File size: 3,028 Bytes
4faa809
 
ecfe07c
4faa809
 
ecfe07c
4faa809
 
ecfe07c
 
4faa809
 
 
 
ecfe07c
4faa809
 
 
 
ecfe07c
 
4faa809
 
ecfe07c
 
 
 
 
 
 
 
4faa809
 
 
ecfe07c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4faa809
 
 
 
 
ecfe07c
 
 
 
 
 
4faa809
ecfe07c
4faa809
ecfe07c
4faa809
 
 
 
 
ecfe07c
4faa809
ecfe07c
4faa809
 
 
ecfe07c
 
 
 
4faa809
 
ecfe07c
 
 
 
 
 
 
 
4faa809
 
ecfe07c
 
 
 
4faa809
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
---
tags:
    - text-generation
license: cc-by-nc-sa-4.0
language:
    - ko
base_model: yanolja/KoSOLAR-10.7B-v0.1
pipeline_tag: text-generation
datasets:
    - nlpai-lab/kullm-v2
---

# **DataVortexS-10.7B-v0.1**

<img src="./DataVortex.png" alt="DataVortex" style="height: 8em;">

## **Model Details**

### **Base Model**

[yanolja/KoSOLAR-10.7B-v0.1](https://huggingface.co/yanolja/KoSOLAR-10.7B-v0.1)

### **Trained On**

-   **OS**: Ubuntu 20.04
-   **GPU**: H100 80GB 1ea
-   **transformers**: v4.36.2

### **Dataset**

-   [nlpai-lab/kullm-v2](https://huggingface.co/datasets/nlpai-lab/kullm-v2) - 152k rows

### **Instruction format**

It follows **Alpaca** format.

E.g.

```python
text = """\
당신은 μ‚¬λžŒλ“€μ΄ 정보λ₯Ό 찾을 수 μžˆλ„λ‘ λ„μ™€μ£ΌλŠ” 인곡지λŠ₯ λΉ„μ„œμž…λ‹ˆλ‹€.

### Instruction:
λŒ€ν•œλ―Όκ΅­μ˜ μˆ˜λ„λŠ” μ–΄λ””μ•Ό?

### Response:
λŒ€ν•œλ―Όκ΅­μ˜ μˆ˜λ„λŠ” μ„œμšΈμž…λ‹ˆλ‹€.

### Instruction:
μ„œμšΈ μΈκ΅¬λŠ” 총 λͺ‡ λͺ…이야?
"""
```

## **Model Benchmark**

### **Ko-LLM-Leaderboard**

On Benchmarking ...

| Model                                | Average | Ko-ARC | Ko-HellaSwag | Ko-MMLU | Ko-TruthfulQA | Ko-CommonGen V2 |
| ------------------------------------ | ------- | ------ | ------------ | ------- | ------------- | --------------- |
| Edentns/DataVortexM-7B-Instruct-v0.1 | 39.81   | 34.13  | 42.35        | 38.73   | 45.46         | 38.37           |
| **Edentns/DataVortexS-10.7B-v0.1**           | **0**   | **0**  | **0**        | **0**   | **0**         | **0**           |

## **Implementation Code**

This model contains the chat_template instruction format.  
You can use the code below.

```python
from transformers import AutoModelForCausalLM, AutoTokenizer

device = "cuda" # the device to load the model onto

model = AutoModelForCausalLM.from_pretrained("Edentns/DataVortexS-10.7B-v0.1")
tokenizer = AutoTokenizer.from_pretrained("Edentns/DataVortexS-10.7B-v0.1")

messages = [
    {"role": "system", "content": "당신은 μ‚¬λžŒλ“€μ΄ 정보λ₯Ό 찾을 수 μžˆλ„λ‘ λ„μ™€μ£ΌλŠ” 인곡지λŠ₯ λΉ„μ„œμž…λ‹ˆλ‹€."},
    {"role": "user", "content": "λŒ€ν•œλ―Όκ΅­μ˜ μˆ˜λ„λŠ” μ–΄λ””μ•Ό?"},
    {"role": "assistant", "content": "λŒ€ν•œλ―Όκ΅­μ˜ μˆ˜λ„λŠ” μ„œμšΈμž…λ‹ˆλ‹€."},
    {"role": "user", "content": "μ„œμšΈ μΈκ΅¬λŠ” 총 λͺ‡ λͺ…이야?"}
]

encodeds = tokenizer.apply_chat_template(messages, return_tensors="pt")

model_inputs = encodeds.to(device)
model.to(device)

generated_ids = model.generate(model_inputs, max_new_tokens=1000, do_sample=True)
decoded = tokenizer.batch_decode(generated_ids)
print(decoded[0])
```

## **License**

The model is licensed under the [cc-by-nc-sa-4.0](https://creativecommons.org/licenses/by-nc-sa/4.0/) license, which allows others to copy, modify, and share the work non-commercially, as long as they give appropriate credit and distribute any derivative works under the same license.

<div align="center">
    <a href="https://edentns.com/">
        <img src="./Logo.png" alt="Logo" style="height: 3em;">
    </a>
</div>