Lawrence-cj
commited on
Create README.md
Browse files
README.md
ADDED
@@ -0,0 +1,157 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: sana
|
3 |
+
tags:
|
4 |
+
- text-to-image
|
5 |
+
- Sana
|
6 |
+
- 1024px_based_image_size
|
7 |
+
- Multi-language
|
8 |
+
language:
|
9 |
+
- en
|
10 |
+
- zh
|
11 |
+
base_model:
|
12 |
+
- Efficient-Large-Model/Sana_1600M_1024px_MultiLing_diffusers
|
13 |
+
pipeline_tag: text-to-image
|
14 |
+
---
|
15 |
+
<p align="center" style="border-radius: 10px">
|
16 |
+
<img src="https://raw.githubusercontent.com/NVlabs/Sana/refs/heads/main/asset/logo.png" width="35%" alt="logo"/>
|
17 |
+
</p>
|
18 |
+
|
19 |
+
<div style="display:flex;justify-content: center">
|
20 |
+
<a href="https://huggingface.co/collections/Efficient-Large-Model/sana-673efba2a57ed99843f11f9e"><img src="https://img.shields.io/static/v1?label=Demo&message=Huggingface&color=yellow"></a>  
|
21 |
+
<a href="https://github.com/NVlabs/Sana"><img src="https://img.shields.io/static/v1?label=Code&message=Github&color=blue&logo=github"></a>  
|
22 |
+
<a href="https://nvlabs.github.io/Sana/"><img src="https://img.shields.io/static/v1?label=Project&message=Github&color=blue&logo=github-pages"></a>  
|
23 |
+
<a href="https://hanlab.mit.edu/projects/sana/"><img src="https://img.shields.io/static/v1?label=Page&message=MIT&color=darkred&logo=github-pages"></a>  
|
24 |
+
<a href="https://arxiv.org/abs/2410.10629"><img src="https://img.shields.io/static/v1?label=Arxiv&message=Sana&color=red&logo=arxiv"></a>  
|
25 |
+
<a href="https://nv-sana.mit.edu/"><img src="https://img.shields.io/static/v1?label=Demo&message=MIT&color=yellow"></a>  
|
26 |
+
<a href="https://discord.gg/rde6eaE5Ta"><img src="https://img.shields.io/static/v1?label=Discuss&message=Discord&color=purple&logo=discord"></a>  
|
27 |
+
</div>
|
28 |
+
|
29 |
+
# Model card
|
30 |
+
|
31 |
+
We introduce **Sana**, a text-to-image framework that can efficiently generate images up to 4096 × 4096 resolution.
|
32 |
+
Sana can synthesize high-resolution, high-quality images with strong text-image alignment at a remarkably fast speed, deployable on laptop GPU.
|
33 |
+
|
34 |
+
Source code is available at https://github.com/NVlabs/Sana.
|
35 |
+
|
36 |
+
# Note
|
37 |
+
- Weakness in Complex Scene Creation: Due to limitation of data, our model has **limited** capabilities in generating complex scenes, text, and human hands.
|
38 |
+
- **Enhancing Capabilities**: The model’s performance can be improved by **increasing the complexity and length of prompts**. Below are some examples of **prompts and samples**.
|
39 |
+
|
40 |
+
### Model Description
|
41 |
+
|
42 |
+
- **Developed by:** NVIDIA, Sana
|
43 |
+
- **Model type:** Linear-Diffusion-Transformer-based text-to-image generative model
|
44 |
+
- **Model size:** 1648M parameters
|
45 |
+
- **Model resolution:** This model is developed to generate 1024px based images with multi-scale heigh and width.
|
46 |
+
- **License:** [NSCL v2-custom](./LICENSE.txt). Governing Terms: NVIDIA License. Additional Information: [Gemma Terms of Use | Google AI for Developers](https://ai.google.dev/gemma/terms) for Gemma-2-2B-IT, [Gemma Prohibited Use Policy | Google AI for Developers](https://ai.google.dev/gemma/prohibited_use_policy).
|
47 |
+
- **Model Description:** This is a model that can be used to generate and modify images based on text prompts.
|
48 |
+
It is a Linear Diffusion Transformer that uses one fixed, pretrained text encoders ([Gemma2-2B-IT](https://huggingface.co/google/gemma-2-2b-it))
|
49 |
+
and one 32x spatial-compressed latent feature encoder ([DC-AE](https://hanlab.mit.edu/projects/dc-ae)).
|
50 |
+
- **Special:** This model is fine-tuned from the base model [Efficient-Large-Model/Sana_1600M_1024px_BF16](https://huggingface.co/Efficient-Large-Model/Sana_1600M_1024px_BF16) and it supports Emoji, Chinese and English and all mixed prompts.
|
51 |
+
- **Resources for more information:** Check out our [GitHub Repository](https://github.com/NVlabs/Sana) and the [Sana report on arXiv](https://arxiv.org/abs/2410.10629).
|
52 |
+
|
53 |
+
### Model Sources
|
54 |
+
|
55 |
+
For research purposes, we recommend our `generative-models` Github repository (https://github.com/NVlabs/Sana),
|
56 |
+
which is more suitable for both training and inference and for which most advanced diffusion sampler like Flow-DPM-Solver is integrated.
|
57 |
+
[MIT Han-Lab](https://nv-sana.mit.edu/) provides free Sana inference.
|
58 |
+
- **Repository:** https://github.com/NVlabs/Sana
|
59 |
+
|
60 |
+
### 🧨 Diffusers
|
61 |
+
|
62 |
+
### 1. How to use `SanaPipeline` with `🧨diffusers`
|
63 |
+
|
64 |
+
> \[!IMPORTANT\]
|
65 |
+
> Make sure to specify `pipe.transformer` to default `torch_dtype` and `variant` according to [Model Card](asset/docs/model_zoo.md).
|
66 |
+
>
|
67 |
+
> Set `pipe.text_encoder` to BF16 and `pipe.vae` to FP32 or BF16. For more info, [docs](https://huggingface.co/docs/diffusers/main/en/api/pipelines/sana#sanapipeline) are here.
|
68 |
+
|
69 |
+
```python
|
70 |
+
# run `pip install git+https://github.com/huggingface/diffusers` before use Sana in diffusers
|
71 |
+
import torch
|
72 |
+
from diffusers import SanaPipeline
|
73 |
+
|
74 |
+
pipe = SanaPipeline.from_pretrained(
|
75 |
+
"Efficient-Large-Model/Sana_1600M_1024px_MultiLing_diffusers",
|
76 |
+
variant="fp16",
|
77 |
+
torch_dtype=torch.float16,
|
78 |
+
)
|
79 |
+
pipe.to("cuda")
|
80 |
+
|
81 |
+
pipe.vae.to(torch.bfloat16)
|
82 |
+
pipe.text_encoder.to(torch.bfloat16)
|
83 |
+
|
84 |
+
prompt = 'A cute 🐼 eating 🎋, ink drawing style'
|
85 |
+
image = pipe(
|
86 |
+
prompt=prompt,
|
87 |
+
height=1024,
|
88 |
+
width=1024,
|
89 |
+
guidance_scale=4.5,
|
90 |
+
num_inference_steps=20,
|
91 |
+
generator=torch.Generator(device="cuda").manual_seed(42),
|
92 |
+
)[0]
|
93 |
+
|
94 |
+
image[0].save("sana.png")
|
95 |
+
```
|
96 |
+
|
97 |
+
### 2. How to use `SanaPAGPipeline` with `🧨diffusers`
|
98 |
+
|
99 |
+
```python
|
100 |
+
# run `pip install git+https://github.com/huggingface/diffusers` before use Sana in diffusers
|
101 |
+
import torch
|
102 |
+
from diffusers import SanaPAGPipeline
|
103 |
+
|
104 |
+
pipe = SanaPAGPipeline.from_pretrained(
|
105 |
+
"Efficient-Large-Model/Sana_1600M_1024px_MultiLing_diffusers",
|
106 |
+
variant="fp16",
|
107 |
+
torch_dtype=torch.float16,
|
108 |
+
pag_applied_layers="transformer_blocks.8",
|
109 |
+
)
|
110 |
+
pipe.to("cuda")
|
111 |
+
|
112 |
+
pipe.text_encoder.to(torch.bfloat16)
|
113 |
+
pipe.vae.to(torch.bfloat16)
|
114 |
+
|
115 |
+
prompt = 'A cute 🐼 eating 🎋, ink drawing style'
|
116 |
+
image = pipe(
|
117 |
+
prompt=prompt,
|
118 |
+
height=1024,
|
119 |
+
width=1024,
|
120 |
+
guidance_scale=5.0,
|
121 |
+
pag_scale=2.0,
|
122 |
+
num_inference_steps=20,
|
123 |
+
generator=torch.Generator(device="cuda").manual_seed(42),
|
124 |
+
)[0]
|
125 |
+
image[0].save('sana.png')
|
126 |
+
```
|
127 |
+
|
128 |
+
## Uses
|
129 |
+
|
130 |
+
### Direct Use
|
131 |
+
|
132 |
+
The model is intended for research purposes only. Possible research areas and tasks include
|
133 |
+
|
134 |
+
- Generation of artworks and use in design and other artistic processes.
|
135 |
+
- Applications in educational or creative tools.
|
136 |
+
- Research on generative models.
|
137 |
+
- Safe deployment of models which have the potential to generate harmful content.
|
138 |
+
|
139 |
+
- Probing and understanding the limitations and biases of generative models.
|
140 |
+
|
141 |
+
Excluded uses are described below.
|
142 |
+
|
143 |
+
### Out-of-Scope Use
|
144 |
+
|
145 |
+
The model was not trained to be factual or true representations of people or events, and therefore using the model to generate such content is out-of-scope for the abilities of this model.
|
146 |
+
|
147 |
+
## Limitations and Bias
|
148 |
+
|
149 |
+
### Limitations
|
150 |
+
|
151 |
+
- The model does not achieve perfect photorealism
|
152 |
+
- The model cannot render complex legible text
|
153 |
+
- fingers, .etc in general may not be generated properly.
|
154 |
+
- The autoencoding part of the model is lossy.
|
155 |
+
|
156 |
+
### Bias
|
157 |
+
While the capabilities of image generation models are impressive, they can also reinforce or exacerbate social biases.
|