upload configs and tokenizer
Browse files- README.md +158 -0
- added_tokens.json +3 -0
- config.json +26 -0
- generation_config.json +10 -0
- pytorch_model.bin.index.json +410 -0
- special_tokens_map.json +24 -0
- tokenizer.model +3 -0
- tokenizer_config.json +35 -0
README.md
ADDED
@@ -0,0 +1,158 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: llama2
|
3 |
+
---
|
4 |
+
|
5 |
+
<h3 align="center">
|
6 |
+
Xwin-LM: Powerful, Stable, and Reproducible LLM Alignment
|
7 |
+
</h3>
|
8 |
+
|
9 |
+
<p align="center">
|
10 |
+
<a href="https://github.com/Xwin-LM/Xwin-LM"><img src="https://img.shields.io/badge/GitHub-yellow.svg?style=social&logo=github"></a><a href="https://huggingface.co/Xwin-LM"><img src="https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-Models-blue"></a>
|
11 |
+
</p>
|
12 |
+
|
13 |
+
|
14 |
+
|
15 |
+
|
16 |
+
**Step up your LLM alignment with Xwin-LM!**
|
17 |
+
|
18 |
+
Xwin-LM aims to develop and open-source alignment technologies for large language models, including supervised fine-tuning (SFT), reward models (RM), reject sampling, reinforcement learning from human feedback (RLHF), etc. Our first release, built-upon on the Llama2 base models, ranked **TOP-1** on [AlpacaEval](https://tatsu-lab.github.io/alpaca_eval/). Notably, it's **the first to surpass GPT-4** on this benchmark. The project will be continuously updated.
|
19 |
+
|
20 |
+
## News
|
21 |
+
|
22 |
+
- 💥 [Oct 12, 2023] [Xwin-LM-7B-V0.2](https://huggingface.co/Xwin-LM/Xwin-LM-7B-V0.2) and [Xwin-LM-13B-V0.2](https://huggingface.co/Xwin-LM/Xwin-LM-13B-V0.2) have been released, with improved comparison data and RL training (i.e., PPO). Their winrates v.s. GPT-4 have increased significantly, reaching **59.83%** (7B model) and **70.36%** (13B model) respectively. The 70B model will be released soon.
|
23 |
+
- 💥 [Sep, 2023] We released [Xwin-LM-70B-V0.1](https://huggingface.co/Xwin-LM/Xwin-LM-70B-V0.1), which has achieved a win-rate against Davinci-003 of **95.57%** on [AlpacaEval](https://tatsu-lab.github.io/alpaca_eval/) benchmark, ranking as **TOP-1** on AlpacaEval. **It was the FIRST model surpassing GPT-4** on [AlpacaEval](https://tatsu-lab.github.io/alpaca_eval/). Also note its winrate v.s. GPT-4 is **60.61**.
|
24 |
+
- 🔍 [Sep, 2023] RLHF plays crucial role in the strong performance of Xwin-LM-V0.1 release!
|
25 |
+
- 💥 [Sep, 2023] We released [Xwin-LM-13B-V0.1](https://huggingface.co/Xwin-LM/Xwin-LM-13B-V0.1), which has achieved **91.76%** win-rate on [AlpacaEval](https://tatsu-lab.github.io/alpaca_eval/), ranking as **top-1** among all 13B models.
|
26 |
+
- 💥 [Sep, 2023] We released [Xwin-LM-7B-V0.1](https://huggingface.co/Xwin-LM/Xwin-LM-7B-V0.1), which has achieved **87.82%** win-rate on [AlpacaEval](https://tatsu-lab.github.io/alpaca_eval/), ranking as **top-1** among all 7B models.
|
27 |
+
|
28 |
+
|
29 |
+
## Model Card
|
30 |
+
| Model | Checkpoint | Report | License |
|
31 |
+
|------------|------------|-------------|------------------|
|
32 |
+
|Xwin-LM-7B-V0.2| 🤗 <a href="https://huggingface.co/Xwin-LM/Xwin-LM-7B-V0.2" target="_blank">HF Link</a> | 📃**Coming soon (Stay tuned)** | <a href="https://ai.meta.com/resources/models-and-libraries/llama-downloads/" target="_blank">Llama 2 License|
|
33 |
+
|Xwin-LM-13B-V0.2| 🤗 <a href="https://huggingface.co/Xwin-LM/Xwin-LM-13B-V0.2" target="_blank">HF Link</a> | | <a href="https://ai.meta.com/resources/models-and-libraries/llama-downloads/" target="_blank">Llama 2 License|
|
34 |
+
|Xwin-LM-7B-V0.1| 🤗 <a href="https://huggingface.co/Xwin-LM/Xwin-LM-7B-V0.1" target="_blank">HF Link</a> | | <a href="https://ai.meta.com/resources/models-and-libraries/llama-downloads/" target="_blank">Llama 2 License|
|
35 |
+
|Xwin-LM-13B-V0.1| 🤗 <a href="https://huggingface.co/Xwin-LM/Xwin-LM-13B-V0.1" target="_blank">HF Link</a> | | <a href="https://ai.meta.com/resources/models-and-libraries/llama-downloads/" target="_blank">Llama 2 License|
|
36 |
+
|Xwin-LM-70B-V0.1| 🤗 <a href="https://huggingface.co/Xwin-LM/Xwin-LM-70B-V0.1" target="_blank">HF Link</a> | | <a href="https://ai.meta.com/resources/models-and-libraries/llama-downloads/" target="_blank">Llama 2 License|
|
37 |
+
## Benchmarks
|
38 |
+
|
39 |
+
### Xwin-LM performance on [AlpacaEval](https://tatsu-lab.github.io/alpaca_eval/).
|
40 |
+
|
41 |
+
The table below displays the performance of Xwin-LM on [AlpacaEval](https://tatsu-lab.github.io/alpaca_eval/), where evaluates its win-rate against Text-Davinci-003 across 805 questions. To provide a comprehensive evaluation, we present, for the first time, the win-rate against ChatGPT and GPT-4 as well. Our Xwin-LM model family establish a new state-of-the-art performance across all metrics. Notably, Xwin-LM-70B-V0.1 has eclipsed GPT-4 for the first time, achieving an impressive win-rate of **95.57%** to Text-Davinci-003 and **60.61%** to GPT-4.
|
42 |
+
|
43 |
+
| **Model** | **AlpacaEval (winrate %)** | **AlpacaEval (winrate %)** |**AlpacaEval (winrate %)** |
|
44 |
+
|----------------------------------|------------|----------|-------------|
|
45 |
+
| | **v.s. Text-Davinci-003** | **v.s. ChatGPT** | **v.s. GPT4**|
|
46 |
+
| **Xwin-LM-70B-V0.1** | **95.57** | **87.50** | **60.61** |
|
47 |
+
| GPT-4 | 95.28 | 84.66 | 50.00 |
|
48 |
+
| **Xwin-LM-13B-V0.2** | **93.22** | **87.14** | **70.36** |
|
49 |
+
| WizardLM-70B-V1.0 | 92.91 | 80.19 | 46.70 |
|
50 |
+
| Llama-2-70B-Chat | 92.66 | 81.97 | 51.19 |
|
51 |
+
| **Xwin-LM-13B-V0.1** | **91.76** | **81.79** | **55.30** |
|
52 |
+
| ChatGPT | 89.37 | 50.00 | 16.60 |
|
53 |
+
| **Xwin-LM-7B-V0.2** | **89.31** | **79.60** | **59.83** |
|
54 |
+
| WizardLM-13B-V1.2 | 89.17 | 75.75 | 41.91 |
|
55 |
+
| **Xwin-LM-7B-V0.1** | **87.35** | **76.40** | **47.57** |
|
56 |
+
| Llama-2-13B-Chat | 81.09 | 64.22 | 30.92 |
|
57 |
+
|
58 |
+
|
59 |
+
### Case study on [AlpacaEval](https://tatsu-lab.github.io/alpaca_eval/)
|
60 |
+
|
61 |
+
| Prompts | GPT4 response | Xwin-LM response |
|
62 |
+
|----------------|------------|--------|
|
63 |
+
|I've put a plate on top of an apple, and take the plate from kitchen to dinning room. Where is the apple now|The apple is now in the dining room, as it was underneath the plate when you moved the plate from the kitchen to the dining room.|The apple is still in the kitchen, as you have only moved the plate. The apple is under the plate, so if you want to bring the apple to the dining room, you should either move the apple directly or put the apple on the plate and then move the plate to the dining room.|
|
64 |
+
| Answer the following question.<br> How do you say "good evening" in French. | In French, "good evening" is said as "bonsoir." | In French, "good evening" is translated to "bonsoir." This greeting is used in the evening and nighttime hours, typically after 6 p.m. It is a combination of "bon," which means "good," and "soir," which means "evening." To pronounce it, say "bone-swahr." |
|
65 |
+
|
66 |
+
|
67 |
+
### Xwin-LM performance on NLP foundation tasks.
|
68 |
+
|
69 |
+
The following table provides a comparison of Xwin-LMs with other LLMs on NLP foundation tasks in [Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard).
|
70 |
+
|
71 |
+
| Model | MMLU 5-shot | ARC 25-shot | TruthfulQA 0-shot | HellaSwag 10-shot | Average |
|
72 |
+
|------------------|-------------|-------------|-------------------|-------------------|------------|
|
73 |
+
| Text-davinci-003 | 56.9 | **85.2** | 59.3 | 82.2 | 70.9 |
|
74 |
+
|Vicuna-13b 1.1 | 51.3 | 53.0 | 51.8 | 80.1 | 59.1 |
|
75 |
+
|Guanaco 30B | 57.6 | 63.7 | 50.7 | 85.1 | 64.3 |
|
76 |
+
| WizardLM-7B 1.0 | 42.7 | 51.6 | 44.7 | 77.7 | 54.2 |
|
77 |
+
| WizardLM-13B 1.0 | 52.3 | 57.2 | 50.5 | 81.0 | 60.2 |
|
78 |
+
| WizardLM-30B 1.0 | 58.8 | 62.5 | 52.4 | 83.3 | 64.2|
|
79 |
+
| Llama-2-7B-Chat | 48.3 | 52.9 | 45.6 | 78.6 | 56.4 |
|
80 |
+
| Llama-2-13B-Chat | 54.6 | 59.0 | 44.1 | 81.9 | 59.9 |
|
81 |
+
| Llama-2-70B-Chat | 63.9 | 64.6 | 52.8 | 85.9 | 66.8 |
|
82 |
+
| **Xwin-LM-7B-V0.1** | 49.7 | 56.2 | 48.1 | 79.5 | 58.4 |
|
83 |
+
| **Xwin-LM-13B-V0.1** | 56.6 | 62.4 | 45.5 | 83.0 | 61.9 |
|
84 |
+
| **Xwin-LM-70B-V0.1** | **69.6** | 70.5 | **60.1** | **87.1** | **71.8** |
|
85 |
+
| **Xwin-LM-7B-V0.2** | 50.0 | 56.4 | 49.5 | 78.9 | 58.7 |
|
86 |
+
| **Xwin-LM-13B-V0.2** | 56.6 | 61.5 | 43.8 | 82.9 | 61.2 |
|
87 |
+
|
88 |
+
|
89 |
+
## Inference
|
90 |
+
|
91 |
+
### Conversation Template
|
92 |
+
To obtain desired results, please strictly follow the conversation templates when utilizing our model for inference. Our model adopts the prompt format established by [Vicuna](https://github.com/lm-sys/FastChat) and is equipped to support **multi-turn** conversations.
|
93 |
+
```
|
94 |
+
A chat between a curious user and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the user's questions. USER: Hi! ASSISTANT: Hello.</s>USER: Who are you? ASSISTANT: I am Xwin-LM.</s>......
|
95 |
+
```
|
96 |
+
|
97 |
+
### HuggingFace Example
|
98 |
+
|
99 |
+
```python
|
100 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
101 |
+
|
102 |
+
model = AutoModelForCausalLM.from_pretrained("Xwin-LM/Xwin-LM-7B-V0.1")
|
103 |
+
tokenizer = AutoTokenizer.from_pretrained("Xwin-LM/Xwin-LM-7B-V0.1")
|
104 |
+
(
|
105 |
+
prompt := "A chat between a curious user and an artificial intelligence assistant. "
|
106 |
+
"The assistant gives helpful, detailed, and polite answers to the user's questions. "
|
107 |
+
"USER: Hello, can you help me? "
|
108 |
+
"ASSISTANT:"
|
109 |
+
)
|
110 |
+
inputs = tokenizer(prompt, return_tensors="pt")
|
111 |
+
samples = model.generate(**inputs, max_new_tokens=4096, temperature=0.7)
|
112 |
+
output = tokenizer.decode(samples[0][inputs["input_ids"].shape[1]:], skip_special_tokens=True)
|
113 |
+
print(output)
|
114 |
+
# Of course! I'm here to help. Please feel free to ask your question or describe the issue you're having, and I'll do my best to assist you.
|
115 |
+
```
|
116 |
+
|
117 |
+
|
118 |
+
### vLLM Example
|
119 |
+
Because Xwin-LM is based on Llama2, it also offers support for rapid inference using [vLLM](https://github.com/vllm-project/vllm). Please refer to [vLLM](https://github.com/vllm-project/vllm) for detailed installation instructions.
|
120 |
+
```python
|
121 |
+
from vllm import LLM, SamplingParams
|
122 |
+
(
|
123 |
+
prompt := "A chat between a curious user and an artificial intelligence assistant. "
|
124 |
+
"The assistant gives helpful, detailed, and polite answers to the user's questions. "
|
125 |
+
"USER: Hello, can you help me? "
|
126 |
+
"ASSISTANT:"
|
127 |
+
)
|
128 |
+
sampling_params = SamplingParams(temperature=0.7, max_tokens=4096)
|
129 |
+
llm = LLM(model="Xwin-LM/Xwin-LM-7B-V0.1")
|
130 |
+
outputs = llm.generate([prompt,], sampling_params)
|
131 |
+
|
132 |
+
for output in outputs:
|
133 |
+
prompt = output.prompt
|
134 |
+
generated_text = output.outputs[0].text
|
135 |
+
print(generated_text)
|
136 |
+
```
|
137 |
+
|
138 |
+
## TODO
|
139 |
+
|
140 |
+
- [ ] Release the source code
|
141 |
+
- [ ] Release more capabilities, such as math, reasoning, and etc.
|
142 |
+
|
143 |
+
## Citation
|
144 |
+
Please consider citing our work if you use the data or code in this repo.
|
145 |
+
```
|
146 |
+
@software{xwin-lm,
|
147 |
+
title = {Xwin-LM},
|
148 |
+
author = {Xwin-LM Team},
|
149 |
+
url = {https://github.com/Xwin-LM/Xwin-LM},
|
150 |
+
version = {pre-release},
|
151 |
+
year = {2023},
|
152 |
+
month = {9},
|
153 |
+
}
|
154 |
+
```
|
155 |
+
|
156 |
+
## Acknowledgements
|
157 |
+
|
158 |
+
Thanks to [Llama 2](https://ai.meta.com/llama/), [FastChat](https://github.com/lm-sys/FastChat), [AlpacaFarm](https://github.com/tatsu-lab/alpaca_farm), and [vLLM](https://github.com/vllm-project/vllm).
|
added_tokens.json
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"[PAD]": 32000
|
3 |
+
}
|
config.json
ADDED
@@ -0,0 +1,26 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "/root/fastchat_ckps/rs_llama-2-13b-hf_merge_turn1_40k_turn2_30k_turn3_25k_get_96k_4096_2x8A100_trainbs8_accum1_lr5e-6_ep3",
|
3 |
+
"architectures": [
|
4 |
+
"LlamaForCausalLM"
|
5 |
+
],
|
6 |
+
"bos_token_id": 1,
|
7 |
+
"eos_token_id": 2,
|
8 |
+
"hidden_act": "silu",
|
9 |
+
"hidden_size": 5120,
|
10 |
+
"initializer_range": 0.02,
|
11 |
+
"intermediate_size": 13824,
|
12 |
+
"max_position_embeddings": 4096,
|
13 |
+
"model_type": "llama",
|
14 |
+
"num_attention_heads": 40,
|
15 |
+
"num_hidden_layers": 40,
|
16 |
+
"num_key_value_heads": 40,
|
17 |
+
"pad_token_id": 0,
|
18 |
+
"pretraining_tp": 1,
|
19 |
+
"rms_norm_eps": 1e-05,
|
20 |
+
"rope_scaling": null,
|
21 |
+
"tie_word_embeddings": false,
|
22 |
+
"torch_dtype": "float32",
|
23 |
+
"transformers_version": "4.28.1",
|
24 |
+
"use_cache": false,
|
25 |
+
"vocab_size": 32001
|
26 |
+
}
|
generation_config.json
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token_id": 1,
|
3 |
+
"do_sample": true,
|
4 |
+
"eos_token_id": 2,
|
5 |
+
"max_length": 4096,
|
6 |
+
"pad_token_id": 0,
|
7 |
+
"temperature": 0.6,
|
8 |
+
"top_p": 0.9,
|
9 |
+
"transformers_version": "4.28.1"
|
10 |
+
}
|
pytorch_model.bin.index.json
ADDED
@@ -0,0 +1,410 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"metadata": {
|
3 |
+
"total_size": 52063508480
|
4 |
+
},
|
5 |
+
"weight_map": {
|
6 |
+
"lm_head.weight": "pytorch_model-00006-of-00006.bin",
|
7 |
+
"model.embed_tokens.weight": "pytorch_model-00001-of-00006.bin",
|
8 |
+
"model.layers.0.input_layernorm.weight": "pytorch_model-00001-of-00006.bin",
|
9 |
+
"model.layers.0.mlp.down_proj.weight": "pytorch_model-00001-of-00006.bin",
|
10 |
+
"model.layers.0.mlp.gate_proj.weight": "pytorch_model-00001-of-00006.bin",
|
11 |
+
"model.layers.0.mlp.up_proj.weight": "pytorch_model-00001-of-00006.bin",
|
12 |
+
"model.layers.0.post_attention_layernorm.weight": "pytorch_model-00001-of-00006.bin",
|
13 |
+
"model.layers.0.self_attn.k_proj.weight": "pytorch_model-00001-of-00006.bin",
|
14 |
+
"model.layers.0.self_attn.o_proj.weight": "pytorch_model-00001-of-00006.bin",
|
15 |
+
"model.layers.0.self_attn.q_proj.weight": "pytorch_model-00001-of-00006.bin",
|
16 |
+
"model.layers.0.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00006.bin",
|
17 |
+
"model.layers.0.self_attn.v_proj.weight": "pytorch_model-00001-of-00006.bin",
|
18 |
+
"model.layers.1.input_layernorm.weight": "pytorch_model-00001-of-00006.bin",
|
19 |
+
"model.layers.1.mlp.down_proj.weight": "pytorch_model-00001-of-00006.bin",
|
20 |
+
"model.layers.1.mlp.gate_proj.weight": "pytorch_model-00001-of-00006.bin",
|
21 |
+
"model.layers.1.mlp.up_proj.weight": "pytorch_model-00001-of-00006.bin",
|
22 |
+
"model.layers.1.post_attention_layernorm.weight": "pytorch_model-00001-of-00006.bin",
|
23 |
+
"model.layers.1.self_attn.k_proj.weight": "pytorch_model-00001-of-00006.bin",
|
24 |
+
"model.layers.1.self_attn.o_proj.weight": "pytorch_model-00001-of-00006.bin",
|
25 |
+
"model.layers.1.self_attn.q_proj.weight": "pytorch_model-00001-of-00006.bin",
|
26 |
+
"model.layers.1.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00006.bin",
|
27 |
+
"model.layers.1.self_attn.v_proj.weight": "pytorch_model-00001-of-00006.bin",
|
28 |
+
"model.layers.10.input_layernorm.weight": "pytorch_model-00002-of-00006.bin",
|
29 |
+
"model.layers.10.mlp.down_proj.weight": "pytorch_model-00002-of-00006.bin",
|
30 |
+
"model.layers.10.mlp.gate_proj.weight": "pytorch_model-00002-of-00006.bin",
|
31 |
+
"model.layers.10.mlp.up_proj.weight": "pytorch_model-00002-of-00006.bin",
|
32 |
+
"model.layers.10.post_attention_layernorm.weight": "pytorch_model-00002-of-00006.bin",
|
33 |
+
"model.layers.10.self_attn.k_proj.weight": "pytorch_model-00002-of-00006.bin",
|
34 |
+
"model.layers.10.self_attn.o_proj.weight": "pytorch_model-00002-of-00006.bin",
|
35 |
+
"model.layers.10.self_attn.q_proj.weight": "pytorch_model-00002-of-00006.bin",
|
36 |
+
"model.layers.10.self_attn.rotary_emb.inv_freq": "pytorch_model-00002-of-00006.bin",
|
37 |
+
"model.layers.10.self_attn.v_proj.weight": "pytorch_model-00002-of-00006.bin",
|
38 |
+
"model.layers.11.input_layernorm.weight": "pytorch_model-00002-of-00006.bin",
|
39 |
+
"model.layers.11.mlp.down_proj.weight": "pytorch_model-00002-of-00006.bin",
|
40 |
+
"model.layers.11.mlp.gate_proj.weight": "pytorch_model-00002-of-00006.bin",
|
41 |
+
"model.layers.11.mlp.up_proj.weight": "pytorch_model-00002-of-00006.bin",
|
42 |
+
"model.layers.11.post_attention_layernorm.weight": "pytorch_model-00002-of-00006.bin",
|
43 |
+
"model.layers.11.self_attn.k_proj.weight": "pytorch_model-00002-of-00006.bin",
|
44 |
+
"model.layers.11.self_attn.o_proj.weight": "pytorch_model-00002-of-00006.bin",
|
45 |
+
"model.layers.11.self_attn.q_proj.weight": "pytorch_model-00002-of-00006.bin",
|
46 |
+
"model.layers.11.self_attn.rotary_emb.inv_freq": "pytorch_model-00002-of-00006.bin",
|
47 |
+
"model.layers.11.self_attn.v_proj.weight": "pytorch_model-00002-of-00006.bin",
|
48 |
+
"model.layers.12.input_layernorm.weight": "pytorch_model-00002-of-00006.bin",
|
49 |
+
"model.layers.12.mlp.down_proj.weight": "pytorch_model-00002-of-00006.bin",
|
50 |
+
"model.layers.12.mlp.gate_proj.weight": "pytorch_model-00002-of-00006.bin",
|
51 |
+
"model.layers.12.mlp.up_proj.weight": "pytorch_model-00002-of-00006.bin",
|
52 |
+
"model.layers.12.post_attention_layernorm.weight": "pytorch_model-00002-of-00006.bin",
|
53 |
+
"model.layers.12.self_attn.k_proj.weight": "pytorch_model-00002-of-00006.bin",
|
54 |
+
"model.layers.12.self_attn.o_proj.weight": "pytorch_model-00002-of-00006.bin",
|
55 |
+
"model.layers.12.self_attn.q_proj.weight": "pytorch_model-00002-of-00006.bin",
|
56 |
+
"model.layers.12.self_attn.rotary_emb.inv_freq": "pytorch_model-00002-of-00006.bin",
|
57 |
+
"model.layers.12.self_attn.v_proj.weight": "pytorch_model-00002-of-00006.bin",
|
58 |
+
"model.layers.13.input_layernorm.weight": "pytorch_model-00002-of-00006.bin",
|
59 |
+
"model.layers.13.mlp.down_proj.weight": "pytorch_model-00002-of-00006.bin",
|
60 |
+
"model.layers.13.mlp.gate_proj.weight": "pytorch_model-00002-of-00006.bin",
|
61 |
+
"model.layers.13.mlp.up_proj.weight": "pytorch_model-00002-of-00006.bin",
|
62 |
+
"model.layers.13.post_attention_layernorm.weight": "pytorch_model-00002-of-00006.bin",
|
63 |
+
"model.layers.13.self_attn.k_proj.weight": "pytorch_model-00002-of-00006.bin",
|
64 |
+
"model.layers.13.self_attn.o_proj.weight": "pytorch_model-00002-of-00006.bin",
|
65 |
+
"model.layers.13.self_attn.q_proj.weight": "pytorch_model-00002-of-00006.bin",
|
66 |
+
"model.layers.13.self_attn.rotary_emb.inv_freq": "pytorch_model-00002-of-00006.bin",
|
67 |
+
"model.layers.13.self_attn.v_proj.weight": "pytorch_model-00002-of-00006.bin",
|
68 |
+
"model.layers.14.input_layernorm.weight": "pytorch_model-00002-of-00006.bin",
|
69 |
+
"model.layers.14.mlp.down_proj.weight": "pytorch_model-00002-of-00006.bin",
|
70 |
+
"model.layers.14.mlp.gate_proj.weight": "pytorch_model-00002-of-00006.bin",
|
71 |
+
"model.layers.14.mlp.up_proj.weight": "pytorch_model-00002-of-00006.bin",
|
72 |
+
"model.layers.14.post_attention_layernorm.weight": "pytorch_model-00002-of-00006.bin",
|
73 |
+
"model.layers.14.self_attn.k_proj.weight": "pytorch_model-00002-of-00006.bin",
|
74 |
+
"model.layers.14.self_attn.o_proj.weight": "pytorch_model-00002-of-00006.bin",
|
75 |
+
"model.layers.14.self_attn.q_proj.weight": "pytorch_model-00002-of-00006.bin",
|
76 |
+
"model.layers.14.self_attn.rotary_emb.inv_freq": "pytorch_model-00002-of-00006.bin",
|
77 |
+
"model.layers.14.self_attn.v_proj.weight": "pytorch_model-00002-of-00006.bin",
|
78 |
+
"model.layers.15.input_layernorm.weight": "pytorch_model-00003-of-00006.bin",
|
79 |
+
"model.layers.15.mlp.down_proj.weight": "pytorch_model-00003-of-00006.bin",
|
80 |
+
"model.layers.15.mlp.gate_proj.weight": "pytorch_model-00003-of-00006.bin",
|
81 |
+
"model.layers.15.mlp.up_proj.weight": "pytorch_model-00003-of-00006.bin",
|
82 |
+
"model.layers.15.post_attention_layernorm.weight": "pytorch_model-00003-of-00006.bin",
|
83 |
+
"model.layers.15.self_attn.k_proj.weight": "pytorch_model-00003-of-00006.bin",
|
84 |
+
"model.layers.15.self_attn.o_proj.weight": "pytorch_model-00003-of-00006.bin",
|
85 |
+
"model.layers.15.self_attn.q_proj.weight": "pytorch_model-00003-of-00006.bin",
|
86 |
+
"model.layers.15.self_attn.rotary_emb.inv_freq": "pytorch_model-00003-of-00006.bin",
|
87 |
+
"model.layers.15.self_attn.v_proj.weight": "pytorch_model-00003-of-00006.bin",
|
88 |
+
"model.layers.16.input_layernorm.weight": "pytorch_model-00003-of-00006.bin",
|
89 |
+
"model.layers.16.mlp.down_proj.weight": "pytorch_model-00003-of-00006.bin",
|
90 |
+
"model.layers.16.mlp.gate_proj.weight": "pytorch_model-00003-of-00006.bin",
|
91 |
+
"model.layers.16.mlp.up_proj.weight": "pytorch_model-00003-of-00006.bin",
|
92 |
+
"model.layers.16.post_attention_layernorm.weight": "pytorch_model-00003-of-00006.bin",
|
93 |
+
"model.layers.16.self_attn.k_proj.weight": "pytorch_model-00003-of-00006.bin",
|
94 |
+
"model.layers.16.self_attn.o_proj.weight": "pytorch_model-00003-of-00006.bin",
|
95 |
+
"model.layers.16.self_attn.q_proj.weight": "pytorch_model-00003-of-00006.bin",
|
96 |
+
"model.layers.16.self_attn.rotary_emb.inv_freq": "pytorch_model-00003-of-00006.bin",
|
97 |
+
"model.layers.16.self_attn.v_proj.weight": "pytorch_model-00003-of-00006.bin",
|
98 |
+
"model.layers.17.input_layernorm.weight": "pytorch_model-00003-of-00006.bin",
|
99 |
+
"model.layers.17.mlp.down_proj.weight": "pytorch_model-00003-of-00006.bin",
|
100 |
+
"model.layers.17.mlp.gate_proj.weight": "pytorch_model-00003-of-00006.bin",
|
101 |
+
"model.layers.17.mlp.up_proj.weight": "pytorch_model-00003-of-00006.bin",
|
102 |
+
"model.layers.17.post_attention_layernorm.weight": "pytorch_model-00003-of-00006.bin",
|
103 |
+
"model.layers.17.self_attn.k_proj.weight": "pytorch_model-00003-of-00006.bin",
|
104 |
+
"model.layers.17.self_attn.o_proj.weight": "pytorch_model-00003-of-00006.bin",
|
105 |
+
"model.layers.17.self_attn.q_proj.weight": "pytorch_model-00003-of-00006.bin",
|
106 |
+
"model.layers.17.self_attn.rotary_emb.inv_freq": "pytorch_model-00003-of-00006.bin",
|
107 |
+
"model.layers.17.self_attn.v_proj.weight": "pytorch_model-00003-of-00006.bin",
|
108 |
+
"model.layers.18.input_layernorm.weight": "pytorch_model-00003-of-00006.bin",
|
109 |
+
"model.layers.18.mlp.down_proj.weight": "pytorch_model-00003-of-00006.bin",
|
110 |
+
"model.layers.18.mlp.gate_proj.weight": "pytorch_model-00003-of-00006.bin",
|
111 |
+
"model.layers.18.mlp.up_proj.weight": "pytorch_model-00003-of-00006.bin",
|
112 |
+
"model.layers.18.post_attention_layernorm.weight": "pytorch_model-00003-of-00006.bin",
|
113 |
+
"model.layers.18.self_attn.k_proj.weight": "pytorch_model-00003-of-00006.bin",
|
114 |
+
"model.layers.18.self_attn.o_proj.weight": "pytorch_model-00003-of-00006.bin",
|
115 |
+
"model.layers.18.self_attn.q_proj.weight": "pytorch_model-00003-of-00006.bin",
|
116 |
+
"model.layers.18.self_attn.rotary_emb.inv_freq": "pytorch_model-00003-of-00006.bin",
|
117 |
+
"model.layers.18.self_attn.v_proj.weight": "pytorch_model-00003-of-00006.bin",
|
118 |
+
"model.layers.19.input_layernorm.weight": "pytorch_model-00003-of-00006.bin",
|
119 |
+
"model.layers.19.mlp.down_proj.weight": "pytorch_model-00003-of-00006.bin",
|
120 |
+
"model.layers.19.mlp.gate_proj.weight": "pytorch_model-00003-of-00006.bin",
|
121 |
+
"model.layers.19.mlp.up_proj.weight": "pytorch_model-00003-of-00006.bin",
|
122 |
+
"model.layers.19.post_attention_layernorm.weight": "pytorch_model-00003-of-00006.bin",
|
123 |
+
"model.layers.19.self_attn.k_proj.weight": "pytorch_model-00003-of-00006.bin",
|
124 |
+
"model.layers.19.self_attn.o_proj.weight": "pytorch_model-00003-of-00006.bin",
|
125 |
+
"model.layers.19.self_attn.q_proj.weight": "pytorch_model-00003-of-00006.bin",
|
126 |
+
"model.layers.19.self_attn.rotary_emb.inv_freq": "pytorch_model-00003-of-00006.bin",
|
127 |
+
"model.layers.19.self_attn.v_proj.weight": "pytorch_model-00003-of-00006.bin",
|
128 |
+
"model.layers.2.input_layernorm.weight": "pytorch_model-00001-of-00006.bin",
|
129 |
+
"model.layers.2.mlp.down_proj.weight": "pytorch_model-00001-of-00006.bin",
|
130 |
+
"model.layers.2.mlp.gate_proj.weight": "pytorch_model-00001-of-00006.bin",
|
131 |
+
"model.layers.2.mlp.up_proj.weight": "pytorch_model-00001-of-00006.bin",
|
132 |
+
"model.layers.2.post_attention_layernorm.weight": "pytorch_model-00001-of-00006.bin",
|
133 |
+
"model.layers.2.self_attn.k_proj.weight": "pytorch_model-00001-of-00006.bin",
|
134 |
+
"model.layers.2.self_attn.o_proj.weight": "pytorch_model-00001-of-00006.bin",
|
135 |
+
"model.layers.2.self_attn.q_proj.weight": "pytorch_model-00001-of-00006.bin",
|
136 |
+
"model.layers.2.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00006.bin",
|
137 |
+
"model.layers.2.self_attn.v_proj.weight": "pytorch_model-00001-of-00006.bin",
|
138 |
+
"model.layers.20.input_layernorm.weight": "pytorch_model-00003-of-00006.bin",
|
139 |
+
"model.layers.20.mlp.down_proj.weight": "pytorch_model-00003-of-00006.bin",
|
140 |
+
"model.layers.20.mlp.gate_proj.weight": "pytorch_model-00003-of-00006.bin",
|
141 |
+
"model.layers.20.mlp.up_proj.weight": "pytorch_model-00003-of-00006.bin",
|
142 |
+
"model.layers.20.post_attention_layernorm.weight": "pytorch_model-00003-of-00006.bin",
|
143 |
+
"model.layers.20.self_attn.k_proj.weight": "pytorch_model-00003-of-00006.bin",
|
144 |
+
"model.layers.20.self_attn.o_proj.weight": "pytorch_model-00003-of-00006.bin",
|
145 |
+
"model.layers.20.self_attn.q_proj.weight": "pytorch_model-00003-of-00006.bin",
|
146 |
+
"model.layers.20.self_attn.rotary_emb.inv_freq": "pytorch_model-00003-of-00006.bin",
|
147 |
+
"model.layers.20.self_attn.v_proj.weight": "pytorch_model-00003-of-00006.bin",
|
148 |
+
"model.layers.21.input_layernorm.weight": "pytorch_model-00003-of-00006.bin",
|
149 |
+
"model.layers.21.mlp.down_proj.weight": "pytorch_model-00003-of-00006.bin",
|
150 |
+
"model.layers.21.mlp.gate_proj.weight": "pytorch_model-00003-of-00006.bin",
|
151 |
+
"model.layers.21.mlp.up_proj.weight": "pytorch_model-00003-of-00006.bin",
|
152 |
+
"model.layers.21.post_attention_layernorm.weight": "pytorch_model-00003-of-00006.bin",
|
153 |
+
"model.layers.21.self_attn.k_proj.weight": "pytorch_model-00003-of-00006.bin",
|
154 |
+
"model.layers.21.self_attn.o_proj.weight": "pytorch_model-00003-of-00006.bin",
|
155 |
+
"model.layers.21.self_attn.q_proj.weight": "pytorch_model-00003-of-00006.bin",
|
156 |
+
"model.layers.21.self_attn.rotary_emb.inv_freq": "pytorch_model-00003-of-00006.bin",
|
157 |
+
"model.layers.21.self_attn.v_proj.weight": "pytorch_model-00003-of-00006.bin",
|
158 |
+
"model.layers.22.input_layernorm.weight": "pytorch_model-00003-of-00006.bin",
|
159 |
+
"model.layers.22.mlp.down_proj.weight": "pytorch_model-00003-of-00006.bin",
|
160 |
+
"model.layers.22.mlp.gate_proj.weight": "pytorch_model-00003-of-00006.bin",
|
161 |
+
"model.layers.22.mlp.up_proj.weight": "pytorch_model-00003-of-00006.bin",
|
162 |
+
"model.layers.22.post_attention_layernorm.weight": "pytorch_model-00003-of-00006.bin",
|
163 |
+
"model.layers.22.self_attn.k_proj.weight": "pytorch_model-00003-of-00006.bin",
|
164 |
+
"model.layers.22.self_attn.o_proj.weight": "pytorch_model-00004-of-00006.bin",
|
165 |
+
"model.layers.22.self_attn.q_proj.weight": "pytorch_model-00003-of-00006.bin",
|
166 |
+
"model.layers.22.self_attn.rotary_emb.inv_freq": "pytorch_model-00004-of-00006.bin",
|
167 |
+
"model.layers.22.self_attn.v_proj.weight": "pytorch_model-00004-of-00006.bin",
|
168 |
+
"model.layers.23.input_layernorm.weight": "pytorch_model-00004-of-00006.bin",
|
169 |
+
"model.layers.23.mlp.down_proj.weight": "pytorch_model-00004-of-00006.bin",
|
170 |
+
"model.layers.23.mlp.gate_proj.weight": "pytorch_model-00004-of-00006.bin",
|
171 |
+
"model.layers.23.mlp.up_proj.weight": "pytorch_model-00004-of-00006.bin",
|
172 |
+
"model.layers.23.post_attention_layernorm.weight": "pytorch_model-00004-of-00006.bin",
|
173 |
+
"model.layers.23.self_attn.k_proj.weight": "pytorch_model-00004-of-00006.bin",
|
174 |
+
"model.layers.23.self_attn.o_proj.weight": "pytorch_model-00004-of-00006.bin",
|
175 |
+
"model.layers.23.self_attn.q_proj.weight": "pytorch_model-00004-of-00006.bin",
|
176 |
+
"model.layers.23.self_attn.rotary_emb.inv_freq": "pytorch_model-00004-of-00006.bin",
|
177 |
+
"model.layers.23.self_attn.v_proj.weight": "pytorch_model-00004-of-00006.bin",
|
178 |
+
"model.layers.24.input_layernorm.weight": "pytorch_model-00004-of-00006.bin",
|
179 |
+
"model.layers.24.mlp.down_proj.weight": "pytorch_model-00004-of-00006.bin",
|
180 |
+
"model.layers.24.mlp.gate_proj.weight": "pytorch_model-00004-of-00006.bin",
|
181 |
+
"model.layers.24.mlp.up_proj.weight": "pytorch_model-00004-of-00006.bin",
|
182 |
+
"model.layers.24.post_attention_layernorm.weight": "pytorch_model-00004-of-00006.bin",
|
183 |
+
"model.layers.24.self_attn.k_proj.weight": "pytorch_model-00004-of-00006.bin",
|
184 |
+
"model.layers.24.self_attn.o_proj.weight": "pytorch_model-00004-of-00006.bin",
|
185 |
+
"model.layers.24.self_attn.q_proj.weight": "pytorch_model-00004-of-00006.bin",
|
186 |
+
"model.layers.24.self_attn.rotary_emb.inv_freq": "pytorch_model-00004-of-00006.bin",
|
187 |
+
"model.layers.24.self_attn.v_proj.weight": "pytorch_model-00004-of-00006.bin",
|
188 |
+
"model.layers.25.input_layernorm.weight": "pytorch_model-00004-of-00006.bin",
|
189 |
+
"model.layers.25.mlp.down_proj.weight": "pytorch_model-00004-of-00006.bin",
|
190 |
+
"model.layers.25.mlp.gate_proj.weight": "pytorch_model-00004-of-00006.bin",
|
191 |
+
"model.layers.25.mlp.up_proj.weight": "pytorch_model-00004-of-00006.bin",
|
192 |
+
"model.layers.25.post_attention_layernorm.weight": "pytorch_model-00004-of-00006.bin",
|
193 |
+
"model.layers.25.self_attn.k_proj.weight": "pytorch_model-00004-of-00006.bin",
|
194 |
+
"model.layers.25.self_attn.o_proj.weight": "pytorch_model-00004-of-00006.bin",
|
195 |
+
"model.layers.25.self_attn.q_proj.weight": "pytorch_model-00004-of-00006.bin",
|
196 |
+
"model.layers.25.self_attn.rotary_emb.inv_freq": "pytorch_model-00004-of-00006.bin",
|
197 |
+
"model.layers.25.self_attn.v_proj.weight": "pytorch_model-00004-of-00006.bin",
|
198 |
+
"model.layers.26.input_layernorm.weight": "pytorch_model-00004-of-00006.bin",
|
199 |
+
"model.layers.26.mlp.down_proj.weight": "pytorch_model-00004-of-00006.bin",
|
200 |
+
"model.layers.26.mlp.gate_proj.weight": "pytorch_model-00004-of-00006.bin",
|
201 |
+
"model.layers.26.mlp.up_proj.weight": "pytorch_model-00004-of-00006.bin",
|
202 |
+
"model.layers.26.post_attention_layernorm.weight": "pytorch_model-00004-of-00006.bin",
|
203 |
+
"model.layers.26.self_attn.k_proj.weight": "pytorch_model-00004-of-00006.bin",
|
204 |
+
"model.layers.26.self_attn.o_proj.weight": "pytorch_model-00004-of-00006.bin",
|
205 |
+
"model.layers.26.self_attn.q_proj.weight": "pytorch_model-00004-of-00006.bin",
|
206 |
+
"model.layers.26.self_attn.rotary_emb.inv_freq": "pytorch_model-00004-of-00006.bin",
|
207 |
+
"model.layers.26.self_attn.v_proj.weight": "pytorch_model-00004-of-00006.bin",
|
208 |
+
"model.layers.27.input_layernorm.weight": "pytorch_model-00004-of-00006.bin",
|
209 |
+
"model.layers.27.mlp.down_proj.weight": "pytorch_model-00004-of-00006.bin",
|
210 |
+
"model.layers.27.mlp.gate_proj.weight": "pytorch_model-00004-of-00006.bin",
|
211 |
+
"model.layers.27.mlp.up_proj.weight": "pytorch_model-00004-of-00006.bin",
|
212 |
+
"model.layers.27.post_attention_layernorm.weight": "pytorch_model-00004-of-00006.bin",
|
213 |
+
"model.layers.27.self_attn.k_proj.weight": "pytorch_model-00004-of-00006.bin",
|
214 |
+
"model.layers.27.self_attn.o_proj.weight": "pytorch_model-00004-of-00006.bin",
|
215 |
+
"model.layers.27.self_attn.q_proj.weight": "pytorch_model-00004-of-00006.bin",
|
216 |
+
"model.layers.27.self_attn.rotary_emb.inv_freq": "pytorch_model-00004-of-00006.bin",
|
217 |
+
"model.layers.27.self_attn.v_proj.weight": "pytorch_model-00004-of-00006.bin",
|
218 |
+
"model.layers.28.input_layernorm.weight": "pytorch_model-00004-of-00006.bin",
|
219 |
+
"model.layers.28.mlp.down_proj.weight": "pytorch_model-00004-of-00006.bin",
|
220 |
+
"model.layers.28.mlp.gate_proj.weight": "pytorch_model-00004-of-00006.bin",
|
221 |
+
"model.layers.28.mlp.up_proj.weight": "pytorch_model-00004-of-00006.bin",
|
222 |
+
"model.layers.28.post_attention_layernorm.weight": "pytorch_model-00004-of-00006.bin",
|
223 |
+
"model.layers.28.self_attn.k_proj.weight": "pytorch_model-00004-of-00006.bin",
|
224 |
+
"model.layers.28.self_attn.o_proj.weight": "pytorch_model-00004-of-00006.bin",
|
225 |
+
"model.layers.28.self_attn.q_proj.weight": "pytorch_model-00004-of-00006.bin",
|
226 |
+
"model.layers.28.self_attn.rotary_emb.inv_freq": "pytorch_model-00004-of-00006.bin",
|
227 |
+
"model.layers.28.self_attn.v_proj.weight": "pytorch_model-00004-of-00006.bin",
|
228 |
+
"model.layers.29.input_layernorm.weight": "pytorch_model-00004-of-00006.bin",
|
229 |
+
"model.layers.29.mlp.down_proj.weight": "pytorch_model-00004-of-00006.bin",
|
230 |
+
"model.layers.29.mlp.gate_proj.weight": "pytorch_model-00004-of-00006.bin",
|
231 |
+
"model.layers.29.mlp.up_proj.weight": "pytorch_model-00004-of-00006.bin",
|
232 |
+
"model.layers.29.post_attention_layernorm.weight": "pytorch_model-00004-of-00006.bin",
|
233 |
+
"model.layers.29.self_attn.k_proj.weight": "pytorch_model-00004-of-00006.bin",
|
234 |
+
"model.layers.29.self_attn.o_proj.weight": "pytorch_model-00004-of-00006.bin",
|
235 |
+
"model.layers.29.self_attn.q_proj.weight": "pytorch_model-00004-of-00006.bin",
|
236 |
+
"model.layers.29.self_attn.rotary_emb.inv_freq": "pytorch_model-00004-of-00006.bin",
|
237 |
+
"model.layers.29.self_attn.v_proj.weight": "pytorch_model-00004-of-00006.bin",
|
238 |
+
"model.layers.3.input_layernorm.weight": "pytorch_model-00001-of-00006.bin",
|
239 |
+
"model.layers.3.mlp.down_proj.weight": "pytorch_model-00001-of-00006.bin",
|
240 |
+
"model.layers.3.mlp.gate_proj.weight": "pytorch_model-00001-of-00006.bin",
|
241 |
+
"model.layers.3.mlp.up_proj.weight": "pytorch_model-00001-of-00006.bin",
|
242 |
+
"model.layers.3.post_attention_layernorm.weight": "pytorch_model-00001-of-00006.bin",
|
243 |
+
"model.layers.3.self_attn.k_proj.weight": "pytorch_model-00001-of-00006.bin",
|
244 |
+
"model.layers.3.self_attn.o_proj.weight": "pytorch_model-00001-of-00006.bin",
|
245 |
+
"model.layers.3.self_attn.q_proj.weight": "pytorch_model-00001-of-00006.bin",
|
246 |
+
"model.layers.3.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00006.bin",
|
247 |
+
"model.layers.3.self_attn.v_proj.weight": "pytorch_model-00001-of-00006.bin",
|
248 |
+
"model.layers.30.input_layernorm.weight": "pytorch_model-00004-of-00006.bin",
|
249 |
+
"model.layers.30.mlp.down_proj.weight": "pytorch_model-00004-of-00006.bin",
|
250 |
+
"model.layers.30.mlp.gate_proj.weight": "pytorch_model-00004-of-00006.bin",
|
251 |
+
"model.layers.30.mlp.up_proj.weight": "pytorch_model-00004-of-00006.bin",
|
252 |
+
"model.layers.30.post_attention_layernorm.weight": "pytorch_model-00004-of-00006.bin",
|
253 |
+
"model.layers.30.self_attn.k_proj.weight": "pytorch_model-00005-of-00006.bin",
|
254 |
+
"model.layers.30.self_attn.o_proj.weight": "pytorch_model-00005-of-00006.bin",
|
255 |
+
"model.layers.30.self_attn.q_proj.weight": "pytorch_model-00005-of-00006.bin",
|
256 |
+
"model.layers.30.self_attn.rotary_emb.inv_freq": "pytorch_model-00005-of-00006.bin",
|
257 |
+
"model.layers.30.self_attn.v_proj.weight": "pytorch_model-00005-of-00006.bin",
|
258 |
+
"model.layers.31.input_layernorm.weight": "pytorch_model-00005-of-00006.bin",
|
259 |
+
"model.layers.31.mlp.down_proj.weight": "pytorch_model-00005-of-00006.bin",
|
260 |
+
"model.layers.31.mlp.gate_proj.weight": "pytorch_model-00005-of-00006.bin",
|
261 |
+
"model.layers.31.mlp.up_proj.weight": "pytorch_model-00005-of-00006.bin",
|
262 |
+
"model.layers.31.post_attention_layernorm.weight": "pytorch_model-00005-of-00006.bin",
|
263 |
+
"model.layers.31.self_attn.k_proj.weight": "pytorch_model-00005-of-00006.bin",
|
264 |
+
"model.layers.31.self_attn.o_proj.weight": "pytorch_model-00005-of-00006.bin",
|
265 |
+
"model.layers.31.self_attn.q_proj.weight": "pytorch_model-00005-of-00006.bin",
|
266 |
+
"model.layers.31.self_attn.rotary_emb.inv_freq": "pytorch_model-00005-of-00006.bin",
|
267 |
+
"model.layers.31.self_attn.v_proj.weight": "pytorch_model-00005-of-00006.bin",
|
268 |
+
"model.layers.32.input_layernorm.weight": "pytorch_model-00005-of-00006.bin",
|
269 |
+
"model.layers.32.mlp.down_proj.weight": "pytorch_model-00005-of-00006.bin",
|
270 |
+
"model.layers.32.mlp.gate_proj.weight": "pytorch_model-00005-of-00006.bin",
|
271 |
+
"model.layers.32.mlp.up_proj.weight": "pytorch_model-00005-of-00006.bin",
|
272 |
+
"model.layers.32.post_attention_layernorm.weight": "pytorch_model-00005-of-00006.bin",
|
273 |
+
"model.layers.32.self_attn.k_proj.weight": "pytorch_model-00005-of-00006.bin",
|
274 |
+
"model.layers.32.self_attn.o_proj.weight": "pytorch_model-00005-of-00006.bin",
|
275 |
+
"model.layers.32.self_attn.q_proj.weight": "pytorch_model-00005-of-00006.bin",
|
276 |
+
"model.layers.32.self_attn.rotary_emb.inv_freq": "pytorch_model-00005-of-00006.bin",
|
277 |
+
"model.layers.32.self_attn.v_proj.weight": "pytorch_model-00005-of-00006.bin",
|
278 |
+
"model.layers.33.input_layernorm.weight": "pytorch_model-00005-of-00006.bin",
|
279 |
+
"model.layers.33.mlp.down_proj.weight": "pytorch_model-00005-of-00006.bin",
|
280 |
+
"model.layers.33.mlp.gate_proj.weight": "pytorch_model-00005-of-00006.bin",
|
281 |
+
"model.layers.33.mlp.up_proj.weight": "pytorch_model-00005-of-00006.bin",
|
282 |
+
"model.layers.33.post_attention_layernorm.weight": "pytorch_model-00005-of-00006.bin",
|
283 |
+
"model.layers.33.self_attn.k_proj.weight": "pytorch_model-00005-of-00006.bin",
|
284 |
+
"model.layers.33.self_attn.o_proj.weight": "pytorch_model-00005-of-00006.bin",
|
285 |
+
"model.layers.33.self_attn.q_proj.weight": "pytorch_model-00005-of-00006.bin",
|
286 |
+
"model.layers.33.self_attn.rotary_emb.inv_freq": "pytorch_model-00005-of-00006.bin",
|
287 |
+
"model.layers.33.self_attn.v_proj.weight": "pytorch_model-00005-of-00006.bin",
|
288 |
+
"model.layers.34.input_layernorm.weight": "pytorch_model-00005-of-00006.bin",
|
289 |
+
"model.layers.34.mlp.down_proj.weight": "pytorch_model-00005-of-00006.bin",
|
290 |
+
"model.layers.34.mlp.gate_proj.weight": "pytorch_model-00005-of-00006.bin",
|
291 |
+
"model.layers.34.mlp.up_proj.weight": "pytorch_model-00005-of-00006.bin",
|
292 |
+
"model.layers.34.post_attention_layernorm.weight": "pytorch_model-00005-of-00006.bin",
|
293 |
+
"model.layers.34.self_attn.k_proj.weight": "pytorch_model-00005-of-00006.bin",
|
294 |
+
"model.layers.34.self_attn.o_proj.weight": "pytorch_model-00005-of-00006.bin",
|
295 |
+
"model.layers.34.self_attn.q_proj.weight": "pytorch_model-00005-of-00006.bin",
|
296 |
+
"model.layers.34.self_attn.rotary_emb.inv_freq": "pytorch_model-00005-of-00006.bin",
|
297 |
+
"model.layers.34.self_attn.v_proj.weight": "pytorch_model-00005-of-00006.bin",
|
298 |
+
"model.layers.35.input_layernorm.weight": "pytorch_model-00005-of-00006.bin",
|
299 |
+
"model.layers.35.mlp.down_proj.weight": "pytorch_model-00005-of-00006.bin",
|
300 |
+
"model.layers.35.mlp.gate_proj.weight": "pytorch_model-00005-of-00006.bin",
|
301 |
+
"model.layers.35.mlp.up_proj.weight": "pytorch_model-00005-of-00006.bin",
|
302 |
+
"model.layers.35.post_attention_layernorm.weight": "pytorch_model-00005-of-00006.bin",
|
303 |
+
"model.layers.35.self_attn.k_proj.weight": "pytorch_model-00005-of-00006.bin",
|
304 |
+
"model.layers.35.self_attn.o_proj.weight": "pytorch_model-00005-of-00006.bin",
|
305 |
+
"model.layers.35.self_attn.q_proj.weight": "pytorch_model-00005-of-00006.bin",
|
306 |
+
"model.layers.35.self_attn.rotary_emb.inv_freq": "pytorch_model-00005-of-00006.bin",
|
307 |
+
"model.layers.35.self_attn.v_proj.weight": "pytorch_model-00005-of-00006.bin",
|
308 |
+
"model.layers.36.input_layernorm.weight": "pytorch_model-00005-of-00006.bin",
|
309 |
+
"model.layers.36.mlp.down_proj.weight": "pytorch_model-00005-of-00006.bin",
|
310 |
+
"model.layers.36.mlp.gate_proj.weight": "pytorch_model-00005-of-00006.bin",
|
311 |
+
"model.layers.36.mlp.up_proj.weight": "pytorch_model-00005-of-00006.bin",
|
312 |
+
"model.layers.36.post_attention_layernorm.weight": "pytorch_model-00005-of-00006.bin",
|
313 |
+
"model.layers.36.self_attn.k_proj.weight": "pytorch_model-00005-of-00006.bin",
|
314 |
+
"model.layers.36.self_attn.o_proj.weight": "pytorch_model-00005-of-00006.bin",
|
315 |
+
"model.layers.36.self_attn.q_proj.weight": "pytorch_model-00005-of-00006.bin",
|
316 |
+
"model.layers.36.self_attn.rotary_emb.inv_freq": "pytorch_model-00005-of-00006.bin",
|
317 |
+
"model.layers.36.self_attn.v_proj.weight": "pytorch_model-00005-of-00006.bin",
|
318 |
+
"model.layers.37.input_layernorm.weight": "pytorch_model-00005-of-00006.bin",
|
319 |
+
"model.layers.37.mlp.down_proj.weight": "pytorch_model-00005-of-00006.bin",
|
320 |
+
"model.layers.37.mlp.gate_proj.weight": "pytorch_model-00005-of-00006.bin",
|
321 |
+
"model.layers.37.mlp.up_proj.weight": "pytorch_model-00005-of-00006.bin",
|
322 |
+
"model.layers.37.post_attention_layernorm.weight": "pytorch_model-00005-of-00006.bin",
|
323 |
+
"model.layers.37.self_attn.k_proj.weight": "pytorch_model-00005-of-00006.bin",
|
324 |
+
"model.layers.37.self_attn.o_proj.weight": "pytorch_model-00005-of-00006.bin",
|
325 |
+
"model.layers.37.self_attn.q_proj.weight": "pytorch_model-00005-of-00006.bin",
|
326 |
+
"model.layers.37.self_attn.rotary_emb.inv_freq": "pytorch_model-00005-of-00006.bin",
|
327 |
+
"model.layers.37.self_attn.v_proj.weight": "pytorch_model-00005-of-00006.bin",
|
328 |
+
"model.layers.38.input_layernorm.weight": "pytorch_model-00006-of-00006.bin",
|
329 |
+
"model.layers.38.mlp.down_proj.weight": "pytorch_model-00006-of-00006.bin",
|
330 |
+
"model.layers.38.mlp.gate_proj.weight": "pytorch_model-00005-of-00006.bin",
|
331 |
+
"model.layers.38.mlp.up_proj.weight": "pytorch_model-00005-of-00006.bin",
|
332 |
+
"model.layers.38.post_attention_layernorm.weight": "pytorch_model-00006-of-00006.bin",
|
333 |
+
"model.layers.38.self_attn.k_proj.weight": "pytorch_model-00006-of-00006.bin",
|
334 |
+
"model.layers.38.self_attn.o_proj.weight": "pytorch_model-00006-of-00006.bin",
|
335 |
+
"model.layers.38.self_attn.q_proj.weight": "pytorch_model-00006-of-00006.bin",
|
336 |
+
"model.layers.38.self_attn.rotary_emb.inv_freq": "pytorch_model-00006-of-00006.bin",
|
337 |
+
"model.layers.38.self_attn.v_proj.weight": "pytorch_model-00006-of-00006.bin",
|
338 |
+
"model.layers.39.input_layernorm.weight": "pytorch_model-00006-of-00006.bin",
|
339 |
+
"model.layers.39.mlp.down_proj.weight": "pytorch_model-00006-of-00006.bin",
|
340 |
+
"model.layers.39.mlp.gate_proj.weight": "pytorch_model-00006-of-00006.bin",
|
341 |
+
"model.layers.39.mlp.up_proj.weight": "pytorch_model-00006-of-00006.bin",
|
342 |
+
"model.layers.39.post_attention_layernorm.weight": "pytorch_model-00006-of-00006.bin",
|
343 |
+
"model.layers.39.self_attn.k_proj.weight": "pytorch_model-00006-of-00006.bin",
|
344 |
+
"model.layers.39.self_attn.o_proj.weight": "pytorch_model-00006-of-00006.bin",
|
345 |
+
"model.layers.39.self_attn.q_proj.weight": "pytorch_model-00006-of-00006.bin",
|
346 |
+
"model.layers.39.self_attn.rotary_emb.inv_freq": "pytorch_model-00006-of-00006.bin",
|
347 |
+
"model.layers.39.self_attn.v_proj.weight": "pytorch_model-00006-of-00006.bin",
|
348 |
+
"model.layers.4.input_layernorm.weight": "pytorch_model-00001-of-00006.bin",
|
349 |
+
"model.layers.4.mlp.down_proj.weight": "pytorch_model-00001-of-00006.bin",
|
350 |
+
"model.layers.4.mlp.gate_proj.weight": "pytorch_model-00001-of-00006.bin",
|
351 |
+
"model.layers.4.mlp.up_proj.weight": "pytorch_model-00001-of-00006.bin",
|
352 |
+
"model.layers.4.post_attention_layernorm.weight": "pytorch_model-00001-of-00006.bin",
|
353 |
+
"model.layers.4.self_attn.k_proj.weight": "pytorch_model-00001-of-00006.bin",
|
354 |
+
"model.layers.4.self_attn.o_proj.weight": "pytorch_model-00001-of-00006.bin",
|
355 |
+
"model.layers.4.self_attn.q_proj.weight": "pytorch_model-00001-of-00006.bin",
|
356 |
+
"model.layers.4.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00006.bin",
|
357 |
+
"model.layers.4.self_attn.v_proj.weight": "pytorch_model-00001-of-00006.bin",
|
358 |
+
"model.layers.5.input_layernorm.weight": "pytorch_model-00001-of-00006.bin",
|
359 |
+
"model.layers.5.mlp.down_proj.weight": "pytorch_model-00001-of-00006.bin",
|
360 |
+
"model.layers.5.mlp.gate_proj.weight": "pytorch_model-00001-of-00006.bin",
|
361 |
+
"model.layers.5.mlp.up_proj.weight": "pytorch_model-00001-of-00006.bin",
|
362 |
+
"model.layers.5.post_attention_layernorm.weight": "pytorch_model-00001-of-00006.bin",
|
363 |
+
"model.layers.5.self_attn.k_proj.weight": "pytorch_model-00001-of-00006.bin",
|
364 |
+
"model.layers.5.self_attn.o_proj.weight": "pytorch_model-00001-of-00006.bin",
|
365 |
+
"model.layers.5.self_attn.q_proj.weight": "pytorch_model-00001-of-00006.bin",
|
366 |
+
"model.layers.5.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00006.bin",
|
367 |
+
"model.layers.5.self_attn.v_proj.weight": "pytorch_model-00001-of-00006.bin",
|
368 |
+
"model.layers.6.input_layernorm.weight": "pytorch_model-00001-of-00006.bin",
|
369 |
+
"model.layers.6.mlp.down_proj.weight": "pytorch_model-00001-of-00006.bin",
|
370 |
+
"model.layers.6.mlp.gate_proj.weight": "pytorch_model-00001-of-00006.bin",
|
371 |
+
"model.layers.6.mlp.up_proj.weight": "pytorch_model-00001-of-00006.bin",
|
372 |
+
"model.layers.6.post_attention_layernorm.weight": "pytorch_model-00001-of-00006.bin",
|
373 |
+
"model.layers.6.self_attn.k_proj.weight": "pytorch_model-00001-of-00006.bin",
|
374 |
+
"model.layers.6.self_attn.o_proj.weight": "pytorch_model-00001-of-00006.bin",
|
375 |
+
"model.layers.6.self_attn.q_proj.weight": "pytorch_model-00001-of-00006.bin",
|
376 |
+
"model.layers.6.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00006.bin",
|
377 |
+
"model.layers.6.self_attn.v_proj.weight": "pytorch_model-00001-of-00006.bin",
|
378 |
+
"model.layers.7.input_layernorm.weight": "pytorch_model-00002-of-00006.bin",
|
379 |
+
"model.layers.7.mlp.down_proj.weight": "pytorch_model-00002-of-00006.bin",
|
380 |
+
"model.layers.7.mlp.gate_proj.weight": "pytorch_model-00001-of-00006.bin",
|
381 |
+
"model.layers.7.mlp.up_proj.weight": "pytorch_model-00002-of-00006.bin",
|
382 |
+
"model.layers.7.post_attention_layernorm.weight": "pytorch_model-00002-of-00006.bin",
|
383 |
+
"model.layers.7.self_attn.k_proj.weight": "pytorch_model-00002-of-00006.bin",
|
384 |
+
"model.layers.7.self_attn.o_proj.weight": "pytorch_model-00002-of-00006.bin",
|
385 |
+
"model.layers.7.self_attn.q_proj.weight": "pytorch_model-00002-of-00006.bin",
|
386 |
+
"model.layers.7.self_attn.rotary_emb.inv_freq": "pytorch_model-00002-of-00006.bin",
|
387 |
+
"model.layers.7.self_attn.v_proj.weight": "pytorch_model-00002-of-00006.bin",
|
388 |
+
"model.layers.8.input_layernorm.weight": "pytorch_model-00002-of-00006.bin",
|
389 |
+
"model.layers.8.mlp.down_proj.weight": "pytorch_model-00002-of-00006.bin",
|
390 |
+
"model.layers.8.mlp.gate_proj.weight": "pytorch_model-00002-of-00006.bin",
|
391 |
+
"model.layers.8.mlp.up_proj.weight": "pytorch_model-00002-of-00006.bin",
|
392 |
+
"model.layers.8.post_attention_layernorm.weight": "pytorch_model-00002-of-00006.bin",
|
393 |
+
"model.layers.8.self_attn.k_proj.weight": "pytorch_model-00002-of-00006.bin",
|
394 |
+
"model.layers.8.self_attn.o_proj.weight": "pytorch_model-00002-of-00006.bin",
|
395 |
+
"model.layers.8.self_attn.q_proj.weight": "pytorch_model-00002-of-00006.bin",
|
396 |
+
"model.layers.8.self_attn.rotary_emb.inv_freq": "pytorch_model-00002-of-00006.bin",
|
397 |
+
"model.layers.8.self_attn.v_proj.weight": "pytorch_model-00002-of-00006.bin",
|
398 |
+
"model.layers.9.input_layernorm.weight": "pytorch_model-00002-of-00006.bin",
|
399 |
+
"model.layers.9.mlp.down_proj.weight": "pytorch_model-00002-of-00006.bin",
|
400 |
+
"model.layers.9.mlp.gate_proj.weight": "pytorch_model-00002-of-00006.bin",
|
401 |
+
"model.layers.9.mlp.up_proj.weight": "pytorch_model-00002-of-00006.bin",
|
402 |
+
"model.layers.9.post_attention_layernorm.weight": "pytorch_model-00002-of-00006.bin",
|
403 |
+
"model.layers.9.self_attn.k_proj.weight": "pytorch_model-00002-of-00006.bin",
|
404 |
+
"model.layers.9.self_attn.o_proj.weight": "pytorch_model-00002-of-00006.bin",
|
405 |
+
"model.layers.9.self_attn.q_proj.weight": "pytorch_model-00002-of-00006.bin",
|
406 |
+
"model.layers.9.self_attn.rotary_emb.inv_freq": "pytorch_model-00002-of-00006.bin",
|
407 |
+
"model.layers.9.self_attn.v_proj.weight": "pytorch_model-00002-of-00006.bin",
|
408 |
+
"model.norm.weight": "pytorch_model-00006-of-00006.bin"
|
409 |
+
}
|
410 |
+
}
|
special_tokens_map.json
ADDED
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token": {
|
3 |
+
"content": "<s>",
|
4 |
+
"lstrip": false,
|
5 |
+
"normalized": true,
|
6 |
+
"rstrip": false,
|
7 |
+
"single_word": false
|
8 |
+
},
|
9 |
+
"eos_token": {
|
10 |
+
"content": "</s>",
|
11 |
+
"lstrip": false,
|
12 |
+
"normalized": true,
|
13 |
+
"rstrip": false,
|
14 |
+
"single_word": false
|
15 |
+
},
|
16 |
+
"pad_token": "[PAD]",
|
17 |
+
"unk_token": {
|
18 |
+
"content": "<unk>",
|
19 |
+
"lstrip": false,
|
20 |
+
"normalized": true,
|
21 |
+
"rstrip": false,
|
22 |
+
"single_word": false
|
23 |
+
}
|
24 |
+
}
|
tokenizer.model
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9e556afd44213b6bd1be2b850ebbbd98f5481437a8021afaf58ee7fb1818d347
|
3 |
+
size 499723
|
tokenizer_config.json
ADDED
@@ -0,0 +1,35 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"add_bos_token": true,
|
3 |
+
"add_eos_token": false,
|
4 |
+
"bos_token": {
|
5 |
+
"__type": "AddedToken",
|
6 |
+
"content": "<s>",
|
7 |
+
"lstrip": false,
|
8 |
+
"normalized": true,
|
9 |
+
"rstrip": false,
|
10 |
+
"single_word": false
|
11 |
+
},
|
12 |
+
"clean_up_tokenization_spaces": false,
|
13 |
+
"eos_token": {
|
14 |
+
"__type": "AddedToken",
|
15 |
+
"content": "</s>",
|
16 |
+
"lstrip": false,
|
17 |
+
"normalized": true,
|
18 |
+
"rstrip": false,
|
19 |
+
"single_word": false
|
20 |
+
},
|
21 |
+
"model_max_length": 2048,
|
22 |
+
"pad_token": null,
|
23 |
+
"padding_side": "left",
|
24 |
+
"sp_model_kwargs": {},
|
25 |
+
"tokenizer_class": "LlamaTokenizer",
|
26 |
+
"unk_token": {
|
27 |
+
"__type": "AddedToken",
|
28 |
+
"content": "<unk>",
|
29 |
+
"lstrip": false,
|
30 |
+
"normalized": true,
|
31 |
+
"rstrip": false,
|
32 |
+
"single_word": false
|
33 |
+
},
|
34 |
+
"use_fast": true
|
35 |
+
}
|