Lawrence-cj commited on
Commit
4dbf4b1
·
verified ·
1 Parent(s): a7483d0

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +157 -0
README.md ADDED
@@ -0,0 +1,157 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: sana
3
+ tags:
4
+ - text-to-image
5
+ - Sana
6
+ - 1024px_based_image_size
7
+ - Multi-language
8
+ language:
9
+ - en
10
+ - zh
11
+ base_model:
12
+ - Efficient-Large-Model/Sana_1600M_1024px_MultiLing_diffusers
13
+ pipeline_tag: text-to-image
14
+ ---
15
+ <p align="center" style="border-radius: 10px">
16
+ <img src="https://raw.githubusercontent.com/NVlabs/Sana/refs/heads/main/asset/logo.png" width="35%" alt="logo"/>
17
+ </p>
18
+
19
+ <div style="display:flex;justify-content: center">
20
+ <a href="https://huggingface.co/collections/Efficient-Large-Model/sana-673efba2a57ed99843f11f9e"><img src="https://img.shields.io/static/v1?label=Demo&message=Huggingface&color=yellow"></a> &ensp;
21
+ <a href="https://github.com/NVlabs/Sana"><img src="https://img.shields.io/static/v1?label=Code&message=Github&color=blue&logo=github"></a> &ensp;
22
+ <a href="https://nvlabs.github.io/Sana/"><img src="https://img.shields.io/static/v1?label=Project&message=Github&color=blue&logo=github-pages"></a> &ensp;
23
+ <a href="https://hanlab.mit.edu/projects/sana/"><img src="https://img.shields.io/static/v1?label=Page&message=MIT&color=darkred&logo=github-pages"></a> &ensp;
24
+ <a href="https://arxiv.org/abs/2410.10629"><img src="https://img.shields.io/static/v1?label=Arxiv&message=Sana&color=red&logo=arxiv"></a> &ensp;
25
+ <a href="https://nv-sana.mit.edu/"><img src="https://img.shields.io/static/v1?label=Demo&message=MIT&color=yellow"></a> &ensp;
26
+ <a href="https://discord.gg/rde6eaE5Ta"><img src="https://img.shields.io/static/v1?label=Discuss&message=Discord&color=purple&logo=discord"></a> &ensp;
27
+ </div>
28
+
29
+ # Model card
30
+
31
+ We introduce **Sana**, a text-to-image framework that can efficiently generate images up to 4096 × 4096 resolution.
32
+ Sana can synthesize high-resolution, high-quality images with strong text-image alignment at a remarkably fast speed, deployable on laptop GPU.
33
+
34
+ Source code is available at https://github.com/NVlabs/Sana.
35
+
36
+ # Note
37
+ - Weakness in Complex Scene Creation: Due to limitation of data, our model has **limited** capabilities in generating complex scenes, text, and human hands.
38
+ - **Enhancing Capabilities**: The model’s performance can be improved by **increasing the complexity and length of prompts**. Below are some examples of **prompts and samples**.
39
+
40
+ ### Model Description
41
+
42
+ - **Developed by:** NVIDIA, Sana
43
+ - **Model type:** Linear-Diffusion-Transformer-based text-to-image generative model
44
+ - **Model size:** 1648M parameters
45
+ - **Model resolution:** This model is developed to generate 1024px based images with multi-scale heigh and width.
46
+ - **License:** [NSCL v2-custom](./LICENSE.txt). Governing Terms: NVIDIA License. Additional Information: [Gemma Terms of Use | Google AI for Developers](https://ai.google.dev/gemma/terms) for Gemma-2-2B-IT, [Gemma Prohibited Use Policy | Google AI for Developers](https://ai.google.dev/gemma/prohibited_use_policy).
47
+ - **Model Description:** This is a model that can be used to generate and modify images based on text prompts.
48
+ It is a Linear Diffusion Transformer that uses one fixed, pretrained text encoders ([Gemma2-2B-IT](https://huggingface.co/google/gemma-2-2b-it))
49
+ and one 32x spatial-compressed latent feature encoder ([DC-AE](https://hanlab.mit.edu/projects/dc-ae)).
50
+ - **Special:** This model is fine-tuned from the base model [Efficient-Large-Model/Sana_1600M_1024px_BF16](https://huggingface.co/Efficient-Large-Model/Sana_1600M_1024px_BF16) and it supports Emoji, Chinese and English and all mixed prompts.
51
+ - **Resources for more information:** Check out our [GitHub Repository](https://github.com/NVlabs/Sana) and the [Sana report on arXiv](https://arxiv.org/abs/2410.10629).
52
+
53
+ ### Model Sources
54
+
55
+ For research purposes, we recommend our `generative-models` Github repository (https://github.com/NVlabs/Sana),
56
+ which is more suitable for both training and inference and for which most advanced diffusion sampler like Flow-DPM-Solver is integrated.
57
+ [MIT Han-Lab](https://nv-sana.mit.edu/) provides free Sana inference.
58
+ - **Repository:** https://github.com/NVlabs/Sana
59
+
60
+ ### 🧨 Diffusers
61
+
62
+ ### 1. How to use `SanaPipeline` with `🧨diffusers`
63
+
64
+ > \[!IMPORTANT\]
65
+ > Make sure to specify `pipe.transformer` to default `torch_dtype` and `variant` according to [Model Card](asset/docs/model_zoo.md).
66
+ >
67
+ > Set `pipe.text_encoder` to BF16 and `pipe.vae` to FP32 or BF16. For more info, [docs](https://huggingface.co/docs/diffusers/main/en/api/pipelines/sana#sanapipeline) are here.
68
+
69
+ ```python
70
+ # run `pip install git+https://github.com/huggingface/diffusers` before use Sana in diffusers
71
+ import torch
72
+ from diffusers import SanaPipeline
73
+
74
+ pipe = SanaPipeline.from_pretrained(
75
+ "Efficient-Large-Model/Sana_1600M_1024px_MultiLing_diffusers",
76
+ variant="fp16",
77
+ torch_dtype=torch.float16,
78
+ )
79
+ pipe.to("cuda")
80
+
81
+ pipe.vae.to(torch.bfloat16)
82
+ pipe.text_encoder.to(torch.bfloat16)
83
+
84
+ prompt = 'A cute 🐼 eating 🎋, ink drawing style'
85
+ image = pipe(
86
+ prompt=prompt,
87
+ height=1024,
88
+ width=1024,
89
+ guidance_scale=4.5,
90
+ num_inference_steps=20,
91
+ generator=torch.Generator(device="cuda").manual_seed(42),
92
+ )[0]
93
+
94
+ image[0].save("sana.png")
95
+ ```
96
+
97
+ ### 2. How to use `SanaPAGPipeline` with `🧨diffusers`
98
+
99
+ ```python
100
+ # run `pip install git+https://github.com/huggingface/diffusers` before use Sana in diffusers
101
+ import torch
102
+ from diffusers import SanaPAGPipeline
103
+
104
+ pipe = SanaPAGPipeline.from_pretrained(
105
+ "Efficient-Large-Model/Sana_1600M_1024px_MultiLing_diffusers",
106
+ variant="fp16",
107
+ torch_dtype=torch.float16,
108
+ pag_applied_layers="transformer_blocks.8",
109
+ )
110
+ pipe.to("cuda")
111
+
112
+ pipe.text_encoder.to(torch.bfloat16)
113
+ pipe.vae.to(torch.bfloat16)
114
+
115
+ prompt = 'A cute 🐼 eating 🎋, ink drawing style'
116
+ image = pipe(
117
+ prompt=prompt,
118
+ height=1024,
119
+ width=1024,
120
+ guidance_scale=5.0,
121
+ pag_scale=2.0,
122
+ num_inference_steps=20,
123
+ generator=torch.Generator(device="cuda").manual_seed(42),
124
+ )[0]
125
+ image[0].save('sana.png')
126
+ ```
127
+
128
+ ## Uses
129
+
130
+ ### Direct Use
131
+
132
+ The model is intended for research purposes only. Possible research areas and tasks include
133
+
134
+ - Generation of artworks and use in design and other artistic processes.
135
+ - Applications in educational or creative tools.
136
+ - Research on generative models.
137
+ - Safe deployment of models which have the potential to generate harmful content.
138
+
139
+ - Probing and understanding the limitations and biases of generative models.
140
+
141
+ Excluded uses are described below.
142
+
143
+ ### Out-of-Scope Use
144
+
145
+ The model was not trained to be factual or true representations of people or events, and therefore using the model to generate such content is out-of-scope for the abilities of this model.
146
+
147
+ ## Limitations and Bias
148
+
149
+ ### Limitations
150
+
151
+ - The model does not achieve perfect photorealism
152
+ - The model cannot render complex legible text
153
+ - fingers, .etc in general may not be generated properly.
154
+ - The autoencoding part of the model is lossy.
155
+
156
+ ### Bias
157
+ While the capabilities of image generation models are impressive, they can also reinforce or exacerbate social biases.