Delete lib/pipeline.py
Browse files- lib/pipeline.py +0 -784
lib/pipeline.py
DELETED
@@ -1,784 +0,0 @@
|
|
1 |
-
import os
|
2 |
-
import sys
|
3 |
-
import gc
|
4 |
-
import traceback
|
5 |
-
import logging
|
6 |
-
|
7 |
-
logger = logging.getLogger(__name__)
|
8 |
-
|
9 |
-
from functools import lru_cache
|
10 |
-
from time import time as ttime
|
11 |
-
from torch import Tensor
|
12 |
-
import faiss
|
13 |
-
import librosa
|
14 |
-
import numpy as np
|
15 |
-
import parselmouth
|
16 |
-
import pyworld
|
17 |
-
import torch.nn.functional as F
|
18 |
-
from scipy import signal
|
19 |
-
from tqdm import tqdm
|
20 |
-
|
21 |
-
import random
|
22 |
-
now_dir = os.getcwd()
|
23 |
-
sys.path.append(now_dir)
|
24 |
-
import re
|
25 |
-
from functools import partial
|
26 |
-
bh, ah = signal.butter(N=5, Wn=48, btype="high", fs=16000)
|
27 |
-
|
28 |
-
input_audio_path2wav = {}
|
29 |
-
import torchcrepe # Fork Feature. Crepe algo for training and preprocess
|
30 |
-
import torchfcpe # Harmonify Feature.
|
31 |
-
import torch
|
32 |
-
from lib.infer_libs.rmvpe import RMVPE
|
33 |
-
from lib.infer_libs.fcpe import FCPE # Harmonify Feature.
|
34 |
-
|
35 |
-
@lru_cache
|
36 |
-
def cache_harvest_f0(input_audio_path, fs, f0max, f0min, frame_period):
|
37 |
-
audio = input_audio_path2wav[input_audio_path]
|
38 |
-
f0, t = pyworld.harvest(
|
39 |
-
audio,
|
40 |
-
fs=fs,
|
41 |
-
f0_ceil=f0max,
|
42 |
-
f0_floor=f0min,
|
43 |
-
frame_period=frame_period,
|
44 |
-
)
|
45 |
-
f0 = pyworld.stonemask(audio, f0, t, fs)
|
46 |
-
return f0
|
47 |
-
|
48 |
-
|
49 |
-
def change_rms(data1, sr1, data2, sr2, rate): # 1是输入音频,2是输出音频,rate是2的占比
|
50 |
-
# print(data1.max(),data2.max())
|
51 |
-
rms1 = librosa.feature.rms(
|
52 |
-
y=data1, frame_length=sr1 // 2 * 2, hop_length=sr1 // 2
|
53 |
-
) # 每半秒一个点
|
54 |
-
rms2 = librosa.feature.rms(y=data2, frame_length=sr2 // 2 * 2, hop_length=sr2 // 2)
|
55 |
-
rms1 = torch.from_numpy(rms1)
|
56 |
-
rms1 = F.interpolate(
|
57 |
-
rms1.unsqueeze(0), size=data2.shape[0], mode="linear"
|
58 |
-
).squeeze()
|
59 |
-
rms2 = torch.from_numpy(rms2)
|
60 |
-
rms2 = F.interpolate(
|
61 |
-
rms2.unsqueeze(0), size=data2.shape[0], mode="linear"
|
62 |
-
).squeeze()
|
63 |
-
rms2 = torch.max(rms2, torch.zeros_like(rms2) + 1e-6)
|
64 |
-
data2 *= (
|
65 |
-
torch.pow(rms1, torch.tensor(1 - rate))
|
66 |
-
* torch.pow(rms2, torch.tensor(rate - 1))
|
67 |
-
).numpy()
|
68 |
-
return data2
|
69 |
-
|
70 |
-
|
71 |
-
class Pipeline(object):
|
72 |
-
def __init__(self, tgt_sr, config):
|
73 |
-
self.x_pad, self.x_query, self.x_center, self.x_max, self.is_half = (
|
74 |
-
config.x_pad,
|
75 |
-
config.x_query,
|
76 |
-
config.x_center,
|
77 |
-
config.x_max,
|
78 |
-
config.is_half,
|
79 |
-
)
|
80 |
-
self.sr = 16000 # hubert输入采样率
|
81 |
-
self.window = 160 # 每帧点数
|
82 |
-
self.t_pad = self.sr * self.x_pad # 每条前后pad时间
|
83 |
-
self.t_pad_tgt = tgt_sr * self.x_pad
|
84 |
-
self.t_pad2 = self.t_pad * 2
|
85 |
-
self.t_query = self.sr * self.x_query # 查询切点前后查询时间
|
86 |
-
self.t_center = self.sr * self.x_center # 查询切点位置
|
87 |
-
self.t_max = self.sr * self.x_max # 免查询时长阈值
|
88 |
-
self.device = config.device
|
89 |
-
self.model_rmvpe = RMVPE(os.environ["rmvpe_model_path"], is_half=self.is_half, device=self.device)
|
90 |
-
|
91 |
-
self.note_dict = [
|
92 |
-
65.41, 69.30, 73.42, 77.78, 82.41, 87.31,
|
93 |
-
92.50, 98.00, 103.83, 110.00, 116.54, 123.47,
|
94 |
-
130.81, 138.59, 146.83, 155.56, 164.81, 174.61,
|
95 |
-
185.00, 196.00, 207.65, 220.00, 233.08, 246.94,
|
96 |
-
261.63, 277.18, 293.66, 311.13, 329.63, 349.23,
|
97 |
-
369.99, 392.00, 415.30, 440.00, 466.16, 493.88,
|
98 |
-
523.25, 554.37, 587.33, 622.25, 659.25, 698.46,
|
99 |
-
739.99, 783.99, 830.61, 880.00, 932.33, 987.77,
|
100 |
-
1046.50, 1108.73, 1174.66, 1244.51, 1318.51, 1396.91,
|
101 |
-
1479.98, 1567.98, 1661.22, 1760.00, 1864.66, 1975.53,
|
102 |
-
2093.00, 2217.46, 2349.32, 2489.02, 2637.02, 2793.83,
|
103 |
-
2959.96, 3135.96, 3322.44, 3520.00, 3729.31, 3951.07
|
104 |
-
]
|
105 |
-
|
106 |
-
# Fork Feature: Get the best torch device to use for f0 algorithms that require a torch device. Will return the type (torch.device)
|
107 |
-
def get_optimal_torch_device(self, index: int = 0) -> torch.device:
|
108 |
-
if torch.cuda.is_available():
|
109 |
-
return torch.device(
|
110 |
-
f"cuda:{index % torch.cuda.device_count()}"
|
111 |
-
) # Very fast
|
112 |
-
elif torch.backends.mps.is_available():
|
113 |
-
return torch.device("mps")
|
114 |
-
return torch.device("cpu")
|
115 |
-
|
116 |
-
# Fork Feature: Compute f0 with the crepe method
|
117 |
-
def get_f0_crepe_computation(
|
118 |
-
self,
|
119 |
-
x,
|
120 |
-
f0_min,
|
121 |
-
f0_max,
|
122 |
-
p_len,
|
123 |
-
*args, # 512 before. Hop length changes the speed that the voice jumps to a different dramatic pitch. Lower hop lengths means more pitch accuracy but longer inference time.
|
124 |
-
**kwargs, # Either use crepe-tiny "tiny" or crepe "full". Default is full
|
125 |
-
):
|
126 |
-
x = x.astype(
|
127 |
-
np.float32
|
128 |
-
) # fixes the F.conv2D exception. We needed to convert double to float.
|
129 |
-
x /= np.quantile(np.abs(x), 0.999)
|
130 |
-
torch_device = self.get_optimal_torch_device()
|
131 |
-
audio = torch.from_numpy(x).to(torch_device, copy=True)
|
132 |
-
audio = torch.unsqueeze(audio, dim=0)
|
133 |
-
if audio.ndim == 2 and audio.shape[0] > 1:
|
134 |
-
audio = torch.mean(audio, dim=0, keepdim=True).detach()
|
135 |
-
audio = audio.detach()
|
136 |
-
hop_length = kwargs.get('crepe_hop_length', 160)
|
137 |
-
model = kwargs.get('model', 'full')
|
138 |
-
print("Initiating prediction with a crepe_hop_length of: " + str(hop_length))
|
139 |
-
pitch: Tensor = torchcrepe.predict(
|
140 |
-
audio,
|
141 |
-
self.sr,
|
142 |
-
hop_length,
|
143 |
-
f0_min,
|
144 |
-
f0_max,
|
145 |
-
model,
|
146 |
-
batch_size=hop_length * 2,
|
147 |
-
device=torch_device,
|
148 |
-
pad=True,
|
149 |
-
)
|
150 |
-
p_len = p_len or x.shape[0] // hop_length
|
151 |
-
# Resize the pitch for final f0
|
152 |
-
source = np.array(pitch.squeeze(0).cpu().float().numpy())
|
153 |
-
source[source < 0.001] = np.nan
|
154 |
-
target = np.interp(
|
155 |
-
np.arange(0, len(source) * p_len, len(source)) / p_len,
|
156 |
-
np.arange(0, len(source)),
|
157 |
-
source,
|
158 |
-
)
|
159 |
-
f0 = np.nan_to_num(target)
|
160 |
-
return f0 # Resized f0
|
161 |
-
|
162 |
-
def get_f0_official_crepe_computation(
|
163 |
-
self,
|
164 |
-
x,
|
165 |
-
f0_min,
|
166 |
-
f0_max,
|
167 |
-
*args,
|
168 |
-
**kwargs
|
169 |
-
):
|
170 |
-
# Pick a batch size that doesn't cause memory errors on your gpu
|
171 |
-
batch_size = 512
|
172 |
-
# Compute pitch using first gpu
|
173 |
-
audio = torch.tensor(np.copy(x))[None].float()
|
174 |
-
model = kwargs.get('model', 'full')
|
175 |
-
f0, pd = torchcrepe.predict(
|
176 |
-
audio,
|
177 |
-
self.sr,
|
178 |
-
self.window,
|
179 |
-
f0_min,
|
180 |
-
f0_max,
|
181 |
-
model,
|
182 |
-
batch_size=batch_size,
|
183 |
-
device=self.device,
|
184 |
-
return_periodicity=True,
|
185 |
-
)
|
186 |
-
pd = torchcrepe.filter.median(pd, 3)
|
187 |
-
f0 = torchcrepe.filter.mean(f0, 3)
|
188 |
-
f0[pd < 0.1] = 0
|
189 |
-
f0 = f0[0].cpu().numpy()
|
190 |
-
return f0
|
191 |
-
|
192 |
-
# Fork Feature: Compute pYIN f0 method
|
193 |
-
def get_f0_pyin_computation(self, x, f0_min, f0_max):
|
194 |
-
y, sr = librosa.load(x, sr=self.sr, mono=True)
|
195 |
-
f0, _, _ = librosa.pyin(y, fmin=f0_min, fmax=f0_max, sr=self.sr)
|
196 |
-
f0 = f0[1:] # Get rid of extra first frame
|
197 |
-
return f0
|
198 |
-
|
199 |
-
def get_pm(self, x, p_len, *args, **kwargs):
|
200 |
-
f0 = parselmouth.Sound(x, self.sr).to_pitch_ac(
|
201 |
-
time_step=160 / 16000,
|
202 |
-
voicing_threshold=0.6,
|
203 |
-
pitch_floor=kwargs.get('f0_min'),
|
204 |
-
pitch_ceiling=kwargs.get('f0_max'),
|
205 |
-
).selected_array["frequency"]
|
206 |
-
|
207 |
-
return np.pad(
|
208 |
-
f0,
|
209 |
-
[[max(0, (p_len - len(f0) + 1) // 2), max(0, p_len - len(f0) - (p_len - len(f0) + 1) // 2)]],
|
210 |
-
mode="constant"
|
211 |
-
)
|
212 |
-
|
213 |
-
def get_harvest(self, x, *args, **kwargs):
|
214 |
-
f0_spectral = pyworld.harvest(
|
215 |
-
x.astype(np.double),
|
216 |
-
fs=self.sr,
|
217 |
-
f0_ceil=kwargs.get('f0_max'),
|
218 |
-
f0_floor=kwargs.get('f0_min'),
|
219 |
-
frame_period=1000 * kwargs.get('hop_length', 160) / self.sr,
|
220 |
-
)
|
221 |
-
return pyworld.stonemask(x.astype(np.double), *f0_spectral, self.sr)
|
222 |
-
|
223 |
-
def get_dio(self, x, *args, **kwargs):
|
224 |
-
f0_spectral = pyworld.dio(
|
225 |
-
x.astype(np.double),
|
226 |
-
fs=self.sr,
|
227 |
-
f0_ceil=kwargs.get('f0_max'),
|
228 |
-
f0_floor=kwargs.get('f0_min'),
|
229 |
-
frame_period=1000 * kwargs.get('hop_length', 160) / self.sr,
|
230 |
-
)
|
231 |
-
return pyworld.stonemask(x.astype(np.double), *f0_spectral, self.sr)
|
232 |
-
|
233 |
-
|
234 |
-
def get_rmvpe(self, x, *args, **kwargs):
|
235 |
-
if not hasattr(self, "model_rmvpe"):
|
236 |
-
from lib.infer.infer_libs.rmvpe import RMVPE
|
237 |
-
|
238 |
-
logger.info(
|
239 |
-
f"Loading rmvpe model, {os.environ['rmvpe_model_path']}"
|
240 |
-
)
|
241 |
-
self.model_rmvpe = RMVPE(
|
242 |
-
os.environ["rmvpe_model_path"],
|
243 |
-
is_half=self.is_half,
|
244 |
-
device=self.device,
|
245 |
-
)
|
246 |
-
f0 = self.model_rmvpe.infer_from_audio(x, thred=0.03)
|
247 |
-
|
248 |
-
if "privateuseone" in str(self.device): # clean ortruntime memory
|
249 |
-
del self.model_rmvpe.model
|
250 |
-
del self.model_rmvpe
|
251 |
-
logger.info("Cleaning ortruntime memory")
|
252 |
-
|
253 |
-
return f0
|
254 |
-
|
255 |
-
|
256 |
-
def get_pitch_dependant_rmvpe(self, x, f0_min=1, f0_max=40000, *args, **kwargs):
|
257 |
-
if not hasattr(self, "model_rmvpe"):
|
258 |
-
from lib.infer.infer_libs.rmvpe import RMVPE
|
259 |
-
|
260 |
-
logger.info(
|
261 |
-
f"Loading rmvpe model, {os.environ['rmvpe_model_path']}"
|
262 |
-
)
|
263 |
-
self.model_rmvpe = RMVPE(
|
264 |
-
os.environ["rmvpe_model_path"],
|
265 |
-
is_half=self.is_half,
|
266 |
-
device=self.device,
|
267 |
-
)
|
268 |
-
f0 = self.model_rmvpe.infer_from_audio_with_pitch(x, thred=0.03, f0_min=f0_min, f0_max=f0_max)
|
269 |
-
if "privateuseone" in str(self.device): # clean ortruntime memory
|
270 |
-
del self.model_rmvpe.model
|
271 |
-
del self.model_rmvpe
|
272 |
-
logger.info("Cleaning ortruntime memory")
|
273 |
-
|
274 |
-
return f0
|
275 |
-
|
276 |
-
def get_fcpe(self, x, f0_min, f0_max, p_len, *args, **kwargs):
|
277 |
-
self.model_fcpe = FCPE(os.environ["fcpe_model_path"], f0_min=f0_min, f0_max=f0_max, dtype=torch.float32, device=self.device, sampling_rate=self.sr, threshold=0.03)
|
278 |
-
f0 = self.model_fcpe.compute_f0(x, p_len=p_len)
|
279 |
-
del self.model_fcpe
|
280 |
-
gc.collect()
|
281 |
-
return f0
|
282 |
-
|
283 |
-
def get_torchfcpe(self, x, sr, f0_min, f0_max, p_len, *args, **kwargs):
|
284 |
-
self.model_torchfcpe = spawn_bundled_infer_model(device=self.device)
|
285 |
-
f0 = self.model_torchfcpe.infer(
|
286 |
-
x,
|
287 |
-
sr=sr,
|
288 |
-
decoder_mode="local_argmax",
|
289 |
-
threshold=0.03,
|
290 |
-
f0_min=f0_min,
|
291 |
-
f0_max=f0_max,
|
292 |
-
output_interp_target_length=p_len
|
293 |
-
)
|
294 |
-
return f0
|
295 |
-
|
296 |
-
def autotune_f0(self, f0):
|
297 |
-
autotuned_f0 = []
|
298 |
-
for freq in f0:
|
299 |
-
closest_notes = [x for x in self.note_dict if abs(x - freq) == min(abs(n - freq) for n in self.note_dict)]
|
300 |
-
autotuned_f0.append(random.choice(closest_notes))
|
301 |
-
return np.array(autotuned_f0, np.float64)
|
302 |
-
|
303 |
-
|
304 |
-
# Fork Feature: Acquire median hybrid f0 estimation calculation
|
305 |
-
def get_f0_hybrid_computation(
|
306 |
-
self,
|
307 |
-
methods_str,
|
308 |
-
input_audio_path,
|
309 |
-
x,
|
310 |
-
f0_min,
|
311 |
-
f0_max,
|
312 |
-
p_len,
|
313 |
-
filter_radius,
|
314 |
-
crepe_hop_length,
|
315 |
-
time_step,
|
316 |
-
):
|
317 |
-
# Get various f0 methods from input to use in the computation stack
|
318 |
-
methods_str = re.search('hybrid\[(.+)\]', methods_str)
|
319 |
-
if methods_str: # Ensure a match was found
|
320 |
-
methods = [method.strip() for method in methods_str.group(1).split('+')]
|
321 |
-
f0_computation_stack = []
|
322 |
-
|
323 |
-
print("Calculating f0 pitch estimations for methods: %s" % str(methods))
|
324 |
-
x = x.astype(np.float32)
|
325 |
-
x /= np.quantile(np.abs(x), 0.999)
|
326 |
-
# Get f0 calculations for all methods specified
|
327 |
-
for method in methods:
|
328 |
-
f0 = None
|
329 |
-
if method == "pm":
|
330 |
-
f0 = self.get_pm(x, p_len=p_len)
|
331 |
-
elif method == "crepe":
|
332 |
-
f0 = self.get_f0_official_crepe_computation(x, f0_min, f0_max, model="full")
|
333 |
-
f0 = f0[1:]
|
334 |
-
elif method == "crepe-tiny":
|
335 |
-
f0 = self.get_f0_official_crepe_computation(x, f0_min, f0_max, model="tiny")
|
336 |
-
f0 = f0[1:] # Get rid of extra first frame
|
337 |
-
elif method == "mangio-crepe":
|
338 |
-
f0 = self.get_f0_crepe_computation(
|
339 |
-
x, f0_min, f0_max, p_len, crepe_hop_length=crepe_hop_length
|
340 |
-
)
|
341 |
-
elif method == "mangio-crepe-tiny":
|
342 |
-
f0 = self.get_f0_crepe_computation(
|
343 |
-
x, f0_min, f0_max, p_len, crepe_hop_length=crepe_hop_length, model="tiny"
|
344 |
-
)
|
345 |
-
elif method == "harvest":
|
346 |
-
f0 = self.get_harvest(x)
|
347 |
-
f0 = f0[1:]
|
348 |
-
elif method == "dio":
|
349 |
-
f0 = self.get_dio(x)
|
350 |
-
f0 = f0[1:]
|
351 |
-
elif method == "rmvpe":
|
352 |
-
f0 = self.get_rmvpe(x)
|
353 |
-
f0 = f0[1:]
|
354 |
-
elif method == "fcpe":
|
355 |
-
f0 = self.get_fcpe(x, f0_min=f0_min, f0_max=f0_max, p_len=p_len)
|
356 |
-
elif method == "torchfcpe":
|
357 |
-
f0 = self.get_torchfcpe(x, self.sr, f0_min, f0_max, p_len)
|
358 |
-
elif method == "pyin":
|
359 |
-
f0 = self.get_f0_pyin_computation(input_audio_path, f0_min, f0_max)
|
360 |
-
# Push method to the stack
|
361 |
-
f0_computation_stack.append(f0)
|
362 |
-
|
363 |
-
for fc in f0_computation_stack:
|
364 |
-
print(len(fc))
|
365 |
-
|
366 |
-
print("Calculating hybrid median f0 from the stack of: %s" % str(methods))
|
367 |
-
f0_median_hybrid = None
|
368 |
-
if len(f0_computation_stack) == 1:
|
369 |
-
f0_median_hybrid = f0_computation_stack[0]
|
370 |
-
else:
|
371 |
-
f0_median_hybrid = np.nanmedian(f0_computation_stack, axis=0)
|
372 |
-
return f0_median_hybrid
|
373 |
-
|
374 |
-
def get_f0(
|
375 |
-
self,
|
376 |
-
input_audio_path,
|
377 |
-
x,
|
378 |
-
p_len,
|
379 |
-
f0_up_key,
|
380 |
-
f0_method,
|
381 |
-
filter_radius,
|
382 |
-
crepe_hop_length,
|
383 |
-
f0_autotune,
|
384 |
-
inp_f0=None,
|
385 |
-
f0_min=50,
|
386 |
-
f0_max=1100,
|
387 |
-
):
|
388 |
-
global input_audio_path2wav
|
389 |
-
time_step = self.window / self.sr * 1000
|
390 |
-
f0_min = f0_min
|
391 |
-
f0_max = f0_max
|
392 |
-
f0_mel_min = 1127 * np.log(1 + f0_min / 700)
|
393 |
-
f0_mel_max = 1127 * np.log(1 + f0_max / 700)
|
394 |
-
|
395 |
-
if f0_method == "pm":
|
396 |
-
f0 = (
|
397 |
-
parselmouth.Sound(x, self.sr)
|
398 |
-
.to_pitch_ac(
|
399 |
-
time_step=time_step / 1000,
|
400 |
-
voicing_threshold=0.6,
|
401 |
-
pitch_floor=f0_min,
|
402 |
-
pitch_ceiling=f0_max,
|
403 |
-
)
|
404 |
-
.selected_array["frequency"]
|
405 |
-
)
|
406 |
-
pad_size = (p_len - len(f0) + 1) // 2
|
407 |
-
if pad_size > 0 or p_len - len(f0) - pad_size > 0:
|
408 |
-
f0 = np.pad(
|
409 |
-
f0, [[pad_size, p_len - len(f0) - pad_size]], mode="constant"
|
410 |
-
)
|
411 |
-
elif f0_method == "harvest":
|
412 |
-
input_audio_path2wav[input_audio_path] = x.astype(np.double)
|
413 |
-
f0 = cache_harvest_f0(input_audio_path, self.sr, f0_max, f0_min, 10)
|
414 |
-
if filter_radius > 2:
|
415 |
-
f0 = signal.medfilt(f0, 3)
|
416 |
-
elif f0_method == "dio": # Potentially Buggy?
|
417 |
-
f0, t = pyworld.dio(
|
418 |
-
x.astype(np.double),
|
419 |
-
fs=self.sr,
|
420 |
-
f0_ceil=f0_max,
|
421 |
-
f0_floor=f0_min,
|
422 |
-
frame_period=10,
|
423 |
-
)
|
424 |
-
f0 = pyworld.stonemask(x.astype(np.double), f0, t, self.sr)
|
425 |
-
f0 = signal.medfilt(f0, 3)
|
426 |
-
elif f0_method == "crepe":
|
427 |
-
model = "full"
|
428 |
-
# Pick a batch size that doesn't cause memory errors on your gpu
|
429 |
-
batch_size = 512
|
430 |
-
# Compute pitch using first gpu
|
431 |
-
audio = torch.tensor(np.copy(x))[None].float()
|
432 |
-
f0, pd = torchcrepe.predict(
|
433 |
-
audio,
|
434 |
-
self.sr,
|
435 |
-
self.window,
|
436 |
-
f0_min,
|
437 |
-
f0_max,
|
438 |
-
model,
|
439 |
-
batch_size=batch_size,
|
440 |
-
device=self.device,
|
441 |
-
return_periodicity=True,
|
442 |
-
)
|
443 |
-
pd = torchcrepe.filter.median(pd, 3)
|
444 |
-
f0 = torchcrepe.filter.mean(f0, 3)
|
445 |
-
f0[pd < 0.1] = 0
|
446 |
-
f0 = f0[0].cpu().numpy()
|
447 |
-
elif f0_method == "crepe-tiny":
|
448 |
-
f0 = self.get_f0_official_crepe_computation(x, f0_min, f0_max, model="tiny")
|
449 |
-
elif f0_method == "mangio-crepe":
|
450 |
-
f0 = self.get_f0_crepe_computation(
|
451 |
-
x, f0_min, f0_max, p_len, crepe_hop_length=crepe_hop_length
|
452 |
-
)
|
453 |
-
elif f0_method == "mangio-crepe-tiny":
|
454 |
-
f0 = self.get_f0_crepe_computation(
|
455 |
-
x, f0_min, f0_max, p_len, crepe_hop_length=crepe_hop_length, model="tiny"
|
456 |
-
)
|
457 |
-
elif f0_method == "rmvpe":
|
458 |
-
if not hasattr(self, "model_rmvpe"):
|
459 |
-
from lib.infer.infer_libs.rmvpe import RMVPE
|
460 |
-
|
461 |
-
logger.info(
|
462 |
-
f"Loading rmvpe model, {os.environ['rmvpe_model_path']}"
|
463 |
-
)
|
464 |
-
self.model_rmvpe = RMVPE(
|
465 |
-
os.environ["rmvpe_model_path"],
|
466 |
-
is_half=self.is_half,
|
467 |
-
device=self.device,
|
468 |
-
)
|
469 |
-
f0 = self.model_rmvpe.infer_from_audio(x, thred=0.03)
|
470 |
-
|
471 |
-
if "privateuseone" in str(self.device): # clean ortruntime memory
|
472 |
-
del self.model_rmvpe.model
|
473 |
-
del self.model_rmvpe
|
474 |
-
logger.info("Cleaning ortruntime memory")
|
475 |
-
elif f0_method == "rmvpe+":
|
476 |
-
params = {'x': x, 'p_len': p_len, 'f0_up_key': f0_up_key, 'f0_min': f0_min,
|
477 |
-
'f0_max': f0_max, 'time_step': time_step, 'filter_radius': filter_radius,
|
478 |
-
'crepe_hop_length': crepe_hop_length, 'model': "full"
|
479 |
-
}
|
480 |
-
f0 = self.get_pitch_dependant_rmvpe(**params)
|
481 |
-
elif f0_method == "pyin":
|
482 |
-
f0 = self.get_f0_pyin_computation(input_audio_path, f0_min, f0_max)
|
483 |
-
elif f0_method == "fcpe":
|
484 |
-
f0 = self.get_fcpe(x, f0_min=f0_min, f0_max=f0_max, p_len=p_len)
|
485 |
-
elif method == "torchfcpe":
|
486 |
-
f0 = self.get_torchfcpe(x, self.sr, f0_min, f0_max, p_len)
|
487 |
-
elif "hybrid" in f0_method:
|
488 |
-
# Perform hybrid median pitch estimation
|
489 |
-
input_audio_path2wav[input_audio_path] = x.astype(np.double)
|
490 |
-
f0 = self.get_f0_hybrid_computation(
|
491 |
-
f0_method,
|
492 |
-
input_audio_path,
|
493 |
-
x,
|
494 |
-
f0_min,
|
495 |
-
f0_max,
|
496 |
-
p_len,
|
497 |
-
filter_radius,
|
498 |
-
crepe_hop_length,
|
499 |
-
time_step,
|
500 |
-
)
|
501 |
-
#print("Autotune:", f0_autotune)
|
502 |
-
if f0_autotune == True:
|
503 |
-
print("Autotune:", f0_autotune)
|
504 |
-
f0 = self.autotune_f0(f0)
|
505 |
-
|
506 |
-
f0 *= pow(2, f0_up_key / 12)
|
507 |
-
# with open("test.txt","w")as f:f.write("\n".join([str(i)for i in f0.tolist()]))
|
508 |
-
tf0 = self.sr // self.window # 每秒f0点数
|
509 |
-
if inp_f0 is not None:
|
510 |
-
delta_t = np.round(
|
511 |
-
(inp_f0[:, 0].max() - inp_f0[:, 0].min()) * tf0 + 1
|
512 |
-
).astype("int16")
|
513 |
-
replace_f0 = np.interp(
|
514 |
-
list(range(delta_t)), inp_f0[:, 0] * 100, inp_f0[:, 1]
|
515 |
-
)
|
516 |
-
shape = f0[self.x_pad * tf0 : self.x_pad * tf0 + len(replace_f0)].shape[0]
|
517 |
-
f0[self.x_pad * tf0 : self.x_pad * tf0 + len(replace_f0)] = replace_f0[
|
518 |
-
:shape
|
519 |
-
]
|
520 |
-
# with open("test_opt.txt","w")as f:f.write("\n".join([str(i)for i in f0.tolist()]))
|
521 |
-
f0bak = f0.copy()
|
522 |
-
f0_mel = 1127 * np.log(1 + f0 / 700)
|
523 |
-
f0_mel[f0_mel > 0] = (f0_mel[f0_mel > 0] - f0_mel_min) * 254 / (
|
524 |
-
f0_mel_max - f0_mel_min
|
525 |
-
) + 1
|
526 |
-
f0_mel[f0_mel <= 1] = 1
|
527 |
-
f0_mel[f0_mel > 255] = 255
|
528 |
-
f0_coarse = np.rint(f0_mel).astype(np.int32)
|
529 |
-
return f0_coarse, f0bak # 1-0
|
530 |
-
|
531 |
-
def vc(
|
532 |
-
self,
|
533 |
-
model,
|
534 |
-
net_g,
|
535 |
-
sid,
|
536 |
-
audio0,
|
537 |
-
pitch,
|
538 |
-
pitchf,
|
539 |
-
times,
|
540 |
-
index,
|
541 |
-
big_npy,
|
542 |
-
index_rate,
|
543 |
-
version,
|
544 |
-
protect,
|
545 |
-
): # ,file_index,file_big_npy
|
546 |
-
feats = torch.from_numpy(audio0)
|
547 |
-
if self.is_half:
|
548 |
-
feats = feats.half()
|
549 |
-
else:
|
550 |
-
feats = feats.float()
|
551 |
-
if feats.dim() == 2: # double channels
|
552 |
-
feats = feats.mean(-1)
|
553 |
-
assert feats.dim() == 1, feats.dim()
|
554 |
-
feats = feats.view(1, -1)
|
555 |
-
padding_mask = torch.BoolTensor(feats.shape).to(self.device).fill_(False)
|
556 |
-
|
557 |
-
inputs = {
|
558 |
-
"source": feats.to(self.device),
|
559 |
-
"padding_mask": padding_mask,
|
560 |
-
"output_layer": 9 if version == "v1" else 12,
|
561 |
-
}
|
562 |
-
t0 = ttime()
|
563 |
-
with torch.no_grad():
|
564 |
-
logits = model.extract_features(**inputs)
|
565 |
-
feats = model.final_proj(logits[0]) if version == "v1" else logits[0]
|
566 |
-
if protect < 0.5 and pitch is not None and pitchf is not None:
|
567 |
-
feats0 = feats.clone()
|
568 |
-
if (
|
569 |
-
not isinstance(index, type(None))
|
570 |
-
and not isinstance(big_npy, type(None))
|
571 |
-
and index_rate != 0
|
572 |
-
):
|
573 |
-
npy = feats[0].cpu().numpy()
|
574 |
-
if self.is_half:
|
575 |
-
npy = npy.astype("float32")
|
576 |
-
|
577 |
-
# _, I = index.search(npy, 1)
|
578 |
-
# npy = big_npy[I.squeeze()]
|
579 |
-
|
580 |
-
score, ix = index.search(npy, k=8)
|
581 |
-
weight = np.square(1 / score)
|
582 |
-
weight /= weight.sum(axis=1, keepdims=True)
|
583 |
-
npy = np.sum(big_npy[ix] * np.expand_dims(weight, axis=2), axis=1)
|
584 |
-
|
585 |
-
if self.is_half:
|
586 |
-
npy = npy.astype("float16")
|
587 |
-
feats = (
|
588 |
-
torch.from_numpy(npy).unsqueeze(0).to(self.device) * index_rate
|
589 |
-
+ (1 - index_rate) * feats
|
590 |
-
)
|
591 |
-
|
592 |
-
feats = F.interpolate(feats.permute(0, 2, 1), scale_factor=2).permute(0, 2, 1)
|
593 |
-
if protect < 0.5 and pitch is not None and pitchf is not None:
|
594 |
-
feats0 = F.interpolate(feats0.permute(0, 2, 1), scale_factor=2).permute(
|
595 |
-
0, 2, 1
|
596 |
-
)
|
597 |
-
t1 = ttime()
|
598 |
-
p_len = audio0.shape[0] // self.window
|
599 |
-
if feats.shape[1] < p_len:
|
600 |
-
p_len = feats.shape[1]
|
601 |
-
if pitch is not None and pitchf is not None:
|
602 |
-
pitch = pitch[:, :p_len]
|
603 |
-
pitchf = pitchf[:, :p_len]
|
604 |
-
|
605 |
-
if protect < 0.5 and pitch is not None and pitchf is not None:
|
606 |
-
pitchff = pitchf.clone()
|
607 |
-
pitchff[pitchf > 0] = 1
|
608 |
-
pitchff[pitchf < 1] = protect
|
609 |
-
pitchff = pitchff.unsqueeze(-1)
|
610 |
-
feats = feats * pitchff + feats0 * (1 - pitchff)
|
611 |
-
feats = feats.to(feats0.dtype)
|
612 |
-
p_len = torch.tensor([p_len], device=self.device).long()
|
613 |
-
with torch.no_grad():
|
614 |
-
hasp = pitch is not None and pitchf is not None
|
615 |
-
arg = (feats, p_len, pitch, pitchf, sid) if hasp else (feats, p_len, sid)
|
616 |
-
audio1 = (net_g.infer(*arg)[0][0, 0]).data.cpu().float().numpy()
|
617 |
-
del hasp, arg
|
618 |
-
del feats, p_len, padding_mask
|
619 |
-
if torch.cuda.is_available():
|
620 |
-
torch.cuda.empty_cache()
|
621 |
-
t2 = ttime()
|
622 |
-
times[0] += t1 - t0
|
623 |
-
times[2] += t2 - t1
|
624 |
-
return audio1
|
625 |
-
def process_t(self, t, s, window, audio_pad, pitch, pitchf, times, index, big_npy, index_rate, version, protect, t_pad_tgt, if_f0, sid, model, net_g):
|
626 |
-
t = t // window * window
|
627 |
-
if if_f0 == 1:
|
628 |
-
return self.vc(
|
629 |
-
model,
|
630 |
-
net_g,
|
631 |
-
sid,
|
632 |
-
audio_pad[s : t + t_pad_tgt + window],
|
633 |
-
pitch[:, s // window : (t + t_pad_tgt) // window],
|
634 |
-
pitchf[:, s // window : (t + t_pad_tgt) // window],
|
635 |
-
times,
|
636 |
-
index,
|
637 |
-
big_npy,
|
638 |
-
index_rate,
|
639 |
-
version,
|
640 |
-
protect,
|
641 |
-
)[t_pad_tgt : -t_pad_tgt]
|
642 |
-
else:
|
643 |
-
return self.vc(
|
644 |
-
model,
|
645 |
-
net_g,
|
646 |
-
sid,
|
647 |
-
audio_pad[s : t + t_pad_tgt + window],
|
648 |
-
None,
|
649 |
-
None,
|
650 |
-
times,
|
651 |
-
index,
|
652 |
-
big_npy,
|
653 |
-
index_rate,
|
654 |
-
version,
|
655 |
-
protect,
|
656 |
-
)[t_pad_tgt : -t_pad_tgt]
|
657 |
-
|
658 |
-
|
659 |
-
def pipeline(
|
660 |
-
self,
|
661 |
-
model,
|
662 |
-
net_g,
|
663 |
-
sid,
|
664 |
-
audio,
|
665 |
-
input_audio_path,
|
666 |
-
times,
|
667 |
-
f0_up_key,
|
668 |
-
f0_method,
|
669 |
-
file_index,
|
670 |
-
index_rate,
|
671 |
-
if_f0,
|
672 |
-
filter_radius,
|
673 |
-
tgt_sr,
|
674 |
-
resample_sr,
|
675 |
-
rms_mix_rate,
|
676 |
-
version,
|
677 |
-
protect,
|
678 |
-
crepe_hop_length,
|
679 |
-
f0_autotune,
|
680 |
-
f0_min=50,
|
681 |
-
f0_max=1100
|
682 |
-
):
|
683 |
-
if (
|
684 |
-
file_index != ""
|
685 |
-
and isinstance(file_index, str)
|
686 |
-
# and file_big_npy != ""
|
687 |
-
# and os.path.exists(file_big_npy) == True
|
688 |
-
and os.path.exists(file_index)
|
689 |
-
and index_rate != 0
|
690 |
-
):
|
691 |
-
try:
|
692 |
-
index = faiss.read_index(file_index)
|
693 |
-
# big_npy = np.load(file_big_npy)
|
694 |
-
big_npy = index.reconstruct_n(0, index.ntotal)
|
695 |
-
except:
|
696 |
-
traceback.print_exc()
|
697 |
-
index = big_npy = None
|
698 |
-
else:
|
699 |
-
index = big_npy = None
|
700 |
-
audio = signal.filtfilt(bh, ah, audio)
|
701 |
-
audio_pad = np.pad(audio, (self.window // 2, self.window // 2), mode="reflect")
|
702 |
-
opt_ts = []
|
703 |
-
if audio_pad.shape[0] > self.t_max:
|
704 |
-
audio_sum = np.zeros_like(audio)
|
705 |
-
for i in range(self.window):
|
706 |
-
audio_sum += audio_pad[i : i - self.window]
|
707 |
-
for t in range(self.t_center, audio.shape[0], self.t_center):
|
708 |
-
opt_ts.append(
|
709 |
-
t
|
710 |
-
- self.t_query
|
711 |
-
+ np.where(
|
712 |
-
np.abs(audio_sum[t - self.t_query : t + self.t_query])
|
713 |
-
== np.abs(audio_sum[t - self.t_query : t + self.t_query]).min()
|
714 |
-
)[0][0]
|
715 |
-
)
|
716 |
-
s = 0
|
717 |
-
audio_opt = []
|
718 |
-
t = None
|
719 |
-
t1 = ttime()
|
720 |
-
audio_pad = np.pad(audio, (self.t_pad, self.t_pad), mode="reflect")
|
721 |
-
p_len = audio_pad.shape[0] // self.window
|
722 |
-
inp_f0 = None
|
723 |
-
|
724 |
-
sid = torch.tensor(sid, device=self.device).unsqueeze(0).long()
|
725 |
-
pitch, pitchf = None, None
|
726 |
-
if if_f0:
|
727 |
-
pitch, pitchf = self.get_f0(
|
728 |
-
input_audio_path,
|
729 |
-
audio_pad,
|
730 |
-
p_len,
|
731 |
-
f0_up_key,
|
732 |
-
f0_method,
|
733 |
-
filter_radius,
|
734 |
-
crepe_hop_length,
|
735 |
-
f0_autotune,
|
736 |
-
inp_f0,
|
737 |
-
f0_min,
|
738 |
-
f0_max
|
739 |
-
)
|
740 |
-
pitch = pitch[:p_len]
|
741 |
-
pitchf = pitchf[:p_len]
|
742 |
-
if "mps" not in str(self.device) or "xpu" not in str(self.device):
|
743 |
-
pitchf = pitchf.astype(np.float32)
|
744 |
-
pitch = torch.tensor(pitch, device=self.device).unsqueeze(0).long()
|
745 |
-
pitchf = torch.tensor(pitchf, device=self.device).unsqueeze(0).float()
|
746 |
-
t2 = ttime()
|
747 |
-
times[1] += t2 - t1
|
748 |
-
|
749 |
-
with tqdm(total=len(opt_ts), desc="Processing", unit="window") as pbar:
|
750 |
-
for i, t in enumerate(opt_ts):
|
751 |
-
t = t // self.window * self.window
|
752 |
-
start = s
|
753 |
-
end = t + self.t_pad2 + self.window
|
754 |
-
audio_slice = audio_pad[start:end]
|
755 |
-
pitch_slice = pitch[:, start // self.window:end // self.window] if if_f0 else None
|
756 |
-
pitchf_slice = pitchf[:, start // self.window:end // self.window] if if_f0 else None
|
757 |
-
audio_opt.append(self.vc(model, net_g, sid, audio_slice, pitch_slice, pitchf_slice, times, index, big_npy, index_rate, version, protect)[self.t_pad_tgt : -self.t_pad_tgt])
|
758 |
-
s = t
|
759 |
-
pbar.update(1)
|
760 |
-
pbar.refresh()
|
761 |
-
|
762 |
-
audio_slice = audio_pad[t:]
|
763 |
-
pitch_slice = pitch[:, t // self.window:] if if_f0 and t is not None else pitch
|
764 |
-
pitchf_slice = pitchf[:, t // self.window:] if if_f0 and t is not None else pitchf
|
765 |
-
audio_opt.append(self.vc(model, net_g, sid, audio_slice, pitch_slice, pitchf_slice, times, index, big_npy, index_rate, version, protect)[self.t_pad_tgt : -self.t_pad_tgt])
|
766 |
-
|
767 |
-
audio_opt = np.concatenate(audio_opt)
|
768 |
-
if rms_mix_rate != 1:
|
769 |
-
audio_opt = change_rms(audio, 16000, audio_opt, tgt_sr, rms_mix_rate)
|
770 |
-
if tgt_sr != resample_sr >= 16000:
|
771 |
-
audio_opt = librosa.resample(
|
772 |
-
audio_opt, orig_sr=tgt_sr, target_sr=resample_sr
|
773 |
-
)
|
774 |
-
audio_max = np.abs(audio_opt).max() / 0.99
|
775 |
-
max_int16 = 32768
|
776 |
-
if audio_max > 1:
|
777 |
-
max_int16 /= audio_max
|
778 |
-
audio_opt = (audio_opt * max_int16).astype(np.int16)
|
779 |
-
del pitch, pitchf, sid
|
780 |
-
if torch.cuda.is_available():
|
781 |
-
torch.cuda.empty_cache()
|
782 |
-
|
783 |
-
print("Returning completed audio...")
|
784 |
-
return audio_opt
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|