csyxwei commited on
Commit
9f563c6
1 Parent(s): 2e7bc51

update readme

Browse files
.gitignore CHANGED
@@ -5,6 +5,7 @@ _sc.py
5
  *.ckpt
6
  *.bin
7
 
 
8
  .idea
9
  .idea/workspace.xml
10
  .DS_Store
 
5
  *.ckpt
6
  *.bin
7
 
8
+ checkpoints
9
  .idea
10
  .idea/workspace.xml
11
  .DS_Store
README.md CHANGED
@@ -4,9 +4,17 @@
4
  <a href="https://arxiv.org/pdf/2302.13848.pdf"><img src="https://img.shields.io/badge/arXiv-2302.13848-b31b1b.svg" height=22.5></a>
5
  <a href="https://huggingface.co/spaces/ELITE-library/ELITE"><img src="https://img.shields.io/static/v1?label=HuggingFace&message=gradio demo&color=darkgreen" height=22.5></a>
6
 
7
- ## Getting Started
 
 
 
 
 
 
 
 
8
 
9
- ----
10
 
11
  ### Environment Setup
12
 
@@ -22,13 +30,21 @@ pip install -r requirements.txt
22
 
23
  We provide the pretrained checkpoints in [Google Drive](https://drive.google.com/drive/folders/1VkiVZzA_i9gbfuzvHaLH2VYh7kOTzE0x?usp=sharing). One can download them and save to the directory `checkpoints`.
24
 
25
- ### Setting up Diffusers
 
 
 
 
26
 
27
- Our code is built on the [diffusers](https://github.com/huggingface/diffusers/), and you can follow the guideline [here](https://github.com/huggingface/diffusers/tree/main/examples/textual_inversion#cat-toy-example) to set it.
 
 
 
 
28
 
29
  ### Customized Generation
30
 
31
- We provide the testing dataset in [test_datasets](./test_datasets), which contains both images and object masks. For testing, you can run,
32
  ```
33
  export MODEL_NAME="CompVis/stable-diffusion-v1-4"
34
  export DATA_DIR='./test_datasets/'
@@ -42,16 +58,14 @@ CUDA_VISIBLE_DEVICES=0 python inference_local.py \
42
  --global_mapper_path="./checkpoints/global_mapper.pt" \
43
  --local_mapper_path="./checkpoints/local_mapper.pt"
44
  ```
45
- or you can use the shell script:
46
  ```
47
  bash inference_local.sh
48
  ```
49
- If you want to test your customized dataset, you should align the image to ensure the object is at the center of image, and also provide the corresponding object mask. The object mask can be obtained by [image-matting-app](https://huggingface.co/spaces/SankarSrin/image-matting-app), or other image matting methods.
50
 
51
  ## Training
52
 
53
- ----
54
-
55
  ### Preparing Dataset
56
 
57
  We use the **test** dataset of Open-Images V6 to train our ELITE. You can prepare the dataset as follows:
@@ -87,7 +101,7 @@ datasets
87
 
88
  ### Training Global Mapping Network
89
 
90
- To train the global mapping network, run the following command:
91
 
92
  ```Shell
93
  export MODEL_NAME="CompVis/stable-diffusion-v1-4"
@@ -106,14 +120,14 @@ CUDA_VISIBLE_DEVICES=0,1,2,3 accelerate launch --config_file 4_gpu.json --main_p
106
  --output_dir="./elite_experiments/global_mapping" \
107
  --save_steps 200
108
  ```
109
- or you can use the shell script:
110
  ```shell
111
  bash train_global.sh
112
  ```
113
 
114
  ### Training Local Mapping Network
115
 
116
- After the global mapping is trained, you can train the local mapping by running the following command:
117
 
118
  ```Shell
119
  export MODEL_NAME="CompVis/stable-diffusion-v1-4"
@@ -133,7 +147,7 @@ CUDA_VISIBLE_DEVICES=0,1,2,3 accelerate launch --config_file 4_gpu.json --main_p
133
  --output_dir="./elite_experiments/local_mapping" \
134
  --save_steps 200
135
  ```
136
- or you can use the shell script:
137
  ```shell
138
  bash train_local.sh
139
  ```
@@ -152,4 +166,4 @@ bash train_local.sh
152
 
153
  ## Acknowledgements
154
 
155
- This code is built on [diffusers](https://github.com/huggingface/diffusers/). We thank the authors for sharing the codes.
 
4
  <a href="https://arxiv.org/pdf/2302.13848.pdf"><img src="https://img.shields.io/badge/arXiv-2302.13848-b31b1b.svg" height=22.5></a>
5
  <a href="https://huggingface.co/spaces/ELITE-library/ELITE"><img src="https://img.shields.io/static/v1?label=HuggingFace&message=gradio demo&color=darkgreen" height=22.5></a>
6
 
7
+ ![method](assets/results.png)
8
+
9
+
10
+ ## Method Details
11
+
12
+ ![method](assets/method.png)
13
+
14
+ Given an image indicates the target concept (usually an object), we propose a learning-based encoder ELITE to encode the visual concept into the textual embeddings, which can be further flexibly composed into new scenes. It consists of two modules: (a) a global mapping network is first trained to encode a concept image into multiple textual word embeddings, where one primary word (w0) for well-editable concept and other auxiliary words (w1路路路N) to exclude irrelevant disturbances. (b) A local mapping network is further trained, which projects the foreground object into textual feature space to provide local details.
15
+
16
 
17
+ ## Getting Started
18
 
19
  ### Environment Setup
20
 
 
30
 
31
  We provide the pretrained checkpoints in [Google Drive](https://drive.google.com/drive/folders/1VkiVZzA_i9gbfuzvHaLH2VYh7kOTzE0x?usp=sharing). One can download them and save to the directory `checkpoints`.
32
 
33
+ ### Setting up HuggingFace
34
+
35
+ Our code is built on the [diffusers](https://github.com/huggingface/diffusers/) version of Stable Diffusion, you need to accept the [model license](https://huggingface.co/CompVis/stable-diffusion-v1-4) before downloading or using the weights. In our experiments, we use model version v1-4.
36
+
37
+ You have to be a registered user in Hugging Face Hub, and you'll also need to use an access token for the code to work. For more information on access tokens, please refer to [this section of the documentation](https://huggingface.co/docs/hub/security-tokens).
38
 
39
+ Run the following command to authenticate your token
40
+ ```shell
41
+ huggingface-cli login
42
+ ```
43
+ If you have already cloned the repo, then you won't need to go through these steps.
44
 
45
  ### Customized Generation
46
 
47
+ We provide some testing images in [test_datasets](./test_datasets), which contains both images and object masks. For testing, you can run,
48
  ```
49
  export MODEL_NAME="CompVis/stable-diffusion-v1-4"
50
  export DATA_DIR='./test_datasets/'
 
58
  --global_mapper_path="./checkpoints/global_mapper.pt" \
59
  --local_mapper_path="./checkpoints/local_mapper.pt"
60
  ```
61
+ or you can use the shell script,
62
  ```
63
  bash inference_local.sh
64
  ```
65
+ If you want to test your customized dataset, you should align the image to ensure the object is at the center of image, and also provide the corresponding object mask. The object mask can be obtained by [image-matting-app](https://huggingface.co/spaces/SankarSrin/image-matting-app), or other image matting methods.
66
 
67
  ## Training
68
 
 
 
69
  ### Preparing Dataset
70
 
71
  We use the **test** dataset of Open-Images V6 to train our ELITE. You can prepare the dataset as follows:
 
101
 
102
  ### Training Global Mapping Network
103
 
104
+ To train the global mapping network, you can run,
105
 
106
  ```Shell
107
  export MODEL_NAME="CompVis/stable-diffusion-v1-4"
 
120
  --output_dir="./elite_experiments/global_mapping" \
121
  --save_steps 200
122
  ```
123
+ or you can use the shell script,
124
  ```shell
125
  bash train_global.sh
126
  ```
127
 
128
  ### Training Local Mapping Network
129
 
130
+ After the global mapping network is trained, you can train the local mapping network by running,
131
 
132
  ```Shell
133
  export MODEL_NAME="CompVis/stable-diffusion-v1-4"
 
147
  --output_dir="./elite_experiments/local_mapping" \
148
  --save_steps 200
149
  ```
150
+ or you can use the shell script,
151
  ```shell
152
  bash train_local.sh
153
  ```
 
166
 
167
  ## Acknowledgements
168
 
169
+ This code is built on [diffusers](https://github.com/huggingface/diffusers/) version of [Stable Diffusion](https://github.com/CompVis/stable-diffusion). We thank the authors for sharing the codes.
assets/method.png ADDED
assets/results.png ADDED
inference_global.sh CHANGED
@@ -1,7 +1,7 @@
1
  export MODEL_NAME="CompVis/stable-diffusion-v1-4"
2
  export DATA_DIR='./test_datasets/'
3
 
4
- CUDA_VISIBLE_DEVICES=7 python inference_global.py \
5
  --pretrained_model_name_or_path=$MODEL_NAME \
6
  --test_data_dir=$DATA_DIR \
7
  --output_dir="./outputs/global_mapping" \
@@ -9,5 +9,5 @@ CUDA_VISIBLE_DEVICES=7 python inference_global.py \
9
  --token_index="0" \
10
  --template="a photo of a S" \
11
  --global_mapper_path="./checkpoints/global_mapper.pt" \
12
- --seed 42
13
 
 
1
  export MODEL_NAME="CompVis/stable-diffusion-v1-4"
2
  export DATA_DIR='./test_datasets/'
3
 
4
+ CUDA_VISIBLE_DEVICES=0 python inference_global.py \
5
  --pretrained_model_name_or_path=$MODEL_NAME \
6
  --test_data_dir=$DATA_DIR \
7
  --output_dir="./outputs/global_mapping" \
 
9
  --token_index="0" \
10
  --template="a photo of a S" \
11
  --global_mapper_path="./checkpoints/global_mapper.pt" \
12
+ --seed=42
13
 
inference_local.sh CHANGED
@@ -1,6 +1,6 @@
1
  export MODEL_NAME="CompVis/stable-diffusion-v1-4"
2
  export DATA_DIR='./test_datasets/'
3
- CUDA_VISIBLE_DEVICES=7 python inference_local.py \
4
  --pretrained_model_name_or_path=$MODEL_NAME \
5
  --test_data_dir=$DATA_DIR \
6
  --output_dir="./outputs/local_mapping" \
@@ -9,5 +9,5 @@ CUDA_VISIBLE_DEVICES=7 python inference_local.py \
9
  --llambda="0.8" \
10
  --global_mapper_path="./checkpoints/global_mapper.pt" \
11
  --local_mapper_path="./checkpoints/local_mapper.pt" \
12
- --seed 42
13
 
 
1
  export MODEL_NAME="CompVis/stable-diffusion-v1-4"
2
  export DATA_DIR='./test_datasets/'
3
+ CUDA_VISIBLE_DEVICES=0 python inference_local.py \
4
  --pretrained_model_name_or_path=$MODEL_NAME \
5
  --test_data_dir=$DATA_DIR \
6
  --output_dir="./outputs/local_mapping" \
 
9
  --llambda="0.8" \
10
  --global_mapper_path="./checkpoints/global_mapper.pt" \
11
  --local_mapper_path="./checkpoints/local_mapper.pt" \
12
+ --seed=42
13
 
train_global.sh CHANGED
@@ -11,5 +11,5 @@ CUDA_VISIBLE_DEVICES=0,1,2,3 accelerate launch --config_file 4_gpu.json --main_p
11
  --learning_rate=1e-06 --scale_lr \
12
  --lr_scheduler="constant" \
13
  --lr_warmup_steps=0 \
14
- --output_dir="./elite_experiments/global_mapping_new" \
15
  --save_steps 200
 
11
  --learning_rate=1e-06 --scale_lr \
12
  --lr_scheduler="constant" \
13
  --lr_warmup_steps=0 \
14
+ --output_dir="./elite_experiments/global_mapping" \
15
  --save_steps 200