border: 0;clip: rect(1px 1px 1px 1px);clip: rect(1px, 1px, 1px, 1px);height: 1px;margin: -1px;overflow: hidden;padding: 0;position: absolute;width: 1px;}#sk-913bd997-a708-43ce-9527-b1095a5811c6 div.sk-estimator {font-family: monospace;background-color: #f0f8ff;border: 1px dotted black;border-radius: 0.25em;box-sizing: border-box;margin-bottom: 0.5em;}#sk-913bd997-a708-43ce-9527-b1095a5811c6 div.sk-estimator:hover {background-color: #d4ebff;}#sk-913bd997-a708-43ce-9527-b1095a5811c6 div.sk-parallel-item::after {content: "";width: 100%;border-bottom: 1px solid gray;flex-grow: 1;}#sk-913bd997-a708-43ce-9527-b1095a5811c6 div.sk-label:hover label.sk-toggleable__label {background-color: #d4ebff;}#sk-913bd997-a708-43ce-9527-b1095a5811c6 div.sk-serial::before {content: "";position: absolute;border-left: 1px solid gray;box-sizing: border-box;top: 2em;bottom: 0;left: 50%;}#sk-913bd997-a708-43ce-9527-b1095a5811c6 div.sk-serial {display: flex;flex-direction: column;align-items: center;background-color: white;padding-right: 0.2em;padding-left: 0.2em;}#sk-913bd997-a708-43ce-9527-b1095a5811c6 div.sk-item {z-index: 1;}#sk-913bd997-a708-43ce-9527-b1095a5811c6 div.sk-parallel {display: flex;align-items: stretch;justify-content: center;background-color: white;}#sk-913bd997-a708-43ce-9527-b1095a5811c6 div.sk-parallel::before {content: "";position: absolute;border-left: 1px solid gray;box-sizing: border-box;top: 2em;bottom: 0;left: 50%;}#sk-913bd997-a708-43ce-9527-b1095a5811c6 div.sk-parallel-item {display: flex;flex-direction: column;position: relative;background-color: white;}#sk-913bd997-a708-43ce-9527-b1095a5811c6 div.sk-parallel-item:first-child::after {align-self: flex-end;width: 50%;}#sk-913bd997-a708-43ce-9527-b1095a5811c6 div.sk-parallel-item:last-child::after {align-self: flex-start;width: 50%;}#sk-913bd997-a708-43ce-9527-b1095a5811c6 div.sk-parallel-item:only-child::after {width: 0;}#sk-913bd997-a708-43ce-9527-b1095a5811c6 div.sk-dashed-wrapped {border: 1px dashed gray;margin: 0 0.4em 0.5em 0.4em;box-sizing: border-box;padding-bottom: 0.4em;background-color: white;position: relative;}#sk-913bd997-a708-43ce-9527-b1095a5811c6 div.sk-label label {font-family: monospace;font-weight: bold;background-color: white;display: inline-block;line-height: 1.2em;}#sk-913bd997-a708-43ce-9527-b1095a5811c6 div.sk-label-container {position: relative;z-index: 2;text-align: center;}#sk-913bd997-a708-43ce-9527-b1095a5811c6 div.sk-container {/* jupyter's `normalize.less` sets `[hidden] { display: none; }` but bootstrap.min.css set `[hidden] { display: none !important; }` so we also need the `!important` here to be able to override the default hidden behavior on the sphinx rendered scikit-learn.org. See: https://github.com/scikit-learn/scikit-learn/issues/21755 */display: inline-block !important;position: relative;}#sk-913bd997-a708-43ce-9527-b1095a5811c6 div.sk-text-repr-fallback {display: none;}</style><div id="sk-913bd997-a708-43ce-9527-b1095a5811c6" class="sk-top-container" style="overflow: auto;"><div class="sk-text-repr-fallback"><pre>XGBClassifier(base_score=0.5, booster=&#x27;gbtree&#x27;, colsample_bylevel=1,colsample_bynode=1, colsample_bytree=1, enable_categorical=False,gamma=0, gpu_id=-1, importance_type=None,interaction_constraints=&#x27;&#x27;, learning_rate=0.300000012,max_delta_step=0, max_depth=6, min_child_weight=1, missing=nan,monotone_constraints=&#x27;()&#x27;, n_estimators=100, n_jobs=8,num_parallel_tree=1, predictor=&#x27;auto&#x27;, random_state=0,reg_alpha=0, reg_lambda=1, scale_pos_weight=None, subsample=1,tree_method=&#x27;auto&#x27;, validate_parameters=1, verbosity=None)</pre><b>Please rerun this cell to show the HTML repr or trust the notebook.</b></div><div class="sk-container" hidden><div class="sk-item"><div class="sk-estimator sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="7575e916-5d25-4b62-9977-129209196a1f" type="checkbox" checked><label for="7575e916-5d25-4b62-9977-129209196a1f" class="sk-toggleable__label sk-toggleable__label-arrow">XGBClassifier</label><div class="sk-toggleable__content"><pre>XGBClassifier(base_score=0.5, booster=&#x27;gbtree&#x27;, colsample_bylevel=1,colsample_bynode=1, colsample_bytree=1, enable_categorical=False,gamma=0, gpu_id=-1, importance_type=None,interaction_constraints=&#x27;&#x27;, learning_rate=0.300000012,max_delta_step=0, max_depth=6, min_child_weight=1, missing=nan,monotone_constraints=&#x27;()&#x27;, n_estimators=100, n_jobs=8,num_parallel_tree=1, predictor=&#x27;auto&#x27;, random_state=0,reg_alpha=0, reg_lambda=1, scale_pos_weight=None, subsample=1,tree_method=&#x27;auto&#x27;, validate_parameters=1, verbosity=None)</pre></div></div></div></div></div>
1273
 
1274
  ## Evaluation Results
1275
 
 
1269
 
1270
  The model plot is below.
1271
 
1272
+ <style>#sk-19f80cf5-df2f-4943-9225-e91099c55b55 {color: black;background-color: white;}#sk-19f80cf5-df2f-4943-9225-e91099c55b55 pre{padding: 0;}#sk-19f80cf5-df2f-4943-9225-e91099c55b55 div.sk-toggleable {background-color: white;}#sk-19f80cf5-df2f-4943-9225-e91099c55b55 label.sk-toggleable__label {cursor: pointer;display: block;width: 100%;margin-bottom: 0;padding: 0.3em;box-sizing: border-box;text-align: center;}#sk-19f80cf5-df2f-4943-9225-e91099c55b55 label.sk-toggleable__label-arrow:before {content: "▸";float: left;margin-right: 0.25em;color: #696969;}#sk-19f80cf5-df2f-4943-9225-e91099c55b55 label.sk-toggleable__label-arrow:hover:before {color: black;}#sk-19f80cf5-df2f-4943-9225-e91099c55b55 div.sk-estimator:hover label.sk-toggleable__label-arrow:before {color: black;}#sk-19f80cf5-df2f-4943-9225-e91099c55b55 div.sk-toggleable__content {max-height: 0;max-width: 0;overflow: hidden;text-align: left;background-color: #f0f8ff;}#sk-19f80cf5-df2f-4943-9225-e91099c55b55 div.sk-toggleable__content pre {margin: 0.2em;color: black;border-radius: 0.25em;background-color: #f0f8ff;}#sk-19f80cf5-df2f-4943-9225-e91099c55b55 input.sk-toggleable__control:checked~div.sk-toggleable__content {max-height: 200px;max-width: 100%;overflow: auto;}#sk-19f80cf5-df2f-4943-9225-e91099c55b55 input.sk-toggleable__control:checked~label.sk-toggleable__label-arrow:before {content: "▾";}#sk-19f80cf5-df2f-4943-9225-e91099c55b55 div.sk-estimator input.sk-toggleable__control:checked~label.sk-toggleable__label {background-color: #d4ebff;}#sk-19f80cf5-df2f-4943-9225-e91099c55b55 div.sk-label input.sk-toggleable__control:checked~label.sk-toggleable__label {background-color: #d4ebff;}#sk-19f80cf5-df2f-4943-9225-e91099c55b55 input.sk-hidden--visually {border: 0;clip: rect(1px 1px 1px 1px);clip: rect(1px, 1px, 1px, 1px);height: 1px;margin: -1px;overflow: hidden;padding: 0;position: absolute;width: 1px;}#sk-19f80cf5-df2f-4943-9225-e91099c55b55 div.sk-estimator {font-family: monospace;background-color: #f0f8ff;border: 1px dotted black;border-radius: 0.25em;box-sizing: border-box;margin-bottom: 0.5em;}#sk-19f80cf5-df2f-4943-9225-e91099c55b55 div.sk-estimator:hover {background-color: #d4ebff;}#sk-19f80cf5-df2f-4943-9225-e91099c55b55 div.sk-parallel-item::after {content: "";width: 100%;border-bottom: 1px solid gray;flex-grow: 1;}#sk-19f80cf5-df2f-4943-9225-e91099c55b55 div.sk-label:hover label.sk-toggleable__label {background-color: #d4ebff;}#sk-19f80cf5-df2f-4943-9225-e91099c55b55 div.sk-serial::before {content: "";position: absolute;border-left: 1px solid gray;box-sizing: border-box;top: 2em;bottom: 0;left: 50%;}#sk-19f80cf5-df2f-4943-9225-e91099c55b55 div.sk-serial {display: flex;flex-direction: column;align-items: center;background-color: white;padding-right: 0.2em;padding-left: 0.2em;}#sk-19f80cf5-df2f-4943-9225-e91099c55b55 div.sk-item {z-index: 1;}#sk-19f80cf5-df2f-4943-9225-e91099c55b55 div.sk-parallel {display: flex;align-items: stretch;justify-content: center;background-color: white;}#sk-19f80cf5-df2f-4943-9225-e91099c55b55 div.sk-parallel::before {content: "";position: absolute;border-left: 1px solid gray;box-sizing: border-box;top: 2em;bottom: 0;left: 50%;}#sk-19f80cf5-df2f-4943-9225-e91099c55b55 div.sk-parallel-item {display: flex;flex-direction: column;position: relative;background-color: white;}#sk-19f80cf5-df2f-4943-9225-e91099c55b55 div.sk-parallel-item:first-child::after {align-self: flex-end;width: 50%;}#sk-19f80cf5-df2f-4943-9225-e91099c55b55 div.sk-parallel-item:last-child::after {align-self: flex-start;width: 50%;}#sk-19f80cf5-df2f-4943-9225-e91099c55b55 div.sk-parallel-item:only-child::after {width: 0;}#sk-19f80cf5-df2f-4943-9225-e91099c55b55 div.sk-dashed-wrapped {border: 1px dashed gray;margin: 0 0.4em 0.5em 0.4em;box-sizing: border-box;padding-bottom: 0.4em;background-color: white;position: relative;}#sk-19f80cf5-df2f-4943-9225-e91099c55b55 div.sk-label label {font-family: monospace;font-weight: bold;background-color: white;display: inline-block;line-height: 1.2em;}#sk-19f80cf5-df2f-4943-9225-e91099c55b55 div.sk-label-container {position: relative;z-index: 2;text-align: center;}#sk-19f80cf5-df2f-4943-9225-e91099c55b55 div.sk-container {/* jupyter's `normalize.less` sets `[hidden] { display: none; }` but bootstrap.min.css set `[hidden] { display: none !important; }` so we also need the `!important` here to be able to override the default hidden behavior on the sphinx rendered scikit-learn.org. See: https://github.com/scikit-learn/scikit-learn/issues/21755 */display: inline-block !important;position: relative;}#sk-19f80cf5-df2f-4943-9225-e91099c55b55 div.sk-text-repr-fallback {display: none;}</style><div id="sk-19f80cf5-df2f-4943-9225-e91099c55b55" class="sk-top-container" style="overflow: auto;"><div class="sk-text-repr-fallback"><pre>XGBClassifier(base_score=0.5, booster=&#x27;gbtree&#x27;, colsample_bylevel=1,colsample_bynode=1, colsample_bytree=1, enable_categorical=False,gamma=0, gpu_id=-1, importance_type=None,interaction_constraints=&#x27;&#x27;, learning_rate=0.300000012,max_delta_step=0, max_depth=6, min_child_weight=1, missing=nan,monotone_constraints=&#x27;()&#x27;, n_estimators=100, n_jobs=8,num_parallel_tree=1, predictor=&#x27;auto&#x27;, random_state=0,reg_alpha=0, reg_lambda=1, scale_pos_weight=None, subsample=1,tree_method=&#x27;auto&#x27;, validate_parameters=1, verbosity=None)</pre><b>Please rerun this cell to show the HTML repr or trust the notebook.</b></div><div class="sk-container" hidden><div class="sk-item"><div class="sk-estimator sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="856e4662-abb2-4b5d-8064-78696a7f5ab2" type="checkbox" checked><label for="856e4662-abb2-4b5d-8064-78696a7f5ab2" class="sk-toggleable__label sk-toggleable__label-arrow">XGBClassifier</label><div class="sk-toggleable__content"><pre>XGBClassifier(base_score=0.5, booster=&#x27;gbtree&#x27;, colsample_bylevel=1,colsample_bynode=1, colsample_bytree=1, enable_categorical=False,gamma=0, gpu_id=-1, importance_type=None,interaction_constraints=&#x27;&#x27;, learning_rate=0.300000012,max_delta_step=0, max_depth=6, min_child_weight=1, missing=nan,monotone_constraints=&#x27;()&#x27;, n_estimators=100, n_jobs=8,num_parallel_tree=1, predictor=&#x27;auto&#x27;, random_state=0,reg_alpha=0, reg_lambda=1, scale_pos_weight=None, subsample=1,tree_method=&#x27;auto&#x27;, validate_parameters=1, verbosity=None)</pre></div></div></div></div></div>
1273
 
1274
  ## Evaluation Results
1275
 
init_repo_MLstructureMining.py CHANGED
@@ -21,26 +21,10 @@ from data_loader import get_data_splits_from_clean_data
21
  # Paths
22
  model_path = "xgb_model_bayse_optimization_00000.bin"
23
  label_path = "labels.csv"
24
-
25
-
26
-
27
- # Data
28
- X, y = load_breast_cancer(as_frame=True, return_X_y=True)
29
- X_train, X_test, y_train, y_test = train_test_split(
30
- X, y, test_size=0.3, random_state=42
31
- )
32
- print("X's summary: ", X.describe())
33
- print("y's summary: ", y.describe())
34
-
35
- # # Train model
36
- param_grid = {
37
- "max_leaf_nodes": [5, 10, 15],
38
- "max_depth": [2, 5, 10],
39
- }
40
-
41
 
42
  train_tuple = get_data_splits_from_clean_data(
43
- "./cifs_test_s_trained_model", label_path, simple_load=True, n_data=-1
44
  )
45
  print(train_tuple)
46
  X_test = train_tuple[0]
@@ -70,6 +54,7 @@ if "__file__" in locals(): # __file__ not defined during docs built
70
  print(os.listdir(local_repo))
71
  print(type(model))
72
  print(card.metadata_from_config(Path(local_repo)))
 
73
  print(type(card.metadata_from_config(Path(local_repo))))
74
  model_card = card.Card(model, metadata=card.metadata_from_config(Path(local_repo)))
75
  model_card.save(Path(local_repo) / "README.md")
 
21
  # Paths
22
  model_path = "xgb_model_bayse_optimization_00000.bin"
23
  label_path = "labels.csv"
24
+ data_path = "./cifs_test_s_trained_model"
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
25
 
26
  train_tuple = get_data_splits_from_clean_data(
27
+ data_path, label_path, simple_load=True, n_data=-1
28
  )
29
  print(train_tuple)
30
  X_test = train_tuple[0]
 
54
  print(os.listdir(local_repo))
55
  print(type(model))
56
  print(card.metadata_from_config(Path(local_repo)))
57
+ card.metadata_from_config(Path(local_repo))["model_type"] = "xgboost"
58
  print(type(card.metadata_from_config(Path(local_repo))))
59
  model_card = card.Card(model, metadata=card.metadata_from_config(Path(local_repo)))
60
  model_card.save(Path(local_repo) / "README.md")