Eempostor commited on
Commit
1933c64
·
verified ·
1 Parent(s): bdc4b8b

Delete lib/pipeline.py

Browse files
Files changed (1) hide show
  1. lib/pipeline.py +0 -784
lib/pipeline.py DELETED
@@ -1,784 +0,0 @@
1
- import os
2
- import sys
3
- import gc
4
- import traceback
5
- import logging
6
-
7
- logger = logging.getLogger(__name__)
8
-
9
- from functools import lru_cache
10
- from time import time as ttime
11
- from torch import Tensor
12
- import faiss
13
- import librosa
14
- import numpy as np
15
- import parselmouth
16
- import pyworld
17
- import torch.nn.functional as F
18
- from scipy import signal
19
- from tqdm import tqdm
20
-
21
- import random
22
- now_dir = os.getcwd()
23
- sys.path.append(now_dir)
24
- import re
25
- from functools import partial
26
- bh, ah = signal.butter(N=5, Wn=48, btype="high", fs=16000)
27
-
28
- input_audio_path2wav = {}
29
- import torchcrepe # Fork Feature. Crepe algo for training and preprocess
30
- import torchfcpe # Harmonify Feature.
31
- import torch
32
- from lib.infer_libs.rmvpe import RMVPE
33
- from lib.infer_libs.fcpe import FCPE # Harmonify Feature.
34
-
35
- @lru_cache
36
- def cache_harvest_f0(input_audio_path, fs, f0max, f0min, frame_period):
37
- audio = input_audio_path2wav[input_audio_path]
38
- f0, t = pyworld.harvest(
39
- audio,
40
- fs=fs,
41
- f0_ceil=f0max,
42
- f0_floor=f0min,
43
- frame_period=frame_period,
44
- )
45
- f0 = pyworld.stonemask(audio, f0, t, fs)
46
- return f0
47
-
48
-
49
- def change_rms(data1, sr1, data2, sr2, rate): # 1是输入音频,2是输出音频,rate是2的占比
50
- # print(data1.max(),data2.max())
51
- rms1 = librosa.feature.rms(
52
- y=data1, frame_length=sr1 // 2 * 2, hop_length=sr1 // 2
53
- ) # 每半秒一个点
54
- rms2 = librosa.feature.rms(y=data2, frame_length=sr2 // 2 * 2, hop_length=sr2 // 2)
55
- rms1 = torch.from_numpy(rms1)
56
- rms1 = F.interpolate(
57
- rms1.unsqueeze(0), size=data2.shape[0], mode="linear"
58
- ).squeeze()
59
- rms2 = torch.from_numpy(rms2)
60
- rms2 = F.interpolate(
61
- rms2.unsqueeze(0), size=data2.shape[0], mode="linear"
62
- ).squeeze()
63
- rms2 = torch.max(rms2, torch.zeros_like(rms2) + 1e-6)
64
- data2 *= (
65
- torch.pow(rms1, torch.tensor(1 - rate))
66
- * torch.pow(rms2, torch.tensor(rate - 1))
67
- ).numpy()
68
- return data2
69
-
70
-
71
- class Pipeline(object):
72
- def __init__(self, tgt_sr, config):
73
- self.x_pad, self.x_query, self.x_center, self.x_max, self.is_half = (
74
- config.x_pad,
75
- config.x_query,
76
- config.x_center,
77
- config.x_max,
78
- config.is_half,
79
- )
80
- self.sr = 16000 # hubert输入采样率
81
- self.window = 160 # 每帧点数
82
- self.t_pad = self.sr * self.x_pad # 每条前后pad时间
83
- self.t_pad_tgt = tgt_sr * self.x_pad
84
- self.t_pad2 = self.t_pad * 2
85
- self.t_query = self.sr * self.x_query # 查询切点前后查询时间
86
- self.t_center = self.sr * self.x_center # 查询切点位置
87
- self.t_max = self.sr * self.x_max # 免查询时长阈值
88
- self.device = config.device
89
- self.model_rmvpe = RMVPE(os.environ["rmvpe_model_path"], is_half=self.is_half, device=self.device)
90
-
91
- self.note_dict = [
92
- 65.41, 69.30, 73.42, 77.78, 82.41, 87.31,
93
- 92.50, 98.00, 103.83, 110.00, 116.54, 123.47,
94
- 130.81, 138.59, 146.83, 155.56, 164.81, 174.61,
95
- 185.00, 196.00, 207.65, 220.00, 233.08, 246.94,
96
- 261.63, 277.18, 293.66, 311.13, 329.63, 349.23,
97
- 369.99, 392.00, 415.30, 440.00, 466.16, 493.88,
98
- 523.25, 554.37, 587.33, 622.25, 659.25, 698.46,
99
- 739.99, 783.99, 830.61, 880.00, 932.33, 987.77,
100
- 1046.50, 1108.73, 1174.66, 1244.51, 1318.51, 1396.91,
101
- 1479.98, 1567.98, 1661.22, 1760.00, 1864.66, 1975.53,
102
- 2093.00, 2217.46, 2349.32, 2489.02, 2637.02, 2793.83,
103
- 2959.96, 3135.96, 3322.44, 3520.00, 3729.31, 3951.07
104
- ]
105
-
106
- # Fork Feature: Get the best torch device to use for f0 algorithms that require a torch device. Will return the type (torch.device)
107
- def get_optimal_torch_device(self, index: int = 0) -> torch.device:
108
- if torch.cuda.is_available():
109
- return torch.device(
110
- f"cuda:{index % torch.cuda.device_count()}"
111
- ) # Very fast
112
- elif torch.backends.mps.is_available():
113
- return torch.device("mps")
114
- return torch.device("cpu")
115
-
116
- # Fork Feature: Compute f0 with the crepe method
117
- def get_f0_crepe_computation(
118
- self,
119
- x,
120
- f0_min,
121
- f0_max,
122
- p_len,
123
- *args, # 512 before. Hop length changes the speed that the voice jumps to a different dramatic pitch. Lower hop lengths means more pitch accuracy but longer inference time.
124
- **kwargs, # Either use crepe-tiny "tiny" or crepe "full". Default is full
125
- ):
126
- x = x.astype(
127
- np.float32
128
- ) # fixes the F.conv2D exception. We needed to convert double to float.
129
- x /= np.quantile(np.abs(x), 0.999)
130
- torch_device = self.get_optimal_torch_device()
131
- audio = torch.from_numpy(x).to(torch_device, copy=True)
132
- audio = torch.unsqueeze(audio, dim=0)
133
- if audio.ndim == 2 and audio.shape[0] > 1:
134
- audio = torch.mean(audio, dim=0, keepdim=True).detach()
135
- audio = audio.detach()
136
- hop_length = kwargs.get('crepe_hop_length', 160)
137
- model = kwargs.get('model', 'full')
138
- print("Initiating prediction with a crepe_hop_length of: " + str(hop_length))
139
- pitch: Tensor = torchcrepe.predict(
140
- audio,
141
- self.sr,
142
- hop_length,
143
- f0_min,
144
- f0_max,
145
- model,
146
- batch_size=hop_length * 2,
147
- device=torch_device,
148
- pad=True,
149
- )
150
- p_len = p_len or x.shape[0] // hop_length
151
- # Resize the pitch for final f0
152
- source = np.array(pitch.squeeze(0).cpu().float().numpy())
153
- source[source < 0.001] = np.nan
154
- target = np.interp(
155
- np.arange(0, len(source) * p_len, len(source)) / p_len,
156
- np.arange(0, len(source)),
157
- source,
158
- )
159
- f0 = np.nan_to_num(target)
160
- return f0 # Resized f0
161
-
162
- def get_f0_official_crepe_computation(
163
- self,
164
- x,
165
- f0_min,
166
- f0_max,
167
- *args,
168
- **kwargs
169
- ):
170
- # Pick a batch size that doesn't cause memory errors on your gpu
171
- batch_size = 512
172
- # Compute pitch using first gpu
173
- audio = torch.tensor(np.copy(x))[None].float()
174
- model = kwargs.get('model', 'full')
175
- f0, pd = torchcrepe.predict(
176
- audio,
177
- self.sr,
178
- self.window,
179
- f0_min,
180
- f0_max,
181
- model,
182
- batch_size=batch_size,
183
- device=self.device,
184
- return_periodicity=True,
185
- )
186
- pd = torchcrepe.filter.median(pd, 3)
187
- f0 = torchcrepe.filter.mean(f0, 3)
188
- f0[pd < 0.1] = 0
189
- f0 = f0[0].cpu().numpy()
190
- return f0
191
-
192
- # Fork Feature: Compute pYIN f0 method
193
- def get_f0_pyin_computation(self, x, f0_min, f0_max):
194
- y, sr = librosa.load(x, sr=self.sr, mono=True)
195
- f0, _, _ = librosa.pyin(y, fmin=f0_min, fmax=f0_max, sr=self.sr)
196
- f0 = f0[1:] # Get rid of extra first frame
197
- return f0
198
-
199
- def get_pm(self, x, p_len, *args, **kwargs):
200
- f0 = parselmouth.Sound(x, self.sr).to_pitch_ac(
201
- time_step=160 / 16000,
202
- voicing_threshold=0.6,
203
- pitch_floor=kwargs.get('f0_min'),
204
- pitch_ceiling=kwargs.get('f0_max'),
205
- ).selected_array["frequency"]
206
-
207
- return np.pad(
208
- f0,
209
- [[max(0, (p_len - len(f0) + 1) // 2), max(0, p_len - len(f0) - (p_len - len(f0) + 1) // 2)]],
210
- mode="constant"
211
- )
212
-
213
- def get_harvest(self, x, *args, **kwargs):
214
- f0_spectral = pyworld.harvest(
215
- x.astype(np.double),
216
- fs=self.sr,
217
- f0_ceil=kwargs.get('f0_max'),
218
- f0_floor=kwargs.get('f0_min'),
219
- frame_period=1000 * kwargs.get('hop_length', 160) / self.sr,
220
- )
221
- return pyworld.stonemask(x.astype(np.double), *f0_spectral, self.sr)
222
-
223
- def get_dio(self, x, *args, **kwargs):
224
- f0_spectral = pyworld.dio(
225
- x.astype(np.double),
226
- fs=self.sr,
227
- f0_ceil=kwargs.get('f0_max'),
228
- f0_floor=kwargs.get('f0_min'),
229
- frame_period=1000 * kwargs.get('hop_length', 160) / self.sr,
230
- )
231
- return pyworld.stonemask(x.astype(np.double), *f0_spectral, self.sr)
232
-
233
-
234
- def get_rmvpe(self, x, *args, **kwargs):
235
- if not hasattr(self, "model_rmvpe"):
236
- from lib.infer.infer_libs.rmvpe import RMVPE
237
-
238
- logger.info(
239
- f"Loading rmvpe model, {os.environ['rmvpe_model_path']}"
240
- )
241
- self.model_rmvpe = RMVPE(
242
- os.environ["rmvpe_model_path"],
243
- is_half=self.is_half,
244
- device=self.device,
245
- )
246
- f0 = self.model_rmvpe.infer_from_audio(x, thred=0.03)
247
-
248
- if "privateuseone" in str(self.device): # clean ortruntime memory
249
- del self.model_rmvpe.model
250
- del self.model_rmvpe
251
- logger.info("Cleaning ortruntime memory")
252
-
253
- return f0
254
-
255
-
256
- def get_pitch_dependant_rmvpe(self, x, f0_min=1, f0_max=40000, *args, **kwargs):
257
- if not hasattr(self, "model_rmvpe"):
258
- from lib.infer.infer_libs.rmvpe import RMVPE
259
-
260
- logger.info(
261
- f"Loading rmvpe model, {os.environ['rmvpe_model_path']}"
262
- )
263
- self.model_rmvpe = RMVPE(
264
- os.environ["rmvpe_model_path"],
265
- is_half=self.is_half,
266
- device=self.device,
267
- )
268
- f0 = self.model_rmvpe.infer_from_audio_with_pitch(x, thred=0.03, f0_min=f0_min, f0_max=f0_max)
269
- if "privateuseone" in str(self.device): # clean ortruntime memory
270
- del self.model_rmvpe.model
271
- del self.model_rmvpe
272
- logger.info("Cleaning ortruntime memory")
273
-
274
- return f0
275
-
276
- def get_fcpe(self, x, f0_min, f0_max, p_len, *args, **kwargs):
277
- self.model_fcpe = FCPE(os.environ["fcpe_model_path"], f0_min=f0_min, f0_max=f0_max, dtype=torch.float32, device=self.device, sampling_rate=self.sr, threshold=0.03)
278
- f0 = self.model_fcpe.compute_f0(x, p_len=p_len)
279
- del self.model_fcpe
280
- gc.collect()
281
- return f0
282
-
283
- def get_torchfcpe(self, x, sr, f0_min, f0_max, p_len, *args, **kwargs):
284
- self.model_torchfcpe = spawn_bundled_infer_model(device=self.device)
285
- f0 = self.model_torchfcpe.infer(
286
- x,
287
- sr=sr,
288
- decoder_mode="local_argmax",
289
- threshold=0.03,
290
- f0_min=f0_min,
291
- f0_max=f0_max,
292
- output_interp_target_length=p_len
293
- )
294
- return f0
295
-
296
- def autotune_f0(self, f0):
297
- autotuned_f0 = []
298
- for freq in f0:
299
- closest_notes = [x for x in self.note_dict if abs(x - freq) == min(abs(n - freq) for n in self.note_dict)]
300
- autotuned_f0.append(random.choice(closest_notes))
301
- return np.array(autotuned_f0, np.float64)
302
-
303
-
304
- # Fork Feature: Acquire median hybrid f0 estimation calculation
305
- def get_f0_hybrid_computation(
306
- self,
307
- methods_str,
308
- input_audio_path,
309
- x,
310
- f0_min,
311
- f0_max,
312
- p_len,
313
- filter_radius,
314
- crepe_hop_length,
315
- time_step,
316
- ):
317
- # Get various f0 methods from input to use in the computation stack
318
- methods_str = re.search('hybrid\[(.+)\]', methods_str)
319
- if methods_str: # Ensure a match was found
320
- methods = [method.strip() for method in methods_str.group(1).split('+')]
321
- f0_computation_stack = []
322
-
323
- print("Calculating f0 pitch estimations for methods: %s" % str(methods))
324
- x = x.astype(np.float32)
325
- x /= np.quantile(np.abs(x), 0.999)
326
- # Get f0 calculations for all methods specified
327
- for method in methods:
328
- f0 = None
329
- if method == "pm":
330
- f0 = self.get_pm(x, p_len=p_len)
331
- elif method == "crepe":
332
- f0 = self.get_f0_official_crepe_computation(x, f0_min, f0_max, model="full")
333
- f0 = f0[1:]
334
- elif method == "crepe-tiny":
335
- f0 = self.get_f0_official_crepe_computation(x, f0_min, f0_max, model="tiny")
336
- f0 = f0[1:] # Get rid of extra first frame
337
- elif method == "mangio-crepe":
338
- f0 = self.get_f0_crepe_computation(
339
- x, f0_min, f0_max, p_len, crepe_hop_length=crepe_hop_length
340
- )
341
- elif method == "mangio-crepe-tiny":
342
- f0 = self.get_f0_crepe_computation(
343
- x, f0_min, f0_max, p_len, crepe_hop_length=crepe_hop_length, model="tiny"
344
- )
345
- elif method == "harvest":
346
- f0 = self.get_harvest(x)
347
- f0 = f0[1:]
348
- elif method == "dio":
349
- f0 = self.get_dio(x)
350
- f0 = f0[1:]
351
- elif method == "rmvpe":
352
- f0 = self.get_rmvpe(x)
353
- f0 = f0[1:]
354
- elif method == "fcpe":
355
- f0 = self.get_fcpe(x, f0_min=f0_min, f0_max=f0_max, p_len=p_len)
356
- elif method == "torchfcpe":
357
- f0 = self.get_torchfcpe(x, self.sr, f0_min, f0_max, p_len)
358
- elif method == "pyin":
359
- f0 = self.get_f0_pyin_computation(input_audio_path, f0_min, f0_max)
360
- # Push method to the stack
361
- f0_computation_stack.append(f0)
362
-
363
- for fc in f0_computation_stack:
364
- print(len(fc))
365
-
366
- print("Calculating hybrid median f0 from the stack of: %s" % str(methods))
367
- f0_median_hybrid = None
368
- if len(f0_computation_stack) == 1:
369
- f0_median_hybrid = f0_computation_stack[0]
370
- else:
371
- f0_median_hybrid = np.nanmedian(f0_computation_stack, axis=0)
372
- return f0_median_hybrid
373
-
374
- def get_f0(
375
- self,
376
- input_audio_path,
377
- x,
378
- p_len,
379
- f0_up_key,
380
- f0_method,
381
- filter_radius,
382
- crepe_hop_length,
383
- f0_autotune,
384
- inp_f0=None,
385
- f0_min=50,
386
- f0_max=1100,
387
- ):
388
- global input_audio_path2wav
389
- time_step = self.window / self.sr * 1000
390
- f0_min = f0_min
391
- f0_max = f0_max
392
- f0_mel_min = 1127 * np.log(1 + f0_min / 700)
393
- f0_mel_max = 1127 * np.log(1 + f0_max / 700)
394
-
395
- if f0_method == "pm":
396
- f0 = (
397
- parselmouth.Sound(x, self.sr)
398
- .to_pitch_ac(
399
- time_step=time_step / 1000,
400
- voicing_threshold=0.6,
401
- pitch_floor=f0_min,
402
- pitch_ceiling=f0_max,
403
- )
404
- .selected_array["frequency"]
405
- )
406
- pad_size = (p_len - len(f0) + 1) // 2
407
- if pad_size > 0 or p_len - len(f0) - pad_size > 0:
408
- f0 = np.pad(
409
- f0, [[pad_size, p_len - len(f0) - pad_size]], mode="constant"
410
- )
411
- elif f0_method == "harvest":
412
- input_audio_path2wav[input_audio_path] = x.astype(np.double)
413
- f0 = cache_harvest_f0(input_audio_path, self.sr, f0_max, f0_min, 10)
414
- if filter_radius > 2:
415
- f0 = signal.medfilt(f0, 3)
416
- elif f0_method == "dio": # Potentially Buggy?
417
- f0, t = pyworld.dio(
418
- x.astype(np.double),
419
- fs=self.sr,
420
- f0_ceil=f0_max,
421
- f0_floor=f0_min,
422
- frame_period=10,
423
- )
424
- f0 = pyworld.stonemask(x.astype(np.double), f0, t, self.sr)
425
- f0 = signal.medfilt(f0, 3)
426
- elif f0_method == "crepe":
427
- model = "full"
428
- # Pick a batch size that doesn't cause memory errors on your gpu
429
- batch_size = 512
430
- # Compute pitch using first gpu
431
- audio = torch.tensor(np.copy(x))[None].float()
432
- f0, pd = torchcrepe.predict(
433
- audio,
434
- self.sr,
435
- self.window,
436
- f0_min,
437
- f0_max,
438
- model,
439
- batch_size=batch_size,
440
- device=self.device,
441
- return_periodicity=True,
442
- )
443
- pd = torchcrepe.filter.median(pd, 3)
444
- f0 = torchcrepe.filter.mean(f0, 3)
445
- f0[pd < 0.1] = 0
446
- f0 = f0[0].cpu().numpy()
447
- elif f0_method == "crepe-tiny":
448
- f0 = self.get_f0_official_crepe_computation(x, f0_min, f0_max, model="tiny")
449
- elif f0_method == "mangio-crepe":
450
- f0 = self.get_f0_crepe_computation(
451
- x, f0_min, f0_max, p_len, crepe_hop_length=crepe_hop_length
452
- )
453
- elif f0_method == "mangio-crepe-tiny":
454
- f0 = self.get_f0_crepe_computation(
455
- x, f0_min, f0_max, p_len, crepe_hop_length=crepe_hop_length, model="tiny"
456
- )
457
- elif f0_method == "rmvpe":
458
- if not hasattr(self, "model_rmvpe"):
459
- from lib.infer.infer_libs.rmvpe import RMVPE
460
-
461
- logger.info(
462
- f"Loading rmvpe model, {os.environ['rmvpe_model_path']}"
463
- )
464
- self.model_rmvpe = RMVPE(
465
- os.environ["rmvpe_model_path"],
466
- is_half=self.is_half,
467
- device=self.device,
468
- )
469
- f0 = self.model_rmvpe.infer_from_audio(x, thred=0.03)
470
-
471
- if "privateuseone" in str(self.device): # clean ortruntime memory
472
- del self.model_rmvpe.model
473
- del self.model_rmvpe
474
- logger.info("Cleaning ortruntime memory")
475
- elif f0_method == "rmvpe+":
476
- params = {'x': x, 'p_len': p_len, 'f0_up_key': f0_up_key, 'f0_min': f0_min,
477
- 'f0_max': f0_max, 'time_step': time_step, 'filter_radius': filter_radius,
478
- 'crepe_hop_length': crepe_hop_length, 'model': "full"
479
- }
480
- f0 = self.get_pitch_dependant_rmvpe(**params)
481
- elif f0_method == "pyin":
482
- f0 = self.get_f0_pyin_computation(input_audio_path, f0_min, f0_max)
483
- elif f0_method == "fcpe":
484
- f0 = self.get_fcpe(x, f0_min=f0_min, f0_max=f0_max, p_len=p_len)
485
- elif method == "torchfcpe":
486
- f0 = self.get_torchfcpe(x, self.sr, f0_min, f0_max, p_len)
487
- elif "hybrid" in f0_method:
488
- # Perform hybrid median pitch estimation
489
- input_audio_path2wav[input_audio_path] = x.astype(np.double)
490
- f0 = self.get_f0_hybrid_computation(
491
- f0_method,
492
- input_audio_path,
493
- x,
494
- f0_min,
495
- f0_max,
496
- p_len,
497
- filter_radius,
498
- crepe_hop_length,
499
- time_step,
500
- )
501
- #print("Autotune:", f0_autotune)
502
- if f0_autotune == True:
503
- print("Autotune:", f0_autotune)
504
- f0 = self.autotune_f0(f0)
505
-
506
- f0 *= pow(2, f0_up_key / 12)
507
- # with open("test.txt","w")as f:f.write("\n".join([str(i)for i in f0.tolist()]))
508
- tf0 = self.sr // self.window # 每秒f0点数
509
- if inp_f0 is not None:
510
- delta_t = np.round(
511
- (inp_f0[:, 0].max() - inp_f0[:, 0].min()) * tf0 + 1
512
- ).astype("int16")
513
- replace_f0 = np.interp(
514
- list(range(delta_t)), inp_f0[:, 0] * 100, inp_f0[:, 1]
515
- )
516
- shape = f0[self.x_pad * tf0 : self.x_pad * tf0 + len(replace_f0)].shape[0]
517
- f0[self.x_pad * tf0 : self.x_pad * tf0 + len(replace_f0)] = replace_f0[
518
- :shape
519
- ]
520
- # with open("test_opt.txt","w")as f:f.write("\n".join([str(i)for i in f0.tolist()]))
521
- f0bak = f0.copy()
522
- f0_mel = 1127 * np.log(1 + f0 / 700)
523
- f0_mel[f0_mel > 0] = (f0_mel[f0_mel > 0] - f0_mel_min) * 254 / (
524
- f0_mel_max - f0_mel_min
525
- ) + 1
526
- f0_mel[f0_mel <= 1] = 1
527
- f0_mel[f0_mel > 255] = 255
528
- f0_coarse = np.rint(f0_mel).astype(np.int32)
529
- return f0_coarse, f0bak # 1-0
530
-
531
- def vc(
532
- self,
533
- model,
534
- net_g,
535
- sid,
536
- audio0,
537
- pitch,
538
- pitchf,
539
- times,
540
- index,
541
- big_npy,
542
- index_rate,
543
- version,
544
- protect,
545
- ): # ,file_index,file_big_npy
546
- feats = torch.from_numpy(audio0)
547
- if self.is_half:
548
- feats = feats.half()
549
- else:
550
- feats = feats.float()
551
- if feats.dim() == 2: # double channels
552
- feats = feats.mean(-1)
553
- assert feats.dim() == 1, feats.dim()
554
- feats = feats.view(1, -1)
555
- padding_mask = torch.BoolTensor(feats.shape).to(self.device).fill_(False)
556
-
557
- inputs = {
558
- "source": feats.to(self.device),
559
- "padding_mask": padding_mask,
560
- "output_layer": 9 if version == "v1" else 12,
561
- }
562
- t0 = ttime()
563
- with torch.no_grad():
564
- logits = model.extract_features(**inputs)
565
- feats = model.final_proj(logits[0]) if version == "v1" else logits[0]
566
- if protect < 0.5 and pitch is not None and pitchf is not None:
567
- feats0 = feats.clone()
568
- if (
569
- not isinstance(index, type(None))
570
- and not isinstance(big_npy, type(None))
571
- and index_rate != 0
572
- ):
573
- npy = feats[0].cpu().numpy()
574
- if self.is_half:
575
- npy = npy.astype("float32")
576
-
577
- # _, I = index.search(npy, 1)
578
- # npy = big_npy[I.squeeze()]
579
-
580
- score, ix = index.search(npy, k=8)
581
- weight = np.square(1 / score)
582
- weight /= weight.sum(axis=1, keepdims=True)
583
- npy = np.sum(big_npy[ix] * np.expand_dims(weight, axis=2), axis=1)
584
-
585
- if self.is_half:
586
- npy = npy.astype("float16")
587
- feats = (
588
- torch.from_numpy(npy).unsqueeze(0).to(self.device) * index_rate
589
- + (1 - index_rate) * feats
590
- )
591
-
592
- feats = F.interpolate(feats.permute(0, 2, 1), scale_factor=2).permute(0, 2, 1)
593
- if protect < 0.5 and pitch is not None and pitchf is not None:
594
- feats0 = F.interpolate(feats0.permute(0, 2, 1), scale_factor=2).permute(
595
- 0, 2, 1
596
- )
597
- t1 = ttime()
598
- p_len = audio0.shape[0] // self.window
599
- if feats.shape[1] < p_len:
600
- p_len = feats.shape[1]
601
- if pitch is not None and pitchf is not None:
602
- pitch = pitch[:, :p_len]
603
- pitchf = pitchf[:, :p_len]
604
-
605
- if protect < 0.5 and pitch is not None and pitchf is not None:
606
- pitchff = pitchf.clone()
607
- pitchff[pitchf > 0] = 1
608
- pitchff[pitchf < 1] = protect
609
- pitchff = pitchff.unsqueeze(-1)
610
- feats = feats * pitchff + feats0 * (1 - pitchff)
611
- feats = feats.to(feats0.dtype)
612
- p_len = torch.tensor([p_len], device=self.device).long()
613
- with torch.no_grad():
614
- hasp = pitch is not None and pitchf is not None
615
- arg = (feats, p_len, pitch, pitchf, sid) if hasp else (feats, p_len, sid)
616
- audio1 = (net_g.infer(*arg)[0][0, 0]).data.cpu().float().numpy()
617
- del hasp, arg
618
- del feats, p_len, padding_mask
619
- if torch.cuda.is_available():
620
- torch.cuda.empty_cache()
621
- t2 = ttime()
622
- times[0] += t1 - t0
623
- times[2] += t2 - t1
624
- return audio1
625
- def process_t(self, t, s, window, audio_pad, pitch, pitchf, times, index, big_npy, index_rate, version, protect, t_pad_tgt, if_f0, sid, model, net_g):
626
- t = t // window * window
627
- if if_f0 == 1:
628
- return self.vc(
629
- model,
630
- net_g,
631
- sid,
632
- audio_pad[s : t + t_pad_tgt + window],
633
- pitch[:, s // window : (t + t_pad_tgt) // window],
634
- pitchf[:, s // window : (t + t_pad_tgt) // window],
635
- times,
636
- index,
637
- big_npy,
638
- index_rate,
639
- version,
640
- protect,
641
- )[t_pad_tgt : -t_pad_tgt]
642
- else:
643
- return self.vc(
644
- model,
645
- net_g,
646
- sid,
647
- audio_pad[s : t + t_pad_tgt + window],
648
- None,
649
- None,
650
- times,
651
- index,
652
- big_npy,
653
- index_rate,
654
- version,
655
- protect,
656
- )[t_pad_tgt : -t_pad_tgt]
657
-
658
-
659
- def pipeline(
660
- self,
661
- model,
662
- net_g,
663
- sid,
664
- audio,
665
- input_audio_path,
666
- times,
667
- f0_up_key,
668
- f0_method,
669
- file_index,
670
- index_rate,
671
- if_f0,
672
- filter_radius,
673
- tgt_sr,
674
- resample_sr,
675
- rms_mix_rate,
676
- version,
677
- protect,
678
- crepe_hop_length,
679
- f0_autotune,
680
- f0_min=50,
681
- f0_max=1100
682
- ):
683
- if (
684
- file_index != ""
685
- and isinstance(file_index, str)
686
- # and file_big_npy != ""
687
- # and os.path.exists(file_big_npy) == True
688
- and os.path.exists(file_index)
689
- and index_rate != 0
690
- ):
691
- try:
692
- index = faiss.read_index(file_index)
693
- # big_npy = np.load(file_big_npy)
694
- big_npy = index.reconstruct_n(0, index.ntotal)
695
- except:
696
- traceback.print_exc()
697
- index = big_npy = None
698
- else:
699
- index = big_npy = None
700
- audio = signal.filtfilt(bh, ah, audio)
701
- audio_pad = np.pad(audio, (self.window // 2, self.window // 2), mode="reflect")
702
- opt_ts = []
703
- if audio_pad.shape[0] > self.t_max:
704
- audio_sum = np.zeros_like(audio)
705
- for i in range(self.window):
706
- audio_sum += audio_pad[i : i - self.window]
707
- for t in range(self.t_center, audio.shape[0], self.t_center):
708
- opt_ts.append(
709
- t
710
- - self.t_query
711
- + np.where(
712
- np.abs(audio_sum[t - self.t_query : t + self.t_query])
713
- == np.abs(audio_sum[t - self.t_query : t + self.t_query]).min()
714
- )[0][0]
715
- )
716
- s = 0
717
- audio_opt = []
718
- t = None
719
- t1 = ttime()
720
- audio_pad = np.pad(audio, (self.t_pad, self.t_pad), mode="reflect")
721
- p_len = audio_pad.shape[0] // self.window
722
- inp_f0 = None
723
-
724
- sid = torch.tensor(sid, device=self.device).unsqueeze(0).long()
725
- pitch, pitchf = None, None
726
- if if_f0:
727
- pitch, pitchf = self.get_f0(
728
- input_audio_path,
729
- audio_pad,
730
- p_len,
731
- f0_up_key,
732
- f0_method,
733
- filter_radius,
734
- crepe_hop_length,
735
- f0_autotune,
736
- inp_f0,
737
- f0_min,
738
- f0_max
739
- )
740
- pitch = pitch[:p_len]
741
- pitchf = pitchf[:p_len]
742
- if "mps" not in str(self.device) or "xpu" not in str(self.device):
743
- pitchf = pitchf.astype(np.float32)
744
- pitch = torch.tensor(pitch, device=self.device).unsqueeze(0).long()
745
- pitchf = torch.tensor(pitchf, device=self.device).unsqueeze(0).float()
746
- t2 = ttime()
747
- times[1] += t2 - t1
748
-
749
- with tqdm(total=len(opt_ts), desc="Processing", unit="window") as pbar:
750
- for i, t in enumerate(opt_ts):
751
- t = t // self.window * self.window
752
- start = s
753
- end = t + self.t_pad2 + self.window
754
- audio_slice = audio_pad[start:end]
755
- pitch_slice = pitch[:, start // self.window:end // self.window] if if_f0 else None
756
- pitchf_slice = pitchf[:, start // self.window:end // self.window] if if_f0 else None
757
- audio_opt.append(self.vc(model, net_g, sid, audio_slice, pitch_slice, pitchf_slice, times, index, big_npy, index_rate, version, protect)[self.t_pad_tgt : -self.t_pad_tgt])
758
- s = t
759
- pbar.update(1)
760
- pbar.refresh()
761
-
762
- audio_slice = audio_pad[t:]
763
- pitch_slice = pitch[:, t // self.window:] if if_f0 and t is not None else pitch
764
- pitchf_slice = pitchf[:, t // self.window:] if if_f0 and t is not None else pitchf
765
- audio_opt.append(self.vc(model, net_g, sid, audio_slice, pitch_slice, pitchf_slice, times, index, big_npy, index_rate, version, protect)[self.t_pad_tgt : -self.t_pad_tgt])
766
-
767
- audio_opt = np.concatenate(audio_opt)
768
- if rms_mix_rate != 1:
769
- audio_opt = change_rms(audio, 16000, audio_opt, tgt_sr, rms_mix_rate)
770
- if tgt_sr != resample_sr >= 16000:
771
- audio_opt = librosa.resample(
772
- audio_opt, orig_sr=tgt_sr, target_sr=resample_sr
773
- )
774
- audio_max = np.abs(audio_opt).max() / 0.99
775
- max_int16 = 32768
776
- if audio_max > 1:
777
- max_int16 /= audio_max
778
- audio_opt = (audio_opt * max_int16).astype(np.int16)
779
- del pitch, pitchf, sid
780
- if torch.cuda.is_available():
781
- torch.cuda.empty_cache()
782
-
783
- print("Returning completed audio...")
784
- return audio_opt