pushing files to the repo from the example!
Browse files- README.md +1 -1
- init_repo_MLstructureMining.py +3 -18
README.md
CHANGED
@@ -1269,7 +1269,7 @@ The model is trained with below hyperparameters.
|
|
1269 |
|
1270 |
The model plot is below.
|
1271 |
|
1272 |
-
<style>#sk-
|
1273 |
|
1274 |
## Evaluation Results
|
1275 |
|
|
|
1269 |
|
1270 |
The model plot is below.
|
1271 |
|
1272 |
+
<style>#sk-19f80cf5-df2f-4943-9225-e91099c55b55 {color: black;background-color: white;}#sk-19f80cf5-df2f-4943-9225-e91099c55b55 pre{padding: 0;}#sk-19f80cf5-df2f-4943-9225-e91099c55b55 div.sk-toggleable {background-color: white;}#sk-19f80cf5-df2f-4943-9225-e91099c55b55 label.sk-toggleable__label {cursor: pointer;display: block;width: 100%;margin-bottom: 0;padding: 0.3em;box-sizing: border-box;text-align: center;}#sk-19f80cf5-df2f-4943-9225-e91099c55b55 label.sk-toggleable__label-arrow:before {content: "▸";float: left;margin-right: 0.25em;color: #696969;}#sk-19f80cf5-df2f-4943-9225-e91099c55b55 label.sk-toggleable__label-arrow:hover:before {color: black;}#sk-19f80cf5-df2f-4943-9225-e91099c55b55 div.sk-estimator:hover label.sk-toggleable__label-arrow:before {color: black;}#sk-19f80cf5-df2f-4943-9225-e91099c55b55 div.sk-toggleable__content {max-height: 0;max-width: 0;overflow: hidden;text-align: left;background-color: #f0f8ff;}#sk-19f80cf5-df2f-4943-9225-e91099c55b55 div.sk-toggleable__content pre {margin: 0.2em;color: black;border-radius: 0.25em;background-color: #f0f8ff;}#sk-19f80cf5-df2f-4943-9225-e91099c55b55 input.sk-toggleable__control:checked~div.sk-toggleable__content {max-height: 200px;max-width: 100%;overflow: auto;}#sk-19f80cf5-df2f-4943-9225-e91099c55b55 input.sk-toggleable__control:checked~label.sk-toggleable__label-arrow:before {content: "▾";}#sk-19f80cf5-df2f-4943-9225-e91099c55b55 div.sk-estimator input.sk-toggleable__control:checked~label.sk-toggleable__label {background-color: #d4ebff;}#sk-19f80cf5-df2f-4943-9225-e91099c55b55 div.sk-label input.sk-toggleable__control:checked~label.sk-toggleable__label {background-color: #d4ebff;}#sk-19f80cf5-df2f-4943-9225-e91099c55b55 input.sk-hidden--visually {border: 0;clip: rect(1px 1px 1px 1px);clip: rect(1px, 1px, 1px, 1px);height: 1px;margin: -1px;overflow: hidden;padding: 0;position: absolute;width: 1px;}#sk-19f80cf5-df2f-4943-9225-e91099c55b55 div.sk-estimator {font-family: monospace;background-color: #f0f8ff;border: 1px dotted black;border-radius: 0.25em;box-sizing: border-box;margin-bottom: 0.5em;}#sk-19f80cf5-df2f-4943-9225-e91099c55b55 div.sk-estimator:hover {background-color: #d4ebff;}#sk-19f80cf5-df2f-4943-9225-e91099c55b55 div.sk-parallel-item::after {content: "";width: 100%;border-bottom: 1px solid gray;flex-grow: 1;}#sk-19f80cf5-df2f-4943-9225-e91099c55b55 div.sk-label:hover label.sk-toggleable__label {background-color: #d4ebff;}#sk-19f80cf5-df2f-4943-9225-e91099c55b55 div.sk-serial::before {content: "";position: absolute;border-left: 1px solid gray;box-sizing: border-box;top: 2em;bottom: 0;left: 50%;}#sk-19f80cf5-df2f-4943-9225-e91099c55b55 div.sk-serial {display: flex;flex-direction: column;align-items: center;background-color: white;padding-right: 0.2em;padding-left: 0.2em;}#sk-19f80cf5-df2f-4943-9225-e91099c55b55 div.sk-item {z-index: 1;}#sk-19f80cf5-df2f-4943-9225-e91099c55b55 div.sk-parallel {display: flex;align-items: stretch;justify-content: center;background-color: white;}#sk-19f80cf5-df2f-4943-9225-e91099c55b55 div.sk-parallel::before {content: "";position: absolute;border-left: 1px solid gray;box-sizing: border-box;top: 2em;bottom: 0;left: 50%;}#sk-19f80cf5-df2f-4943-9225-e91099c55b55 div.sk-parallel-item {display: flex;flex-direction: column;position: relative;background-color: white;}#sk-19f80cf5-df2f-4943-9225-e91099c55b55 div.sk-parallel-item:first-child::after {align-self: flex-end;width: 50%;}#sk-19f80cf5-df2f-4943-9225-e91099c55b55 div.sk-parallel-item:last-child::after {align-self: flex-start;width: 50%;}#sk-19f80cf5-df2f-4943-9225-e91099c55b55 div.sk-parallel-item:only-child::after {width: 0;}#sk-19f80cf5-df2f-4943-9225-e91099c55b55 div.sk-dashed-wrapped {border: 1px dashed gray;margin: 0 0.4em 0.5em 0.4em;box-sizing: border-box;padding-bottom: 0.4em;background-color: white;position: relative;}#sk-19f80cf5-df2f-4943-9225-e91099c55b55 div.sk-label label {font-family: monospace;font-weight: bold;background-color: white;display: inline-block;line-height: 1.2em;}#sk-19f80cf5-df2f-4943-9225-e91099c55b55 div.sk-label-container {position: relative;z-index: 2;text-align: center;}#sk-19f80cf5-df2f-4943-9225-e91099c55b55 div.sk-container {/* jupyter's `normalize.less` sets `[hidden] { display: none; }` but bootstrap.min.css set `[hidden] { display: none !important; }` so we also need the `!important` here to be able to override the default hidden behavior on the sphinx rendered scikit-learn.org. See: https://github.com/scikit-learn/scikit-learn/issues/21755 */display: inline-block !important;position: relative;}#sk-19f80cf5-df2f-4943-9225-e91099c55b55 div.sk-text-repr-fallback {display: none;}</style><div id="sk-19f80cf5-df2f-4943-9225-e91099c55b55" class="sk-top-container" style="overflow: auto;"><div class="sk-text-repr-fallback"><pre>XGBClassifier(base_score=0.5, booster='gbtree', colsample_bylevel=1,colsample_bynode=1, colsample_bytree=1, enable_categorical=False,gamma=0, gpu_id=-1, importance_type=None,interaction_constraints='', learning_rate=0.300000012,max_delta_step=0, max_depth=6, min_child_weight=1, missing=nan,monotone_constraints='()', n_estimators=100, n_jobs=8,num_parallel_tree=1, predictor='auto', random_state=0,reg_alpha=0, reg_lambda=1, scale_pos_weight=None, subsample=1,tree_method='auto', validate_parameters=1, verbosity=None)</pre><b>Please rerun this cell to show the HTML repr or trust the notebook.</b></div><div class="sk-container" hidden><div class="sk-item"><div class="sk-estimator sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="856e4662-abb2-4b5d-8064-78696a7f5ab2" type="checkbox" checked><label for="856e4662-abb2-4b5d-8064-78696a7f5ab2" class="sk-toggleable__label sk-toggleable__label-arrow">XGBClassifier</label><div class="sk-toggleable__content"><pre>XGBClassifier(base_score=0.5, booster='gbtree', colsample_bylevel=1,colsample_bynode=1, colsample_bytree=1, enable_categorical=False,gamma=0, gpu_id=-1, importance_type=None,interaction_constraints='', learning_rate=0.300000012,max_delta_step=0, max_depth=6, min_child_weight=1, missing=nan,monotone_constraints='()', n_estimators=100, n_jobs=8,num_parallel_tree=1, predictor='auto', random_state=0,reg_alpha=0, reg_lambda=1, scale_pos_weight=None, subsample=1,tree_method='auto', validate_parameters=1, verbosity=None)</pre></div></div></div></div></div>
|
1273 |
|
1274 |
## Evaluation Results
|
1275 |
|
init_repo_MLstructureMining.py
CHANGED
@@ -21,26 +21,10 @@ from data_loader import get_data_splits_from_clean_data
|
|
21 |
# Paths
|
22 |
model_path = "xgb_model_bayse_optimization_00000.bin"
|
23 |
label_path = "labels.csv"
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
# Data
|
28 |
-
X, y = load_breast_cancer(as_frame=True, return_X_y=True)
|
29 |
-
X_train, X_test, y_train, y_test = train_test_split(
|
30 |
-
X, y, test_size=0.3, random_state=42
|
31 |
-
)
|
32 |
-
print("X's summary: ", X.describe())
|
33 |
-
print("y's summary: ", y.describe())
|
34 |
-
|
35 |
-
# # Train model
|
36 |
-
param_grid = {
|
37 |
-
"max_leaf_nodes": [5, 10, 15],
|
38 |
-
"max_depth": [2, 5, 10],
|
39 |
-
}
|
40 |
-
|
41 |
|
42 |
train_tuple = get_data_splits_from_clean_data(
|
43 |
-
|
44 |
)
|
45 |
print(train_tuple)
|
46 |
X_test = train_tuple[0]
|
@@ -70,6 +54,7 @@ if "__file__" in locals(): # __file__ not defined during docs built
|
|
70 |
print(os.listdir(local_repo))
|
71 |
print(type(model))
|
72 |
print(card.metadata_from_config(Path(local_repo)))
|
|
|
73 |
print(type(card.metadata_from_config(Path(local_repo))))
|
74 |
model_card = card.Card(model, metadata=card.metadata_from_config(Path(local_repo)))
|
75 |
model_card.save(Path(local_repo) / "README.md")
|
|
|
21 |
# Paths
|
22 |
model_path = "xgb_model_bayse_optimization_00000.bin"
|
23 |
label_path = "labels.csv"
|
24 |
+
data_path = "./cifs_test_s_trained_model"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
25 |
|
26 |
train_tuple = get_data_splits_from_clean_data(
|
27 |
+
data_path, label_path, simple_load=True, n_data=-1
|
28 |
)
|
29 |
print(train_tuple)
|
30 |
X_test = train_tuple[0]
|
|
|
54 |
print(os.listdir(local_repo))
|
55 |
print(type(model))
|
56 |
print(card.metadata_from_config(Path(local_repo)))
|
57 |
+
card.metadata_from_config(Path(local_repo))["model_type"] = "xgboost"
|
58 |
print(type(card.metadata_from_config(Path(local_repo))))
|
59 |
model_card = card.Card(model, metadata=card.metadata_from_config(Path(local_repo)))
|
60 |
model_card.save(Path(local_repo) / "README.md")
|