Ekjaer commited on
Commit
0c2e2ed
·
1 Parent(s): b3c9ad8

pushing files to the repo from the example!

Browse files
README.md CHANGED
@@ -4,7 +4,7 @@ tags:
4
  - sklearn
5
  - skops
6
  - tabular-classification
7
- model_file: skops-s5wr56d7.pkl
8
  widget:
9
  structuredData:
10
  area error:
@@ -188,7 +188,7 @@ The model is trained with below hyperparameters.
188
 
189
  The model plot is below.
190
 
191
- <style>#sk-7f49b571-5df2-4ea6-a149-0696abd66be0 {color: black;background-color: white;}#sk-7f49b571-5df2-4ea6-a149-0696abd66be0 pre{padding: 0;}#sk-7f49b571-5df2-4ea6-a149-0696abd66be0 div.sk-toggleable {background-color: white;}#sk-7f49b571-5df2-4ea6-a149-0696abd66be0 label.sk-toggleable__label {cursor: pointer;display: block;width: 100%;margin-bottom: 0;padding: 0.3em;box-sizing: border-box;text-align: center;}#sk-7f49b571-5df2-4ea6-a149-0696abd66be0 label.sk-toggleable__label-arrow:before {content: "▸";float: left;margin-right: 0.25em;color: #696969;}#sk-7f49b571-5df2-4ea6-a149-0696abd66be0 label.sk-toggleable__label-arrow:hover:before {color: black;}#sk-7f49b571-5df2-4ea6-a149-0696abd66be0 div.sk-estimator:hover label.sk-toggleable__label-arrow:before {color: black;}#sk-7f49b571-5df2-4ea6-a149-0696abd66be0 div.sk-toggleable__content {max-height: 0;max-width: 0;overflow: hidden;text-align: left;background-color: #f0f8ff;}#sk-7f49b571-5df2-4ea6-a149-0696abd66be0 div.sk-toggleable__content pre {margin: 0.2em;color: black;border-radius: 0.25em;background-color: #f0f8ff;}#sk-7f49b571-5df2-4ea6-a149-0696abd66be0 input.sk-toggleable__control:checked~div.sk-toggleable__content {max-height: 200px;max-width: 100%;overflow: auto;}#sk-7f49b571-5df2-4ea6-a149-0696abd66be0 input.sk-toggleable__control:checked~label.sk-toggleable__label-arrow:before {content: "▾";}#sk-7f49b571-5df2-4ea6-a149-0696abd66be0 div.sk-estimator input.sk-toggleable__control:checked~label.sk-toggleable__label {background-color: #d4ebff;}#sk-7f49b571-5df2-4ea6-a149-0696abd66be0 div.sk-label input.sk-toggleable__control:checked~label.sk-toggleable__label {background-color: #d4ebff;}#sk-7f49b571-5df2-4ea6-a149-0696abd66be0 input.sk-hidden--visually {border: 0;clip: rect(1px 1px 1px 1px);clip: rect(1px, 1px, 1px, 1px);height: 1px;margin: -1px;overflow: hidden;padding: 0;position: absolute;width: 1px;}#sk-7f49b571-5df2-4ea6-a149-0696abd66be0 div.sk-estimator {font-family: monospace;background-color: #f0f8ff;border: 1px dotted black;border-radius: 0.25em;box-sizing: border-box;margin-bottom: 0.5em;}#sk-7f49b571-5df2-4ea6-a149-0696abd66be0 div.sk-estimator:hover {background-color: #d4ebff;}#sk-7f49b571-5df2-4ea6-a149-0696abd66be0 div.sk-parallel-item::after {content: "";width: 100%;border-bottom: 1px solid gray;flex-grow: 1;}#sk-7f49b571-5df2-4ea6-a149-0696abd66be0 div.sk-label:hover label.sk-toggleable__label {background-color: #d4ebff;}#sk-7f49b571-5df2-4ea6-a149-0696abd66be0 div.sk-serial::before {content: "";position: absolute;border-left: 1px solid gray;box-sizing: border-box;top: 2em;bottom: 0;left: 50%;}#sk-7f49b571-5df2-4ea6-a149-0696abd66be0 div.sk-serial {display: flex;flex-direction: column;align-items: center;background-color: white;padding-right: 0.2em;padding-left: 0.2em;}#sk-7f49b571-5df2-4ea6-a149-0696abd66be0 div.sk-item {z-index: 1;}#sk-7f49b571-5df2-4ea6-a149-0696abd66be0 div.sk-parallel {display: flex;align-items: stretch;justify-content: center;background-color: white;}#sk-7f49b571-5df2-4ea6-a149-0696abd66be0 div.sk-parallel::before {content: "";position: absolute;border-left: 1px solid gray;box-sizing: border-box;top: 2em;bottom: 0;left: 50%;}#sk-7f49b571-5df2-4ea6-a149-0696abd66be0 div.sk-parallel-item {display: flex;flex-direction: column;position: relative;background-color: white;}#sk-7f49b571-5df2-4ea6-a149-0696abd66be0 div.sk-parallel-item:first-child::after {align-self: flex-end;width: 50%;}#sk-7f49b571-5df2-4ea6-a149-0696abd66be0 div.sk-parallel-item:last-child::after {align-self: flex-start;width: 50%;}#sk-7f49b571-5df2-4ea6-a149-0696abd66be0 div.sk-parallel-item:only-child::after {width: 0;}#sk-7f49b571-5df2-4ea6-a149-0696abd66be0 div.sk-dashed-wrapped {border: 1px dashed gray;margin: 0 0.4em 0.5em 0.4em;box-sizing: border-box;padding-bottom: 0.4em;background-color: white;position: relative;}#sk-7f49b571-5df2-4ea6-a149-0696abd66be0 div.sk-label label {font-family: monospace;font-weight: bold;background-color: white;display: inline-block;line-height: 1.2em;}#sk-7f49b571-5df2-4ea6-a149-0696abd66be0 div.sk-label-container {position: relative;z-index: 2;text-align: center;}#sk-7f49b571-5df2-4ea6-a149-0696abd66be0 div.sk-container {/* jupyter's `normalize.less` sets `[hidden] { display: none; }` but bootstrap.min.css set `[hidden] { display: none !important; }` so we also need the `!important` here to be able to override the default hidden behavior on the sphinx rendered scikit-learn.org. See: https://github.com/scikit-learn/scikit-learn/issues/21755 */display: inline-block !important;position: relative;}#sk-7f49b571-5df2-4ea6-a149-0696abd66be0 div.sk-text-repr-fallback {display: none;}</style><div id="sk-7f49b571-5df2-4ea6-a149-0696abd66be0" class="sk-top-container" style="overflow: auto;"><div class="sk-text-repr-fallback"><pre>HalvingGridSearchCV(estimator=HistGradientBoostingClassifier(), n_jobs=-1,param_grid={&#x27;max_depth&#x27;: [2, 5, 10],&#x27;max_leaf_nodes&#x27;: [5, 10, 15]},random_state=42)</pre><b>Please rerun this cell to show the HTML repr or trust the notebook.</b></div><div class="sk-container" hidden><div class="sk-item sk-dashed-wrapped"><div class="sk-label-container"><div class="sk-label sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="148806b8-7249-44af-94de-a1013d63223e" type="checkbox" ><label for="148806b8-7249-44af-94de-a1013d63223e" class="sk-toggleable__label sk-toggleable__label-arrow">HalvingGridSearchCV</label><div class="sk-toggleable__content"><pre>HalvingGridSearchCV(estimator=HistGradientBoostingClassifier(), n_jobs=-1,param_grid={&#x27;max_depth&#x27;: [2, 5, 10],&#x27;max_leaf_nodes&#x27;: [5, 10, 15]},random_state=42)</pre></div></div></div><div class="sk-parallel"><div class="sk-parallel-item"><div class="sk-item"><div class="sk-serial"><div class="sk-item"><div class="sk-estimator sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="5c667f80-addf-4901-b2e8-aaf484d48783" type="checkbox" ><label for="5c667f80-addf-4901-b2e8-aaf484d48783" class="sk-toggleable__label sk-toggleable__label-arrow">HistGradientBoostingClassifier</label><div class="sk-toggleable__content"><pre>HistGradientBoostingClassifier()</pre></div></div></div></div></div></div></div></div></div></div>
192
 
193
  ## Evaluation Results
194
 
@@ -207,7 +207,7 @@ Use the code below to get started with the model.
207
  import joblib
208
  import json
209
  import pandas as pd
210
- clf = joblib.load(skops-s5wr56d7.pkl)
211
  with open("config.json") as f:
212
  config = json.load(f)
213
  clf.predict(pd.DataFrame.from_dict(config["sklearn"]["example_input"]))
 
4
  - sklearn
5
  - skops
6
  - tabular-classification
7
+ model_file: skops-8nefprdu.pkl
8
  widget:
9
  structuredData:
10
  area error:
 
188
 
189
  The model plot is below.
190
 
191
+ <style>#sk-0c1d7c13-a4c8-4590-87aa-1f83604d531f {color: black;background-color: white;}#sk-0c1d7c13-a4c8-4590-87aa-1f83604d531f pre{padding: 0;}#sk-0c1d7c13-a4c8-4590-87aa-1f83604d531f div.sk-toggleable {background-color: white;}#sk-0c1d7c13-a4c8-4590-87aa-1f83604d531f label.sk-toggleable__label {cursor: pointer;display: block;width: 100%;margin-bottom: 0;padding: 0.3em;box-sizing: border-box;text-align: center;}#sk-0c1d7c13-a4c8-4590-87aa-1f83604d531f label.sk-toggleable__label-arrow:before {content: "▸";float: left;margin-right: 0.25em;color: #696969;}#sk-0c1d7c13-a4c8-4590-87aa-1f83604d531f label.sk-toggleable__label-arrow:hover:before {color: black;}#sk-0c1d7c13-a4c8-4590-87aa-1f83604d531f div.sk-estimator:hover label.sk-toggleable__label-arrow:before {color: black;}#sk-0c1d7c13-a4c8-4590-87aa-1f83604d531f div.sk-toggleable__content {max-height: 0;max-width: 0;overflow: hidden;text-align: left;background-color: #f0f8ff;}#sk-0c1d7c13-a4c8-4590-87aa-1f83604d531f div.sk-toggleable__content pre {margin: 0.2em;color: black;border-radius: 0.25em;background-color: #f0f8ff;}#sk-0c1d7c13-a4c8-4590-87aa-1f83604d531f input.sk-toggleable__control:checked~div.sk-toggleable__content {max-height: 200px;max-width: 100%;overflow: auto;}#sk-0c1d7c13-a4c8-4590-87aa-1f83604d531f input.sk-toggleable__control:checked~label.sk-toggleable__label-arrow:before {content: "▾";}#sk-0c1d7c13-a4c8-4590-87aa-1f83604d531f div.sk-estimator input.sk-toggleable__control:checked~label.sk-toggleable__label {background-color: #d4ebff;}#sk-0c1d7c13-a4c8-4590-87aa-1f83604d531f div.sk-label input.sk-toggleable__control:checked~label.sk-toggleable__label {background-color: #d4ebff;}#sk-0c1d7c13-a4c8-4590-87aa-1f83604d531f input.sk-hidden--visually {border: 0;clip: rect(1px 1px 1px 1px);clip: rect(1px, 1px, 1px, 1px);height: 1px;margin: -1px;overflow: hidden;padding: 0;position: absolute;width: 1px;}#sk-0c1d7c13-a4c8-4590-87aa-1f83604d531f div.sk-estimator {font-family: monospace;background-color: #f0f8ff;border: 1px dotted black;border-radius: 0.25em;box-sizing: border-box;margin-bottom: 0.5em;}#sk-0c1d7c13-a4c8-4590-87aa-1f83604d531f div.sk-estimator:hover {background-color: #d4ebff;}#sk-0c1d7c13-a4c8-4590-87aa-1f83604d531f div.sk-parallel-item::after {content: "";width: 100%;border-bottom: 1px solid gray;flex-grow: 1;}#sk-0c1d7c13-a4c8-4590-87aa-1f83604d531f div.sk-label:hover label.sk-toggleable__label {background-color: #d4ebff;}#sk-0c1d7c13-a4c8-4590-87aa-1f83604d531f div.sk-serial::before {content: "";position: absolute;border-left: 1px solid gray;box-sizing: border-box;top: 2em;bottom: 0;left: 50%;}#sk-0c1d7c13-a4c8-4590-87aa-1f83604d531f div.sk-serial {display: flex;flex-direction: column;align-items: center;background-color: white;padding-right: 0.2em;padding-left: 0.2em;}#sk-0c1d7c13-a4c8-4590-87aa-1f83604d531f div.sk-item {z-index: 1;}#sk-0c1d7c13-a4c8-4590-87aa-1f83604d531f div.sk-parallel {display: flex;align-items: stretch;justify-content: center;background-color: white;}#sk-0c1d7c13-a4c8-4590-87aa-1f83604d531f div.sk-parallel::before {content: "";position: absolute;border-left: 1px solid gray;box-sizing: border-box;top: 2em;bottom: 0;left: 50%;}#sk-0c1d7c13-a4c8-4590-87aa-1f83604d531f div.sk-parallel-item {display: flex;flex-direction: column;position: relative;background-color: white;}#sk-0c1d7c13-a4c8-4590-87aa-1f83604d531f div.sk-parallel-item:first-child::after {align-self: flex-end;width: 50%;}#sk-0c1d7c13-a4c8-4590-87aa-1f83604d531f div.sk-parallel-item:last-child::after {align-self: flex-start;width: 50%;}#sk-0c1d7c13-a4c8-4590-87aa-1f83604d531f div.sk-parallel-item:only-child::after {width: 0;}#sk-0c1d7c13-a4c8-4590-87aa-1f83604d531f div.sk-dashed-wrapped {border: 1px dashed gray;margin: 0 0.4em 0.5em 0.4em;box-sizing: border-box;padding-bottom: 0.4em;background-color: white;position: relative;}#sk-0c1d7c13-a4c8-4590-87aa-1f83604d531f div.sk-label label {font-family: monospace;font-weight: bold;background-color: white;display: inline-block;line-height: 1.2em;}#sk-0c1d7c13-a4c8-4590-87aa-1f83604d531f div.sk-label-container {position: relative;z-index: 2;text-align: center;}#sk-0c1d7c13-a4c8-4590-87aa-1f83604d531f div.sk-container {/* jupyter's `normalize.less` sets `[hidden] { display: none; }` but bootstrap.min.css set `[hidden] { display: none !important; }` so we also need the `!important` here to be able to override the default hidden behavior on the sphinx rendered scikit-learn.org. See: https://github.com/scikit-learn/scikit-learn/issues/21755 */display: inline-block !important;position: relative;}#sk-0c1d7c13-a4c8-4590-87aa-1f83604d531f div.sk-text-repr-fallback {display: none;}</style><div id="sk-0c1d7c13-a4c8-4590-87aa-1f83604d531f" class="sk-top-container" style="overflow: auto;"><div class="sk-text-repr-fallback"><pre>HalvingGridSearchCV(estimator=HistGradientBoostingClassifier(), n_jobs=-1,param_grid={&#x27;max_depth&#x27;: [2, 5, 10],&#x27;max_leaf_nodes&#x27;: [5, 10, 15]},random_state=42)</pre><b>Please rerun this cell to show the HTML repr or trust the notebook.</b></div><div class="sk-container" hidden><div class="sk-item sk-dashed-wrapped"><div class="sk-label-container"><div class="sk-label sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="fda069f1-3c89-4cdd-93a3-300250ad04ac" type="checkbox" ><label for="fda069f1-3c89-4cdd-93a3-300250ad04ac" class="sk-toggleable__label sk-toggleable__label-arrow">HalvingGridSearchCV</label><div class="sk-toggleable__content"><pre>HalvingGridSearchCV(estimator=HistGradientBoostingClassifier(), n_jobs=-1,param_grid={&#x27;max_depth&#x27;: [2, 5, 10],&#x27;max_leaf_nodes&#x27;: [5, 10, 15]},random_state=42)</pre></div></div></div><div class="sk-parallel"><div class="sk-parallel-item"><div class="sk-item"><div class="sk-serial"><div class="sk-item"><div class="sk-estimator sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="f08bbe7b-c0ba-40eb-983c-ca33a0c7f783" type="checkbox" ><label for="f08bbe7b-c0ba-40eb-983c-ca33a0c7f783" class="sk-toggleable__label sk-toggleable__label-arrow">HistGradientBoostingClassifier</label><div class="sk-toggleable__content"><pre>HistGradientBoostingClassifier()</pre></div></div></div></div></div></div></div></div></div></div>
192
 
193
  ## Evaluation Results
194
 
 
207
  import joblib
208
  import json
209
  import pandas as pd
210
+ clf = joblib.load(skops-8nefprdu.pkl)
211
  with open("config.json") as f:
212
  config = json.load(f)
213
  clf.predict(pd.DataFrame.from_dict(config["sklearn"]["example_input"]))
config.json CHANGED
@@ -33,6 +33,7 @@
33
  "worst fractal dimension"
34
  ],
35
  "environment": [
 
36
  "xgboost=1.5.2"
37
  ],
38
  "example_input": {
@@ -188,7 +189,7 @@
188
  ]
189
  },
190
  "model": {
191
- "file": "skops-s5wr56d7.pkl"
192
  },
193
  "task": "tabular-classification"
194
  }
 
33
  "worst fractal dimension"
34
  ],
35
  "environment": [
36
+ "scikit-learn=1.0.2",
37
  "xgboost=1.5.2"
38
  ],
39
  "example_input": {
 
189
  ]
190
  },
191
  "model": {
192
+ "file": "skops-8nefprdu.pkl"
193
  },
194
  "task": "tabular-classification"
195
  }
init_repo_MLstructureMining.py CHANGED
@@ -38,6 +38,7 @@ model = HalvingGridSearchCV(
38
  ).fit(X_train, y_train)
39
  model.score(X_test, y_test)# The file name is not significant, here we choose to save it with a `pkl`
40
  # extension.
 
41
  _, pkl_name = mkstemp(prefix="skops-", suffix=".pkl")
42
  with open(pkl_name, mode="bw") as f:
43
  pickle.dump(model, file=f)
@@ -45,7 +46,7 @@ with open(pkl_name, mode="bw") as f:
45
  local_repo = mkdtemp(prefix="skops-")
46
  hub_utils.init(
47
  model=pkl_name,
48
- requirements=[f"xgboost={xgboost.__version__}"],
49
  dst=local_repo,
50
  task="tabular-classification",
51
  data=X_test,
@@ -54,6 +55,8 @@ if "__file__" in locals(): # __file__ not defined during docs built
54
  # Add this script itself to the files to be uploaded for reproducibility
55
  hub_utils.add_files(__file__, dst=local_repo)
56
 
 
 
57
  model_card = card.Card(model, metadata=card.metadata_from_config(Path(local_repo)))
58
  model_card.save(Path(local_repo) / "README.md")
59
 
 
38
  ).fit(X_train, y_train)
39
  model.score(X_test, y_test)# The file name is not significant, here we choose to save it with a `pkl`
40
  # extension.
41
+
42
  _, pkl_name = mkstemp(prefix="skops-", suffix=".pkl")
43
  with open(pkl_name, mode="bw") as f:
44
  pickle.dump(model, file=f)
 
46
  local_repo = mkdtemp(prefix="skops-")
47
  hub_utils.init(
48
  model=pkl_name,
49
+ requirements=[f"scikit-learn={sklearn.__version__}", f"xgboost={xgboost.__version__}"],
50
  dst=local_repo,
51
  task="tabular-classification",
52
  data=X_test,
 
55
  # Add this script itself to the files to be uploaded for reproducibility
56
  hub_utils.add_files(__file__, dst=local_repo)
57
 
58
+ print(os.listdir(local_repo))
59
+
60
  model_card = card.Card(model, metadata=card.metadata_from_config(Path(local_repo)))
61
  model_card.save(Path(local_repo) / "README.md")
62
 
skops-8nefprdu.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0db0cd8b1acd1f6deab5e7706d350fa7d917ce83a668ea74bf277b99a99dc398
3
+ size 242801