6185cf2abcdb1f523dbfb37144730057281a2f2df5aad865ab54ef3f83045f8b
Browse files- brats_2021_task1/BraTS2021_Training_Data/BraTS2021_01661/BraTS2021_01661_t2.nii.gz +3 -0
- brats_2021_task1/BraTS2021_Training_Data/BraTS2021_01662/BraTS2021_01662_flair.nii.gz +3 -0
- brats_2021_task1/BraTS2021_Training_Data/BraTS2021_01662/BraTS2021_01662_seg.nii.gz +0 -0
- brats_2021_task1/BraTS2021_Training_Data/BraTS2021_01662/BraTS2021_01662_t1.nii.gz +3 -0
- brats_2021_task1/BraTS2021_Training_Data/BraTS2021_01662/BraTS2021_01662_t1ce.nii.gz +3 -0
- brats_2021_task1/BraTS2021_Training_Data/BraTS2021_01662/BraTS2021_01662_t2.nii.gz +3 -0
- brats_2021_task1/BraTS2021_Training_Data/BraTS2021_01663/BraTS2021_01663_flair.nii.gz +3 -0
- brats_2021_task1/BraTS2021_Training_Data/BraTS2021_01663/BraTS2021_01663_seg.nii.gz +0 -0
- brats_2021_task1/BraTS2021_Training_Data/BraTS2021_01663/BraTS2021_01663_t1.nii.gz +3 -0
- brats_2021_task1/BraTS2021_Training_Data/BraTS2021_01663/BraTS2021_01663_t1ce.nii.gz +3 -0
- brats_2021_task1/BraTS2021_Training_Data/BraTS2021_01663/BraTS2021_01663_t2.nii.gz +3 -0
- brats_2021_task1/BraTS2021_Training_Data/BraTS2021_01664/BraTS2021_01664_flair.nii.gz +3 -0
- brats_2021_task1/BraTS2021_Training_Data/BraTS2021_01664/BraTS2021_01664_seg.nii.gz +0 -0
- brats_2021_task1/BraTS2021_Training_Data/BraTS2021_01664/BraTS2021_01664_t1.nii.gz +3 -0
- brats_2021_task1/BraTS2021_Training_Data/BraTS2021_01664/BraTS2021_01664_t1ce.nii.gz +3 -0
- brats_2021_task1/BraTS2021_Training_Data/BraTS2021_01664/BraTS2021_01664_t2.nii.gz +3 -0
- brats_2021_task1/BraTS2021_Training_Data/BraTS2021_01665/BraTS2021_01665_flair.nii.gz +3 -0
- brats_2021_task1/BraTS2021_Training_Data/BraTS2021_01665/BraTS2021_01665_seg.nii.gz +0 -0
- brats_2021_task1/BraTS2021_Training_Data/BraTS2021_01665/BraTS2021_01665_t1.nii.gz +3 -0
- brats_2021_task1/BraTS2021_Training_Data/BraTS2021_01665/BraTS2021_01665_t1ce.nii.gz +3 -0
- brats_2021_task1/BraTS2021_Training_Data/BraTS2021_01665/BraTS2021_01665_t2.nii.gz +3 -0
- brats_2021_task1/BraTS2021_Training_Data/BraTS2021_01666/BraTS2021_01666_flair.nii.gz +3 -0
- brats_2021_task1/BraTS2021_Training_Data/BraTS2021_01666/BraTS2021_01666_seg.nii.gz +0 -0
- brats_2021_task1/BraTS2021_Training_Data/BraTS2021_01666/BraTS2021_01666_t1.nii.gz +3 -0
- brats_2021_task1/BraTS2021_Training_Data/BraTS2021_01666/BraTS2021_01666_t1ce.nii.gz +3 -0
- brats_2021_task1/BraTS2021_Training_Data/BraTS2021_01666/BraTS2021_01666_t2.nii.gz +3 -0
- info.json +0 -0
- main.ipynb +1478 -0
brats_2021_task1/BraTS2021_Training_Data/BraTS2021_01661/BraTS2021_01661_t2.nii.gz
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:c505210bdc5a038f0feec158af86cbd51fe9044c2e322116b8dedf0d4cfa0ae8
|
| 3 |
+
size 2142198
|
brats_2021_task1/BraTS2021_Training_Data/BraTS2021_01662/BraTS2021_01662_flair.nii.gz
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:82601944e7b5ed25b7d5260546bcf9fc05735380b1121c808a62a9444728710d
|
| 3 |
+
size 2245968
|
brats_2021_task1/BraTS2021_Training_Data/BraTS2021_01662/BraTS2021_01662_seg.nii.gz
ADDED
|
Binary file (36.3 kB). View file
|
|
|
brats_2021_task1/BraTS2021_Training_Data/BraTS2021_01662/BraTS2021_01662_t1.nii.gz
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:33191e411b78a8ccfabb50385530526178b7c8fe71af12c3b05284d845b4a809
|
| 3 |
+
size 2350622
|
brats_2021_task1/BraTS2021_Training_Data/BraTS2021_01662/BraTS2021_01662_t1ce.nii.gz
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:4ef3e7436f5911064d241bd785872de5953ea58b596d35069bad3daf7e915118
|
| 3 |
+
size 2363017
|
brats_2021_task1/BraTS2021_Training_Data/BraTS2021_01662/BraTS2021_01662_t2.nii.gz
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:a42815be77caed00d9c499717b2b098dcf982d8a2066f9050bb975c18a0bd590
|
| 3 |
+
size 2058223
|
brats_2021_task1/BraTS2021_Training_Data/BraTS2021_01663/BraTS2021_01663_flair.nii.gz
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:d9bab8b5bfa4cdec3e9e3503a0573c320d9bc8ad7c6329124284982686506553
|
| 3 |
+
size 2563621
|
brats_2021_task1/BraTS2021_Training_Data/BraTS2021_01663/BraTS2021_01663_seg.nii.gz
ADDED
|
Binary file (17 kB). View file
|
|
|
brats_2021_task1/BraTS2021_Training_Data/BraTS2021_01663/BraTS2021_01663_t1.nii.gz
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:1b839418ba30c21cac53504dbde89a91e3c831c97a0418db52dc60b6453c9859
|
| 3 |
+
size 2654382
|
brats_2021_task1/BraTS2021_Training_Data/BraTS2021_01663/BraTS2021_01663_t1ce.nii.gz
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:c858f60833fd410ea37f9e769537096ce765a4222bd69f1e58e0cdc266c274a0
|
| 3 |
+
size 3038088
|
brats_2021_task1/BraTS2021_Training_Data/BraTS2021_01663/BraTS2021_01663_t2.nii.gz
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:ea430675569e79890f0452cfdd729c48a5548470186dd21fa5a7e4d80e602d60
|
| 3 |
+
size 3031822
|
brats_2021_task1/BraTS2021_Training_Data/BraTS2021_01664/BraTS2021_01664_flair.nii.gz
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:9a52c35931fa86a7454bbc8d1309eac4779b03f4a93b4fd0d553ae600c749c53
|
| 3 |
+
size 2414151
|
brats_2021_task1/BraTS2021_Training_Data/BraTS2021_01664/BraTS2021_01664_seg.nii.gz
ADDED
|
Binary file (31.4 kB). View file
|
|
|
brats_2021_task1/BraTS2021_Training_Data/BraTS2021_01664/BraTS2021_01664_t1.nii.gz
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:6dba2effcf0b5a9c500fab9841e438dd1bc187284ab4c69a98a32b7587afa051
|
| 3 |
+
size 2461810
|
brats_2021_task1/BraTS2021_Training_Data/BraTS2021_01664/BraTS2021_01664_t1ce.nii.gz
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:2e583078d125e3eb90d258eaab57cfc6163b3028671f0582cb8fed25c4b471e3
|
| 3 |
+
size 2815663
|
brats_2021_task1/BraTS2021_Training_Data/BraTS2021_01664/BraTS2021_01664_t2.nii.gz
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:6f2dd092f11b2e3e87e63c2d19f497c3051b3bf991b23ae22037a278514f6afd
|
| 3 |
+
size 2845901
|
brats_2021_task1/BraTS2021_Training_Data/BraTS2021_01665/BraTS2021_01665_flair.nii.gz
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:080b33accc7e6a96af2083cfd3db3d8b118caa4be48d5f34bca489d9e4fc2651
|
| 3 |
+
size 2297237
|
brats_2021_task1/BraTS2021_Training_Data/BraTS2021_01665/BraTS2021_01665_seg.nii.gz
ADDED
|
Binary file (27.3 kB). View file
|
|
|
brats_2021_task1/BraTS2021_Training_Data/BraTS2021_01665/BraTS2021_01665_t1.nii.gz
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:2da4767e4fc6070d179cc4353847d92f135e9e875acd3fe764fec45f4c7a14cc
|
| 3 |
+
size 2327765
|
brats_2021_task1/BraTS2021_Training_Data/BraTS2021_01665/BraTS2021_01665_t1ce.nii.gz
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:0c09a49c57ba59e96eb705f616e49588b128a42c7f78ed83e0355e4ef240ebf9
|
| 3 |
+
size 2693477
|
brats_2021_task1/BraTS2021_Training_Data/BraTS2021_01665/BraTS2021_01665_t2.nii.gz
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:cf5cb3c237e4533b456b0d10917adcd60398563458f4948b678807cdafe308c7
|
| 3 |
+
size 2639817
|
brats_2021_task1/BraTS2021_Training_Data/BraTS2021_01666/BraTS2021_01666_flair.nii.gz
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:4f89012c90e6f4a8b2226fcdb26874f9f5ef49c7ef145dbc3b69cc00816510a3
|
| 3 |
+
size 2029939
|
brats_2021_task1/BraTS2021_Training_Data/BraTS2021_01666/BraTS2021_01666_seg.nii.gz
ADDED
|
Binary file (68.5 kB). View file
|
|
|
brats_2021_task1/BraTS2021_Training_Data/BraTS2021_01666/BraTS2021_01666_t1.nii.gz
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:a23f6ac4f2feb8d5f91b920e3dc822c820403d7c698a3834943aba980d5a26b4
|
| 3 |
+
size 2244910
|
brats_2021_task1/BraTS2021_Training_Data/BraTS2021_01666/BraTS2021_01666_t1ce.nii.gz
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:3ef132d2943864bc055c694fa9bdf5dec9d4332f404c0dc5fad4b997584fdf6a
|
| 3 |
+
size 2268398
|
brats_2021_task1/BraTS2021_Training_Data/BraTS2021_01666/BraTS2021_01666_t2.nii.gz
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:3b4a9a57fcd9a525d18c84b0f42fb608c20c1eeb2cbad690870f5d8f2d83719c
|
| 3 |
+
size 2181088
|
info.json
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
main.ipynb
ADDED
|
@@ -0,0 +1,1478 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"cells": [
|
| 3 |
+
{
|
| 4 |
+
"cell_type": "code",
|
| 5 |
+
"execution_count": 2,
|
| 6 |
+
"metadata": {},
|
| 7 |
+
"outputs": [
|
| 8 |
+
{
|
| 9 |
+
"name": "stdout",
|
| 10 |
+
"output_type": "stream",
|
| 11 |
+
"text": [
|
| 12 |
+
"MONAI version: 1.4.dev2409\n",
|
| 13 |
+
"Numpy version: 1.26.2\n",
|
| 14 |
+
"Pytorch version: 1.13.0+cu116\n",
|
| 15 |
+
"MONAI flags: HAS_EXT = False, USE_COMPILED = False, USE_META_DICT = False\n",
|
| 16 |
+
"MONAI rev id: 46c1b228091283fba829280a5d747f4237f76ed0\n",
|
| 17 |
+
"MONAI __file__: /usr/local/lib/python3.9/site-packages/monai/__init__.py\n",
|
| 18 |
+
"\n",
|
| 19 |
+
"Optional dependencies:\n",
|
| 20 |
+
"Pytorch Ignite version: NOT INSTALLED or UNKNOWN VERSION.\n",
|
| 21 |
+
"ITK version: NOT INSTALLED or UNKNOWN VERSION.\n",
|
| 22 |
+
"Nibabel version: 5.2.1\n",
|
| 23 |
+
"scikit-image version: NOT INSTALLED or UNKNOWN VERSION.\n",
|
| 24 |
+
"scipy version: 1.11.4\n",
|
| 25 |
+
"Pillow version: 10.1.0\n",
|
| 26 |
+
"Tensorboard version: 2.16.2\n",
|
| 27 |
+
"gdown version: NOT INSTALLED or UNKNOWN VERSION.\n",
|
| 28 |
+
"TorchVision version: 0.14.0+cu116\n",
|
| 29 |
+
"tqdm version: 4.66.1\n",
|
| 30 |
+
"lmdb version: NOT INSTALLED or UNKNOWN VERSION.\n",
|
| 31 |
+
"psutil version: 5.9.8\n",
|
| 32 |
+
"pandas version: 2.2.1\n",
|
| 33 |
+
"einops version: 0.7.0\n",
|
| 34 |
+
"transformers version: 4.35.2\n",
|
| 35 |
+
"mlflow version: NOT INSTALLED or UNKNOWN VERSION.\n",
|
| 36 |
+
"pynrrd version: NOT INSTALLED or UNKNOWN VERSION.\n",
|
| 37 |
+
"clearml version: NOT INSTALLED or UNKNOWN VERSION.\n",
|
| 38 |
+
"\n",
|
| 39 |
+
"For details about installing the optional dependencies, please visit:\n",
|
| 40 |
+
" https://docs.monai.io/en/latest/installation.html#installing-the-recommended-dependencies\n",
|
| 41 |
+
"\n"
|
| 42 |
+
]
|
| 43 |
+
}
|
| 44 |
+
],
|
| 45 |
+
"source": [
|
| 46 |
+
"\n",
|
| 47 |
+
"import matplotlib.pyplot as plt\n",
|
| 48 |
+
"import numpy as np\n",
|
| 49 |
+
"from monai.config import print_config\n",
|
| 50 |
+
"from monai.losses import DiceLoss\n",
|
| 51 |
+
"from monai.inferers import sliding_window_inference\n",
|
| 52 |
+
"from monai.transforms import MapTransform\n",
|
| 53 |
+
"from monai.data import DataLoader, Dataset\n",
|
| 54 |
+
"from monai.utils import set_determinism\n",
|
| 55 |
+
"from monai import transforms\n",
|
| 56 |
+
"import torch\n",
|
| 57 |
+
"\n",
|
| 58 |
+
"print_config()"
|
| 59 |
+
]
|
| 60 |
+
},
|
| 61 |
+
{
|
| 62 |
+
"cell_type": "code",
|
| 63 |
+
"execution_count": 3,
|
| 64 |
+
"metadata": {},
|
| 65 |
+
"outputs": [],
|
| 66 |
+
"source": [
|
| 67 |
+
"set_determinism(seed=0)"
|
| 68 |
+
]
|
| 69 |
+
},
|
| 70 |
+
{
|
| 71 |
+
"cell_type": "code",
|
| 72 |
+
"execution_count": 9,
|
| 73 |
+
"metadata": {},
|
| 74 |
+
"outputs": [
|
| 75 |
+
{
|
| 76 |
+
"name": "stdout",
|
| 77 |
+
"output_type": "stream",
|
| 78 |
+
"text": [
|
| 79 |
+
"SỠlượng mẫu trong '/app/brats_2021_task1/BraTS2021_Training_Data' là : 1251\n"
|
| 80 |
+
]
|
| 81 |
+
}
|
| 82 |
+
],
|
| 83 |
+
"source": [
|
| 84 |
+
"import os\n",
|
| 85 |
+
"\n",
|
| 86 |
+
"parent_folder_path = '/app/brats_2021_task1/BraTS2021_Training_Data'\n",
|
| 87 |
+
"subfolders = [f for f in os.listdir(parent_folder_path) if os.path.isdir(os.path.join(parent_folder_path, f))]\n",
|
| 88 |
+
"num_folders = len(subfolders)\n",
|
| 89 |
+
"print(f\"SỠlượng mẫu trong '{parent_folder_path}' là : {num_folders}\")"
|
| 90 |
+
]
|
| 91 |
+
},
|
| 92 |
+
{
|
| 93 |
+
"cell_type": "code",
|
| 94 |
+
"execution_count": null,
|
| 95 |
+
"metadata": {},
|
| 96 |
+
"outputs": [],
|
| 97 |
+
"source": [
|
| 98 |
+
"import os\n",
|
| 99 |
+
"import json\n",
|
| 100 |
+
"\n",
|
| 101 |
+
"folder_data = []\n",
|
| 102 |
+
"\n",
|
| 103 |
+
"for fold_number in os.listdir(parent_folder_path):\n",
|
| 104 |
+
" fold_path = os.path.join(parent_folder_path, fold_number)\n",
|
| 105 |
+
"\n",
|
| 106 |
+
" if os.path.isdir(fold_path):\n",
|
| 107 |
+
" entry = {\"fold\": 0, \"image\": [], \"label\": \"\"}\n",
|
| 108 |
+
"\n",
|
| 109 |
+
" for file_type in ['flair', 't1ce', 't1', 't2']:\n",
|
| 110 |
+
" file_name = f\"{fold_number}_{file_type}.nii.gz\"\n",
|
| 111 |
+
" file_path = os.path.join(fold_path, file_name)\n",
|
| 112 |
+
"\n",
|
| 113 |
+
" if os.path.exists(file_path):\n",
|
| 114 |
+
"\n",
|
| 115 |
+
" entry[\"image\"].append(os.path.abspath(file_path))\n",
|
| 116 |
+
"\n",
|
| 117 |
+
" label_name = f\"{fold_number}_seg.nii.gz\"\n",
|
| 118 |
+
" label_path = os.path.join(fold_path, label_name)\n",
|
| 119 |
+
" if os.path.exists(label_path):\n",
|
| 120 |
+
" entry[\"label\"] = os.path.abspath(label_path)\n",
|
| 121 |
+
"\n",
|
| 122 |
+
" folder_data.append(entry)\n",
|
| 123 |
+
"\n",
|
| 124 |
+
"\n",
|
| 125 |
+
"json_data = {\"training\": folder_data}\n",
|
| 126 |
+
"\n",
|
| 127 |
+
"json_file_path = '/app/info.json'\n",
|
| 128 |
+
"with open(json_file_path, 'w') as json_file:\n",
|
| 129 |
+
" json.dump(json_data, json_file, indent=2)\n",
|
| 130 |
+
"\n",
|
| 131 |
+
"print(f\"ThΓ΄ng tin ΔΓ£ Δược ghi vΓ o {json_file_path}\")\n"
|
| 132 |
+
]
|
| 133 |
+
},
|
| 134 |
+
{
|
| 135 |
+
"cell_type": "code",
|
| 136 |
+
"execution_count": 5,
|
| 137 |
+
"metadata": {},
|
| 138 |
+
"outputs": [],
|
| 139 |
+
"source": [
|
| 140 |
+
"class ConvertToMultiChannelBasedOnBratsClassesd(MapTransform):\n",
|
| 141 |
+
" \"\"\"\n",
|
| 142 |
+
" Convert labels to multi channels based on brats classes:\n",
|
| 143 |
+
" label 1 is the necrotic and non-enhancing tumor core\n",
|
| 144 |
+
" label 2 is the peritumoral edema\n",
|
| 145 |
+
" label 4 is the GD-enhancing tumor\n",
|
| 146 |
+
" The possible classes are TC (Tumor core), WT (Whole tumor)\n",
|
| 147 |
+
" and ET (Enhancing tumor).\n",
|
| 148 |
+
"\n",
|
| 149 |
+
" \"\"\"\n",
|
| 150 |
+
"\n",
|
| 151 |
+
" def __call__(self, data):\n",
|
| 152 |
+
" d = dict(data)\n",
|
| 153 |
+
" for key in self.keys:\n",
|
| 154 |
+
" result = []\n",
|
| 155 |
+
" # merge label 1 and label 4 to construct TC\n",
|
| 156 |
+
" result.append(np.logical_or(d[key] == 1, d[key] == 4))\n",
|
| 157 |
+
" # merge labels 1, 2 and 4 to construct WT\n",
|
| 158 |
+
" result.append(\n",
|
| 159 |
+
" np.logical_or(\n",
|
| 160 |
+
" np.logical_or(d[key] == 1, d[key] == 4), d[key] == 2\n",
|
| 161 |
+
" )\n",
|
| 162 |
+
" )\n",
|
| 163 |
+
" # label 4 is ET\n",
|
| 164 |
+
" result.append(d[key] == 4)\n",
|
| 165 |
+
" d[key] = np.stack(result, axis=0).astype(np.float32)\n",
|
| 166 |
+
" return d"
|
| 167 |
+
]
|
| 168 |
+
},
|
| 169 |
+
{
|
| 170 |
+
"cell_type": "code",
|
| 171 |
+
"execution_count": 6,
|
| 172 |
+
"metadata": {},
|
| 173 |
+
"outputs": [],
|
| 174 |
+
"source": [
|
| 175 |
+
"def datafold_read(datalist, basedir, fold=0, key=\"training\"):\n",
|
| 176 |
+
" with open(datalist) as f:\n",
|
| 177 |
+
" json_data = json.load(f)\n",
|
| 178 |
+
"\n",
|
| 179 |
+
" json_data = json_data[key]\n",
|
| 180 |
+
"\n",
|
| 181 |
+
" for d in json_data:\n",
|
| 182 |
+
" for k in d:\n",
|
| 183 |
+
" if isinstance(d[k], list):\n",
|
| 184 |
+
" d[k] = [os.path.join(basedir, iv) for iv in d[k]]\n",
|
| 185 |
+
" elif isinstance(d[k], str):\n",
|
| 186 |
+
" d[k] = os.path.join(basedir, d[k]) if len(d[k]) > 0 else d[k]\n",
|
| 187 |
+
"\n",
|
| 188 |
+
" tr = []\n",
|
| 189 |
+
" val = []\n",
|
| 190 |
+
" for d in json_data:\n",
|
| 191 |
+
" if \"fold\" in d and d[\"fold\"] == fold:\n",
|
| 192 |
+
" val.append(d)\n",
|
| 193 |
+
" else:\n",
|
| 194 |
+
" tr.append(d)\n",
|
| 195 |
+
"\n",
|
| 196 |
+
" return tr, val"
|
| 197 |
+
]
|
| 198 |
+
},
|
| 199 |
+
{
|
| 200 |
+
"cell_type": "code",
|
| 201 |
+
"execution_count": 7,
|
| 202 |
+
"metadata": {},
|
| 203 |
+
"outputs": [],
|
| 204 |
+
"source": [
|
| 205 |
+
"def split_train_test(datalist, basedir, fold,test_size = 0.2, volume : float = None) :\n",
|
| 206 |
+
" train_files, _ = datafold_read(datalist=datalist, basedir=basedir, fold=fold)\n",
|
| 207 |
+
" from sklearn.model_selection import train_test_split\n",
|
| 208 |
+
" if volume != None :\n",
|
| 209 |
+
" train_files, _ = train_test_split(train_files,test_size=volume,random_state=42)\n",
|
| 210 |
+
" \n",
|
| 211 |
+
" train_files,validation_files = train_test_split(train_files,test_size=test_size, random_state=42)\n",
|
| 212 |
+
" \n",
|
| 213 |
+
" validation_files,test_files = train_test_split(validation_files,test_size=test_size, random_state=42)\n",
|
| 214 |
+
" return train_files, validation_files, test_files"
|
| 215 |
+
]
|
| 216 |
+
},
|
| 217 |
+
{
|
| 218 |
+
"cell_type": "code",
|
| 219 |
+
"execution_count": 8,
|
| 220 |
+
"metadata": {},
|
| 221 |
+
"outputs": [],
|
| 222 |
+
"source": [
|
| 223 |
+
"def get_loader(batch_size, data_dir, json_list, fold, roi,volume :float = None,test_size = 0.2):\n",
|
| 224 |
+
" train_files,validation_files,test_files = split_train_test(datalist = json_list,basedir = data_dir,test_size=test_size,fold = fold,volume= volume)\n",
|
| 225 |
+
" \n",
|
| 226 |
+
" train_transform = transforms.Compose(\n",
|
| 227 |
+
" [\n",
|
| 228 |
+
" transforms.LoadImaged(keys=[\"image\", \"label\"]),\n",
|
| 229 |
+
" transforms.ConvertToMultiChannelBasedOnBratsClassesd(keys=\"label\"),\n",
|
| 230 |
+
" transforms.CropForegroundd(\n",
|
| 231 |
+
" keys=[\"image\", \"label\"],\n",
|
| 232 |
+
" source_key=\"image\",\n",
|
| 233 |
+
" k_divisible=[roi[0], roi[1], roi[2]],\n",
|
| 234 |
+
" ),\n",
|
| 235 |
+
" transforms.RandSpatialCropd(\n",
|
| 236 |
+
" keys=[\"image\", \"label\"],\n",
|
| 237 |
+
" roi_size=[roi[0], roi[1], roi[2]],\n",
|
| 238 |
+
" random_size=False,\n",
|
| 239 |
+
" ),\n",
|
| 240 |
+
" transforms.RandFlipd(keys=[\"image\", \"label\"], prob=0.5, spatial_axis=0),\n",
|
| 241 |
+
" transforms.RandFlipd(keys=[\"image\", \"label\"], prob=0.5, spatial_axis=1),\n",
|
| 242 |
+
" transforms.RandFlipd(keys=[\"image\", \"label\"], prob=0.5, spatial_axis=2),\n",
|
| 243 |
+
" transforms.NormalizeIntensityd(keys=\"image\", nonzero=True, channel_wise=True),\n",
|
| 244 |
+
" transforms.RandScaleIntensityd(keys=\"image\", factors=0.1, prob=1.0),\n",
|
| 245 |
+
" transforms.RandShiftIntensityd(keys=\"image\", offsets=0.1, prob=1.0),\n",
|
| 246 |
+
" ]\n",
|
| 247 |
+
" )\n",
|
| 248 |
+
" val_transform = transforms.Compose(\n",
|
| 249 |
+
" [\n",
|
| 250 |
+
" transforms.LoadImaged(keys=[\"image\", \"label\"]),\n",
|
| 251 |
+
" transforms.ConvertToMultiChannelBasedOnBratsClassesd(keys=\"label\"),\n",
|
| 252 |
+
" transforms.NormalizeIntensityd(keys=\"image\", nonzero=True, channel_wise=True),\n",
|
| 253 |
+
" ]\n",
|
| 254 |
+
" )\n",
|
| 255 |
+
"\n",
|
| 256 |
+
" train_ds = Dataset(data=train_files, transform=train_transform)\n",
|
| 257 |
+
" train_loader = DataLoader(\n",
|
| 258 |
+
" train_ds,\n",
|
| 259 |
+
" batch_size=batch_size,\n",
|
| 260 |
+
" shuffle=True,\n",
|
| 261 |
+
" num_workers=2,\n",
|
| 262 |
+
" pin_memory=True,\n",
|
| 263 |
+
" )\n",
|
| 264 |
+
" val_ds = Dataset(data=validation_files, transform=val_transform)\n",
|
| 265 |
+
" val_loader = DataLoader(\n",
|
| 266 |
+
" val_ds,\n",
|
| 267 |
+
" batch_size=1,\n",
|
| 268 |
+
" shuffle=False,\n",
|
| 269 |
+
" num_workers=2,\n",
|
| 270 |
+
" pin_memory=True,\n",
|
| 271 |
+
" )\n",
|
| 272 |
+
" test_ds = Dataset(data=test_files, transform=val_transform)\n",
|
| 273 |
+
" test_loader = DataLoader(\n",
|
| 274 |
+
" test_ds,\n",
|
| 275 |
+
" batch_size=1,\n",
|
| 276 |
+
" shuffle=False,\n",
|
| 277 |
+
" num_workers=2,\n",
|
| 278 |
+
" pin_memory=True,\n",
|
| 279 |
+
" )\n",
|
| 280 |
+
" return train_loader, val_loader,test_loader"
|
| 281 |
+
]
|
| 282 |
+
},
|
| 283 |
+
{
|
| 284 |
+
"cell_type": "code",
|
| 285 |
+
"execution_count": 9,
|
| 286 |
+
"metadata": {},
|
| 287 |
+
"outputs": [
|
| 288 |
+
{
|
| 289 |
+
"name": "stderr",
|
| 290 |
+
"output_type": "stream",
|
| 291 |
+
"text": [
|
| 292 |
+
"/usr/local/lib/python3.9/site-packages/monai/utils/deprecate_utils.py:321: FutureWarning: monai.transforms.croppad.dictionary CropForegroundd.__init__:allow_smaller: Current default value of argument `allow_smaller=True` has been deprecated since version 1.2. It will be changed to `allow_smaller=False` in version 1.5.\n",
|
| 293 |
+
" warn_deprecated(argname, msg, warning_category)\n"
|
| 294 |
+
]
|
| 295 |
+
}
|
| 296 |
+
],
|
| 297 |
+
"source": [
|
| 298 |
+
"import json\n",
|
| 299 |
+
"data_dir = \"/app/brats_2021_task1\"\n",
|
| 300 |
+
"json_list = \"/app/info.json\"\n",
|
| 301 |
+
"roi = (128, 128, 128)\n",
|
| 302 |
+
"batch_size = 1\n",
|
| 303 |
+
"sw_batch_size = 2\n",
|
| 304 |
+
"fold = 1\n",
|
| 305 |
+
"infer_overlap = 0.5\n",
|
| 306 |
+
"max_epochs = 100\n",
|
| 307 |
+
"val_every = 10\n",
|
| 308 |
+
"train_loader, val_loader,test_loader = get_loader(batch_size, data_dir, json_list, fold, roi, volume=0.5, test_size=0.2)"
|
| 309 |
+
]
|
| 310 |
+
},
|
| 311 |
+
{
|
| 312 |
+
"cell_type": "code",
|
| 313 |
+
"execution_count": 45,
|
| 314 |
+
"metadata": {},
|
| 315 |
+
"outputs": [
|
| 316 |
+
{
|
| 317 |
+
"data": {
|
| 318 |
+
"text/plain": [
|
| 319 |
+
"100"
|
| 320 |
+
]
|
| 321 |
+
},
|
| 322 |
+
"execution_count": 45,
|
| 323 |
+
"metadata": {},
|
| 324 |
+
"output_type": "execute_result"
|
| 325 |
+
}
|
| 326 |
+
],
|
| 327 |
+
"source": [
|
| 328 |
+
"len(val_loader)"
|
| 329 |
+
]
|
| 330 |
+
},
|
| 331 |
+
{
|
| 332 |
+
"cell_type": "code",
|
| 333 |
+
"execution_count": 10,
|
| 334 |
+
"metadata": {},
|
| 335 |
+
"outputs": [],
|
| 336 |
+
"source": [
|
| 337 |
+
"os.environ[\"CUDA_DEVICE_ORDER\"] = \"PCI_BUS_ID\"\n",
|
| 338 |
+
"device = torch.device(\"cuda\" if torch.cuda.is_available() else \"cpu\")"
|
| 339 |
+
]
|
| 340 |
+
},
|
| 341 |
+
{
|
| 342 |
+
"cell_type": "markdown",
|
| 343 |
+
"metadata": {},
|
| 344 |
+
"source": [
|
| 345 |
+
"#### Model design, base on SegResNet, VAE and TransBTS"
|
| 346 |
+
]
|
| 347 |
+
},
|
| 348 |
+
{
|
| 349 |
+
"cell_type": "code",
|
| 350 |
+
"execution_count": 11,
|
| 351 |
+
"metadata": {},
|
| 352 |
+
"outputs": [],
|
| 353 |
+
"source": [
|
| 354 |
+
"import torch\n",
|
| 355 |
+
"import torch.nn as nn\n",
|
| 356 |
+
"\n",
|
| 357 |
+
"#Re-use from encoder block\n",
|
| 358 |
+
"def normalization(planes, norm = 'instance'):\n",
|
| 359 |
+
" if norm == 'bn':\n",
|
| 360 |
+
" m = nn.BatchNorm3d(planes)\n",
|
| 361 |
+
" elif norm == 'gn':\n",
|
| 362 |
+
" m = nn.GroupNorm(8, planes)\n",
|
| 363 |
+
" elif norm == 'instance':\n",
|
| 364 |
+
" m = nn.InstanceNorm3d(planes)\n",
|
| 365 |
+
" else:\n",
|
| 366 |
+
" raise ValueError(\"Does not support this kind of norm.\")\n",
|
| 367 |
+
" return m\n",
|
| 368 |
+
"class ResNetBlock(nn.Module):\n",
|
| 369 |
+
" def __init__(self, in_channels, norm = 'instance'):\n",
|
| 370 |
+
" super().__init__()\n",
|
| 371 |
+
" self.resnetblock = nn.Sequential(\n",
|
| 372 |
+
" normalization(in_channels, norm = norm),\n",
|
| 373 |
+
" nn.LeakyReLU(0.2, inplace=True),\n",
|
| 374 |
+
" nn.Conv3d(in_channels, in_channels, kernel_size = 3, padding = 1),\n",
|
| 375 |
+
" normalization(in_channels, norm = norm),\n",
|
| 376 |
+
" nn.LeakyReLU(0.2, inplace=True),\n",
|
| 377 |
+
" nn.Conv3d(in_channels, in_channels, kernel_size = 3, padding = 1)\n",
|
| 378 |
+
" )\n",
|
| 379 |
+
"\n",
|
| 380 |
+
" def forward(self, x):\n",
|
| 381 |
+
" y = self.resnetblock(x)\n",
|
| 382 |
+
" return y + x"
|
| 383 |
+
]
|
| 384 |
+
},
|
| 385 |
+
{
|
| 386 |
+
"cell_type": "code",
|
| 387 |
+
"execution_count": 12,
|
| 388 |
+
"metadata": {},
|
| 389 |
+
"outputs": [],
|
| 390 |
+
"source": [
|
| 391 |
+
"\n",
|
| 392 |
+
"\n",
|
| 393 |
+
"from torch.nn import functional as F\n",
|
| 394 |
+
"\n",
|
| 395 |
+
"def calculate_total_dimension(a):\n",
|
| 396 |
+
" res = 1\n",
|
| 397 |
+
" for x in a:\n",
|
| 398 |
+
" res *= x\n",
|
| 399 |
+
" return res\n",
|
| 400 |
+
"\n",
|
| 401 |
+
"class VAE(nn.Module):\n",
|
| 402 |
+
" def __init__(self, input_shape, latent_dim, num_channels):\n",
|
| 403 |
+
" super().__init__()\n",
|
| 404 |
+
" self.input_shape = input_shape\n",
|
| 405 |
+
" self.in_channels = input_shape[1] #input_shape[0] is batch size\n",
|
| 406 |
+
" self.latent_dim = latent_dim\n",
|
| 407 |
+
" self.encoder_channels = self.in_channels // 16\n",
|
| 408 |
+
"\n",
|
| 409 |
+
" #Encoder\n",
|
| 410 |
+
" self.VAE_reshape = nn.Conv3d(self.in_channels, self.encoder_channels,\n",
|
| 411 |
+
" kernel_size = 3, stride = 2, padding=1)\n",
|
| 412 |
+
" # self.VAE_reshape = nn.Sequential(\n",
|
| 413 |
+
" # nn.GroupNorm(8, self.in_channels),\n",
|
| 414 |
+
" # nn.ReLU(),\n",
|
| 415 |
+
" # nn.Conv3d(self.in_channels, self.encoder_channels,\n",
|
| 416 |
+
" # kernel_size = 3, stride = 2, padding=1),\n",
|
| 417 |
+
" # )\n",
|
| 418 |
+
"\n",
|
| 419 |
+
" flatten_input_shape = calculate_total_dimension(input_shape)\n",
|
| 420 |
+
" flatten_input_shape_after_vae_reshape = \\\n",
|
| 421 |
+
" flatten_input_shape * self.encoder_channels // (8 * self.in_channels)\n",
|
| 422 |
+
"\n",
|
| 423 |
+
" #Convert from total dimension to latent space\n",
|
| 424 |
+
" self.to_latent_space = nn.Linear(\n",
|
| 425 |
+
" flatten_input_shape_after_vae_reshape // self.in_channels, 1)\n",
|
| 426 |
+
"\n",
|
| 427 |
+
" self.mean = nn.Linear(self.in_channels, self.latent_dim)\n",
|
| 428 |
+
" self.logvar = nn.Linear(self.in_channels, self.latent_dim)\n",
|
| 429 |
+
"# self.epsilon = nn.Parameter(torch.randn(1, latent_dim))\n",
|
| 430 |
+
"\n",
|
| 431 |
+
" #Decoder\n",
|
| 432 |
+
" self.to_original_dimension = nn.Linear(self.latent_dim, flatten_input_shape_after_vae_reshape)\n",
|
| 433 |
+
" self.Reconstruct = nn.Sequential(\n",
|
| 434 |
+
" nn.LeakyReLU(0.2, inplace=True),\n",
|
| 435 |
+
" nn.Conv3d(\n",
|
| 436 |
+
" self.encoder_channels, self.in_channels,\n",
|
| 437 |
+
" stride = 1, kernel_size = 1),\n",
|
| 438 |
+
" nn.Upsample(scale_factor=2, mode = 'nearest'),\n",
|
| 439 |
+
"\n",
|
| 440 |
+
" nn.Conv3d(\n",
|
| 441 |
+
" self.in_channels, self.in_channels // 2,\n",
|
| 442 |
+
" stride = 1, kernel_size = 1),\n",
|
| 443 |
+
" nn.Upsample(scale_factor=2, mode = 'nearest'),\n",
|
| 444 |
+
" ResNetBlock(self.in_channels // 2),\n",
|
| 445 |
+
"\n",
|
| 446 |
+
" nn.Conv3d(\n",
|
| 447 |
+
" self.in_channels // 2, self.in_channels // 4,\n",
|
| 448 |
+
" stride = 1, kernel_size = 1),\n",
|
| 449 |
+
" nn.Upsample(scale_factor=2, mode = 'nearest'),\n",
|
| 450 |
+
" ResNetBlock(self.in_channels // 4),\n",
|
| 451 |
+
"\n",
|
| 452 |
+
" nn.Conv3d(\n",
|
| 453 |
+
" self.in_channels // 4, self.in_channels // 8,\n",
|
| 454 |
+
" stride = 1, kernel_size = 1),\n",
|
| 455 |
+
" nn.Upsample(scale_factor=2, mode = 'nearest'),\n",
|
| 456 |
+
" ResNetBlock(self.in_channels // 8),\n",
|
| 457 |
+
"\n",
|
| 458 |
+
" nn.InstanceNorm3d(self.in_channels // 8),\n",
|
| 459 |
+
" nn.LeakyReLU(0.2, inplace=True),\n",
|
| 460 |
+
" nn.Conv3d(\n",
|
| 461 |
+
" self.in_channels // 8, num_channels,\n",
|
| 462 |
+
" kernel_size = 3, padding = 1),\n",
|
| 463 |
+
"# nn.Sigmoid()\n",
|
| 464 |
+
" )\n",
|
| 465 |
+
"\n",
|
| 466 |
+
"\n",
|
| 467 |
+
" def forward(self, x): #x has shape = input_shape\n",
|
| 468 |
+
" #Encoder\n",
|
| 469 |
+
" # print(x.shape)\n",
|
| 470 |
+
" x = self.VAE_reshape(x)\n",
|
| 471 |
+
" shape = x.shape\n",
|
| 472 |
+
"\n",
|
| 473 |
+
" x = x.view(self.in_channels, -1)\n",
|
| 474 |
+
" x = self.to_latent_space(x)\n",
|
| 475 |
+
" x = x.view(1, self.in_channels)\n",
|
| 476 |
+
"\n",
|
| 477 |
+
" mean = self.mean(x)\n",
|
| 478 |
+
" logvar = self.logvar(x)\n",
|
| 479 |
+
"# sigma = torch.exp(0.5 * logvar)\n",
|
| 480 |
+
" # Reparameter\n",
|
| 481 |
+
" epsilon = torch.randn_like(logvar)\n",
|
| 482 |
+
" sample = mean + epsilon * torch.exp(0.5*logvar)\n",
|
| 483 |
+
"\n",
|
| 484 |
+
" #Decoder\n",
|
| 485 |
+
" y = self.to_original_dimension(sample)\n",
|
| 486 |
+
" y = y.view(*shape)\n",
|
| 487 |
+
" return self.Reconstruct(y), mean, logvar\n",
|
| 488 |
+
" def total_params(self):\n",
|
| 489 |
+
" total = sum(p.numel() for p in self.parameters())\n",
|
| 490 |
+
" return format(total, ',')\n",
|
| 491 |
+
"\n",
|
| 492 |
+
" def total_trainable_params(self):\n",
|
| 493 |
+
" total_trainable = sum(p.numel() for p in self.parameters() if p.requires_grad)\n",
|
| 494 |
+
" return format(total_trainable, ',')\n",
|
| 495 |
+
"\n",
|
| 496 |
+
"\n",
|
| 497 |
+
"# x = torch.rand((1, 256, 16, 16, 16))\n",
|
| 498 |
+
"# vae = VAE(input_shape = x.shape, latent_dim = 256, num_channels = 4)\n",
|
| 499 |
+
"# y = vae(x)\n",
|
| 500 |
+
"# print(y[0].shape, y[1].shape, y[2].shape)\n",
|
| 501 |
+
"# print(vae.total_trainable_params())\n"
|
| 502 |
+
]
|
| 503 |
+
},
|
| 504 |
+
{
|
| 505 |
+
"cell_type": "code",
|
| 506 |
+
"execution_count": 13,
|
| 507 |
+
"metadata": {},
|
| 508 |
+
"outputs": [],
|
| 509 |
+
"source": [
|
| 510 |
+
"import torch\n",
|
| 511 |
+
"from torch import nn\n",
|
| 512 |
+
"\n",
|
| 513 |
+
"from einops import rearrange\n",
|
| 514 |
+
"from einops.layers.torch import Rearrange\n",
|
| 515 |
+
"\n",
|
| 516 |
+
"def pair(t):\n",
|
| 517 |
+
" return t if isinstance(t, tuple) else (t, t)\n",
|
| 518 |
+
"\n",
|
| 519 |
+
"\n",
|
| 520 |
+
"class PreNorm(nn.Module):\n",
|
| 521 |
+
" def __init__(self, dim, function):\n",
|
| 522 |
+
" super().__init__()\n",
|
| 523 |
+
" self.norm = nn.LayerNorm(dim)\n",
|
| 524 |
+
" self.function = function\n",
|
| 525 |
+
"\n",
|
| 526 |
+
" def forward(self, x):\n",
|
| 527 |
+
" return self.function(self.norm(x))\n",
|
| 528 |
+
"\n",
|
| 529 |
+
"\n",
|
| 530 |
+
"class FeedForward(nn.Module):\n",
|
| 531 |
+
" def __init__(self, dim, hidden_dim, dropout = 0.0):\n",
|
| 532 |
+
" super().__init__()\n",
|
| 533 |
+
" self.net = nn.Sequential(\n",
|
| 534 |
+
" nn.Linear(dim, hidden_dim),\n",
|
| 535 |
+
" nn.GELU(),\n",
|
| 536 |
+
" nn.Dropout(dropout),\n",
|
| 537 |
+
" nn.Linear(hidden_dim, dim),\n",
|
| 538 |
+
" nn.Dropout(dropout)\n",
|
| 539 |
+
" )\n",
|
| 540 |
+
"\n",
|
| 541 |
+
" def forward(self, x):\n",
|
| 542 |
+
" return self.net(x)\n",
|
| 543 |
+
"\n",
|
| 544 |
+
"class Attention(nn.Module):\n",
|
| 545 |
+
" def __init__(self, dim, heads, dim_head, dropout = 0.0):\n",
|
| 546 |
+
" super().__init__()\n",
|
| 547 |
+
" all_head_size = heads * dim_head\n",
|
| 548 |
+
" project_out = not (heads == 1 and dim_head == dim)\n",
|
| 549 |
+
"\n",
|
| 550 |
+
" self.heads = heads\n",
|
| 551 |
+
" self.scale = dim_head ** -0.5\n",
|
| 552 |
+
"\n",
|
| 553 |
+
" self.softmax = nn.Softmax(dim = -1)\n",
|
| 554 |
+
" self.to_qkv = nn.Linear(dim, all_head_size * 3, bias = False)\n",
|
| 555 |
+
"\n",
|
| 556 |
+
" self.to_out = nn.Sequential(\n",
|
| 557 |
+
" nn.Linear(all_head_size, dim),\n",
|
| 558 |
+
" nn.Dropout(dropout)\n",
|
| 559 |
+
" ) if project_out else nn.Identity()\n",
|
| 560 |
+
"\n",
|
| 561 |
+
" def forward(self, x):\n",
|
| 562 |
+
" qkv = self.to_qkv(x).chunk(3, dim = -1)\n",
|
| 563 |
+
" #(batch, heads * dim_head) -> (batch, all_head_size)\n",
|
| 564 |
+
" q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> b h n d', h = self.heads), qkv)\n",
|
| 565 |
+
"\n",
|
| 566 |
+
" dots = torch.matmul(q, k.transpose(-1, -2)) * self.scale\n",
|
| 567 |
+
"\n",
|
| 568 |
+
" atten = self.softmax(dots)\n",
|
| 569 |
+
"\n",
|
| 570 |
+
" out = torch.matmul(atten, v)\n",
|
| 571 |
+
" out = rearrange(out, 'b h n d -> b n (h d)')\n",
|
| 572 |
+
" return self.to_out(out)\n",
|
| 573 |
+
"\n",
|
| 574 |
+
"class Transformer(nn.Module):\n",
|
| 575 |
+
" def __init__(self, dim, depth, heads, dim_head, mlp_dim, dropout = 0.0):\n",
|
| 576 |
+
" super().__init__()\n",
|
| 577 |
+
" self.layers = nn.ModuleList([])\n",
|
| 578 |
+
" for _ in range(depth):\n",
|
| 579 |
+
" self.layers.append(nn.ModuleList([\n",
|
| 580 |
+
" PreNorm(dim, Attention(dim, heads, dim_head, dropout)),\n",
|
| 581 |
+
" PreNorm(dim, FeedForward(dim, mlp_dim, dropout))\n",
|
| 582 |
+
" ]))\n",
|
| 583 |
+
" def forward(self, x):\n",
|
| 584 |
+
" for attention, feedforward in self.layers:\n",
|
| 585 |
+
" x = attention(x) + x\n",
|
| 586 |
+
" x = feedforward(x) + x\n",
|
| 587 |
+
" return x\n",
|
| 588 |
+
"\n",
|
| 589 |
+
"class FixedPositionalEncoding(nn.Module):\n",
|
| 590 |
+
" def __init__(self, embedding_dim, max_length=768):\n",
|
| 591 |
+
" super(FixedPositionalEncoding, self).__init__()\n",
|
| 592 |
+
"\n",
|
| 593 |
+
" pe = torch.zeros(max_length, embedding_dim)\n",
|
| 594 |
+
" position = torch.arange(0, max_length, dtype=torch.float).unsqueeze(1)\n",
|
| 595 |
+
" div_term = torch.exp(\n",
|
| 596 |
+
" torch.arange(0, embedding_dim, 2).float()\n",
|
| 597 |
+
" * (-torch.log(torch.tensor(10000.0)) / embedding_dim)\n",
|
| 598 |
+
" )\n",
|
| 599 |
+
" pe[:, 0::2] = torch.sin(position * div_term)\n",
|
| 600 |
+
" pe[:, 1::2] = torch.cos(position * div_term)\n",
|
| 601 |
+
" pe = pe.unsqueeze(0).transpose(0, 1)\n",
|
| 602 |
+
" self.register_buffer('pe', pe)\n",
|
| 603 |
+
"\n",
|
| 604 |
+
" def forward(self, x):\n",
|
| 605 |
+
" x = x + self.pe[: x.size(0), :]\n",
|
| 606 |
+
" return x\n",
|
| 607 |
+
"\n",
|
| 608 |
+
"\n",
|
| 609 |
+
"class LearnedPositionalEncoding(nn.Module):\n",
|
| 610 |
+
" def __init__(self, embedding_dim, seq_length):\n",
|
| 611 |
+
" super(LearnedPositionalEncoding, self).__init__()\n",
|
| 612 |
+
" self.seq_length = seq_length\n",
|
| 613 |
+
" self.position_embeddings = nn.Parameter(torch.zeros(1, seq_length, embedding_dim)) #8x\n",
|
| 614 |
+
"\n",
|
| 615 |
+
" def forward(self, x, position_ids=None):\n",
|
| 616 |
+
" position_embeddings = self.position_embeddings\n",
|
| 617 |
+
"# print(x.shape, self.position_embeddings.shape)\n",
|
| 618 |
+
" return x + position_embeddings"
|
| 619 |
+
]
|
| 620 |
+
},
|
| 621 |
+
{
|
| 622 |
+
"cell_type": "code",
|
| 623 |
+
"execution_count": 14,
|
| 624 |
+
"metadata": {},
|
| 625 |
+
"outputs": [],
|
| 626 |
+
"source": [
|
| 627 |
+
"### Encoder ####\n",
|
| 628 |
+
"import torch.nn as nn\n",
|
| 629 |
+
"import torch.nn.functional as F\n",
|
| 630 |
+
"\n",
|
| 631 |
+
"class InitConv(nn.Module):\n",
|
| 632 |
+
" def __init__(self, in_channels = 4, out_channels = 16, dropout = 0.2):\n",
|
| 633 |
+
" super().__init__()\n",
|
| 634 |
+
" self.layer = nn.Sequential(\n",
|
| 635 |
+
" nn.Conv3d(in_channels, out_channels, kernel_size = 3, padding = 1),\n",
|
| 636 |
+
" nn.Dropout3d(dropout)\n",
|
| 637 |
+
" )\n",
|
| 638 |
+
" def forward(self, x):\n",
|
| 639 |
+
" y = self.layer(x)\n",
|
| 640 |
+
" return y\n",
|
| 641 |
+
"\n",
|
| 642 |
+
"\n",
|
| 643 |
+
"class DownSample(nn.Module):\n",
|
| 644 |
+
" def __init__(self, in_channels, out_channels):\n",
|
| 645 |
+
" super().__init__()\n",
|
| 646 |
+
" self.conv = nn.Conv3d(in_channels, out_channels, kernel_size = 3, stride = 2, padding = 1)\n",
|
| 647 |
+
" def forward(self, x):\n",
|
| 648 |
+
" return self.conv(x)\n",
|
| 649 |
+
"\n",
|
| 650 |
+
"class Encoder(nn.Module):\n",
|
| 651 |
+
" def __init__(self, in_channels, base_channels, dropout = 0.2):\n",
|
| 652 |
+
" super().__init__()\n",
|
| 653 |
+
"\n",
|
| 654 |
+
" self.init_conv = InitConv(in_channels, base_channels, dropout = dropout)\n",
|
| 655 |
+
" self.encoder_block1 = ResNetBlock(in_channels = base_channels)\n",
|
| 656 |
+
" self.encoder_down1 = DownSample(base_channels, base_channels * 2)\n",
|
| 657 |
+
"\n",
|
| 658 |
+
" self.encoder_block2_1 = ResNetBlock(base_channels * 2)\n",
|
| 659 |
+
" self.encoder_block2_2 = ResNetBlock(base_channels * 2)\n",
|
| 660 |
+
" self.encoder_down2 = DownSample(base_channels * 2, base_channels * 4)\n",
|
| 661 |
+
"\n",
|
| 662 |
+
" self.encoder_block3_1 = ResNetBlock(base_channels * 4)\n",
|
| 663 |
+
" self.encoder_block3_2 = ResNetBlock(base_channels * 4)\n",
|
| 664 |
+
" self.encoder_down3 = DownSample(base_channels * 4, base_channels * 8)\n",
|
| 665 |
+
"\n",
|
| 666 |
+
" self.encoder_block4_1 = ResNetBlock(base_channels * 8)\n",
|
| 667 |
+
" self.encoder_block4_2 = ResNetBlock(base_channels * 8)\n",
|
| 668 |
+
" self.encoder_block4_3 = ResNetBlock(base_channels * 8)\n",
|
| 669 |
+
" self.encoder_block4_4 = ResNetBlock(base_channels * 8)\n",
|
| 670 |
+
" # self.encoder_down3 = EncoderDown(base_channels * 8, base_channels * 16)\n",
|
| 671 |
+
" def forward(self, x):\n",
|
| 672 |
+
" x = self.init_conv(x) #(1, 16, 128, 128, 128)\n",
|
| 673 |
+
"\n",
|
| 674 |
+
" x1 = self.encoder_block1(x)\n",
|
| 675 |
+
" x1_down = self.encoder_down1(x1) #(1, 32, 64, 64, 64)\n",
|
| 676 |
+
"\n",
|
| 677 |
+
" x2 = self.encoder_block2_2(self.encoder_block2_1(x1_down))\n",
|
| 678 |
+
" x2_down = self.encoder_down2(x2) #(1, 64, 32, 32, 32)\n",
|
| 679 |
+
"\n",
|
| 680 |
+
" x3 = self.encoder_block3_2(self.encoder_block3_1(x2_down))\n",
|
| 681 |
+
" x3_down = self.encoder_down3(x3) #(1, 128, 16, 16, 16)\n",
|
| 682 |
+
"\n",
|
| 683 |
+
" output = self.encoder_block4_4(\n",
|
| 684 |
+
" self.encoder_block4_3(\n",
|
| 685 |
+
" self.encoder_block4_2(\n",
|
| 686 |
+
" self.encoder_block4_1(x3_down)))) #(1, 256, 16, 16, 16)\n",
|
| 687 |
+
" return x1, x2, x3, output\n",
|
| 688 |
+
"\n",
|
| 689 |
+
"# x = torch.rand((1, 4, 128, 128, 128))\n",
|
| 690 |
+
"# Enc = Encoder(4, 32)\n",
|
| 691 |
+
"# _, _, _, y = Enc(x)\n",
|
| 692 |
+
"# print(y.shape) (1,256,16,16)"
|
| 693 |
+
]
|
| 694 |
+
},
|
| 695 |
+
{
|
| 696 |
+
"cell_type": "code",
|
| 697 |
+
"execution_count": 15,
|
| 698 |
+
"metadata": {},
|
| 699 |
+
"outputs": [],
|
| 700 |
+
"source": [
|
| 701 |
+
"### Decoder ####\n",
|
| 702 |
+
"\n",
|
| 703 |
+
"import torch\n",
|
| 704 |
+
"import torch.nn as nn\n",
|
| 705 |
+
"\n",
|
| 706 |
+
"\n",
|
| 707 |
+
"class Upsample(nn.Module):\n",
|
| 708 |
+
" def __init__(self, in_channel, out_channel):\n",
|
| 709 |
+
" super().__init__()\n",
|
| 710 |
+
" self.conv1 = nn.Conv3d(in_channel, out_channel, kernel_size = 1)\n",
|
| 711 |
+
" self.deconv = nn.ConvTranspose3d(out_channel, out_channel, kernel_size = 2, stride = 2)\n",
|
| 712 |
+
" self.conv2 = nn.Conv3d(out_channel * 2, out_channel, kernel_size = 1)\n",
|
| 713 |
+
"\n",
|
| 714 |
+
" def forward(self, prev, x):\n",
|
| 715 |
+
" x = self.deconv(self.conv1(x))\n",
|
| 716 |
+
" y = torch.cat((prev, x), dim = 1)\n",
|
| 717 |
+
" return self.conv2(y)\n",
|
| 718 |
+
"\n",
|
| 719 |
+
"class FinalConv(nn.Module): # Input channels are equal to output channels\n",
|
| 720 |
+
" def __init__(self, in_channels, out_channels=32, norm=\"instance\"):\n",
|
| 721 |
+
" super(FinalConv, self).__init__()\n",
|
| 722 |
+
" if norm == \"batch\":\n",
|
| 723 |
+
" norm_layer = nn.BatchNorm3d(num_features=in_channels)\n",
|
| 724 |
+
" elif norm == \"group\":\n",
|
| 725 |
+
" norm_layer = nn.GroupNorm(num_groups=8, num_channels=in_channels)\n",
|
| 726 |
+
" elif norm == 'instance':\n",
|
| 727 |
+
" norm_layer = nn.InstanceNorm3d(in_channels)\n",
|
| 728 |
+
"\n",
|
| 729 |
+
" self.layer = nn.Sequential(\n",
|
| 730 |
+
" norm_layer,\n",
|
| 731 |
+
" nn.LeakyReLU(0.2, inplace=True),\n",
|
| 732 |
+
" nn.Conv3d(in_channels=in_channels, out_channels=out_channels, kernel_size=3, stride=1, padding=1)\n",
|
| 733 |
+
" )\n",
|
| 734 |
+
" def forward(self, x):\n",
|
| 735 |
+
" return self.layer(x)\n",
|
| 736 |
+
"\n",
|
| 737 |
+
"class Decoder(nn.Module):\n",
|
| 738 |
+
" def __init__(self, img_dim, patch_dim, embedding_dim, num_classes = 3):\n",
|
| 739 |
+
" super().__init__()\n",
|
| 740 |
+
" self.img_dim = img_dim\n",
|
| 741 |
+
" self.patch_dim = patch_dim\n",
|
| 742 |
+
" self.embedding_dim = embedding_dim\n",
|
| 743 |
+
"\n",
|
| 744 |
+
" self.decoder_upsample_1 = Upsample(128, 64)\n",
|
| 745 |
+
" self.decoder_block_1 = ResNetBlock(64)\n",
|
| 746 |
+
"\n",
|
| 747 |
+
" self.decoder_upsample_2 = Upsample(64, 32)\n",
|
| 748 |
+
" self.decoder_block_2 = ResNetBlock(32)\n",
|
| 749 |
+
"\n",
|
| 750 |
+
" self.decoder_upsample_3 = Upsample(32, 16)\n",
|
| 751 |
+
" self.decoder_block_3 = ResNetBlock(16)\n",
|
| 752 |
+
"\n",
|
| 753 |
+
" self.endconv = FinalConv(16, num_classes)\n",
|
| 754 |
+
" # self.normalize = nn.Sigmoid()\n",
|
| 755 |
+
"\n",
|
| 756 |
+
" def forward(self, x1, x2, x3, x):\n",
|
| 757 |
+
" x = self.decoder_upsample_1(x3, x)\n",
|
| 758 |
+
" x = self.decoder_block_1(x)\n",
|
| 759 |
+
"\n",
|
| 760 |
+
" x = self.decoder_upsample_2(x2, x)\n",
|
| 761 |
+
" x = self.decoder_block_2(x)\n",
|
| 762 |
+
"\n",
|
| 763 |
+
" x = self.decoder_upsample_3(x1, x)\n",
|
| 764 |
+
" x = self.decoder_block_3(x)\n",
|
| 765 |
+
"\n",
|
| 766 |
+
" y = self.endconv(x)\n",
|
| 767 |
+
" return y"
|
| 768 |
+
]
|
| 769 |
+
},
|
| 770 |
+
{
|
| 771 |
+
"cell_type": "code",
|
| 772 |
+
"execution_count": 16,
|
| 773 |
+
"metadata": {},
|
| 774 |
+
"outputs": [],
|
| 775 |
+
"source": [
|
| 776 |
+
"class FeatureMapping(nn.Module):\n",
|
| 777 |
+
" def __init__(self, in_channel, out_channel, norm = 'instance'):\n",
|
| 778 |
+
" super().__init__()\n",
|
| 779 |
+
" if norm == 'bn':\n",
|
| 780 |
+
" norm_layer_1 = nn.BatchNorm3d(out_channel)\n",
|
| 781 |
+
" norm_layer_2 = nn.BatchNorm3d(out_channel)\n",
|
| 782 |
+
" elif norm == 'gn':\n",
|
| 783 |
+
" norm_layer_1 = nn.GroupNorm(8, out_channel)\n",
|
| 784 |
+
" norm_layer_2 = nn.GroupNorm(8, out_channel)\n",
|
| 785 |
+
" elif norm == 'instance':\n",
|
| 786 |
+
" norm_layer_1 = nn.InstanceNorm3d(out_channel)\n",
|
| 787 |
+
" norm_layer_2 = nn.InstanceNorm3d(out_channel)\n",
|
| 788 |
+
" self.feature_mapping = nn.Sequential(\n",
|
| 789 |
+
" nn.Conv3d(in_channel, out_channel, kernel_size = 3, padding = 1),\n",
|
| 790 |
+
" norm_layer_1,\n",
|
| 791 |
+
" nn.LeakyReLU(0.2, inplace=True),\n",
|
| 792 |
+
" nn.Conv3d(out_channel, out_channel, kernel_size = 3, padding = 1),\n",
|
| 793 |
+
" norm_layer_2,\n",
|
| 794 |
+
" nn.LeakyReLU(0.2, inplace=True)\n",
|
| 795 |
+
" )\n",
|
| 796 |
+
"\n",
|
| 797 |
+
" def forward(self, x):\n",
|
| 798 |
+
" return self.feature_mapping(x)\n",
|
| 799 |
+
"\n",
|
| 800 |
+
"\n",
|
| 801 |
+
"class FeatureMapping1(nn.Module):\n",
|
| 802 |
+
" def __init__(self, in_channel, norm = 'instance'):\n",
|
| 803 |
+
" super().__init__()\n",
|
| 804 |
+
" if norm == 'bn':\n",
|
| 805 |
+
" norm_layer_1 = nn.BatchNorm3d(in_channel)\n",
|
| 806 |
+
" norm_layer_2 = nn.BatchNorm3d(in_channel)\n",
|
| 807 |
+
" elif norm == 'gn':\n",
|
| 808 |
+
" norm_layer_1 = nn.GroupNorm(8, in_channel)\n",
|
| 809 |
+
" norm_layer_2 = nn.GroupNorm(8, in_channel)\n",
|
| 810 |
+
" elif norm == 'instance':\n",
|
| 811 |
+
" norm_layer_1 = nn.InstanceNorm3d(in_channel)\n",
|
| 812 |
+
" norm_layer_2 = nn.InstanceNorm3d(in_channel)\n",
|
| 813 |
+
" self.feature_mapping1 = nn.Sequential(\n",
|
| 814 |
+
" nn.Conv3d(in_channel, in_channel, kernel_size = 3, padding = 1),\n",
|
| 815 |
+
" norm_layer_1,\n",
|
| 816 |
+
" nn.LeakyReLU(0.2, inplace=True),\n",
|
| 817 |
+
" nn.Conv3d(in_channel, in_channel, kernel_size = 3, padding = 1),\n",
|
| 818 |
+
" norm_layer_2,\n",
|
| 819 |
+
" nn.LeakyReLU(0.2, inplace=True)\n",
|
| 820 |
+
" )\n",
|
| 821 |
+
" def forward(self, x):\n",
|
| 822 |
+
" y = self.feature_mapping1(x)\n",
|
| 823 |
+
" return x + y #Resnet Like"
|
| 824 |
+
]
|
| 825 |
+
},
|
| 826 |
+
{
|
| 827 |
+
"cell_type": "code",
|
| 828 |
+
"execution_count": 17,
|
| 829 |
+
"metadata": {},
|
| 830 |
+
"outputs": [],
|
| 831 |
+
"source": [
|
| 832 |
+
"\n",
|
| 833 |
+
"class SegTransVAE(nn.Module):\n",
|
| 834 |
+
" def __init__(self, img_dim, patch_dim, num_channels, num_classes,\n",
|
| 835 |
+
" embedding_dim, num_heads, num_layers, hidden_dim, in_channels_vae,\n",
|
| 836 |
+
" dropout = 0.0, attention_dropout = 0.0,\n",
|
| 837 |
+
" conv_patch_representation = True, positional_encoding = 'learned',\n",
|
| 838 |
+
" use_VAE = False):\n",
|
| 839 |
+
"\n",
|
| 840 |
+
" super().__init__()\n",
|
| 841 |
+
" assert embedding_dim % num_heads == 0\n",
|
| 842 |
+
" assert img_dim[0] % patch_dim == 0 and img_dim[1] % patch_dim == 0 and img_dim[2] % patch_dim == 0\n",
|
| 843 |
+
"\n",
|
| 844 |
+
" self.img_dim = img_dim\n",
|
| 845 |
+
" self.embedding_dim = embedding_dim\n",
|
| 846 |
+
" self.num_heads = num_heads\n",
|
| 847 |
+
" self.num_classes = num_classes\n",
|
| 848 |
+
" self.patch_dim = patch_dim\n",
|
| 849 |
+
" self.num_channels = num_channels\n",
|
| 850 |
+
" self.in_channels_vae = in_channels_vae\n",
|
| 851 |
+
" self.dropout = dropout\n",
|
| 852 |
+
" self.attention_dropout = attention_dropout\n",
|
| 853 |
+
" self.conv_patch_representation = conv_patch_representation\n",
|
| 854 |
+
" self.use_VAE = use_VAE\n",
|
| 855 |
+
"\n",
|
| 856 |
+
" self.num_patches = int((img_dim[0] // patch_dim) * (img_dim[1] // patch_dim) * (img_dim[2] // patch_dim))\n",
|
| 857 |
+
" self.seq_length = self.num_patches\n",
|
| 858 |
+
" self.flatten_dim = 128 * num_channels\n",
|
| 859 |
+
"\n",
|
| 860 |
+
" self.linear_encoding = nn.Linear(self.flatten_dim, self.embedding_dim)\n",
|
| 861 |
+
" if positional_encoding == \"learned\":\n",
|
| 862 |
+
" self.position_encoding = LearnedPositionalEncoding(\n",
|
| 863 |
+
" self.embedding_dim, self.seq_length\n",
|
| 864 |
+
" )\n",
|
| 865 |
+
" elif positional_encoding == \"fixed\":\n",
|
| 866 |
+
" self.position_encoding = FixedPositionalEncoding(\n",
|
| 867 |
+
" self.embedding_dim,\n",
|
| 868 |
+
" )\n",
|
| 869 |
+
" self.pe_dropout = nn.Dropout(self.dropout)\n",
|
| 870 |
+
"\n",
|
| 871 |
+
" self.transformer = Transformer(\n",
|
| 872 |
+
" embedding_dim, num_layers, num_heads, embedding_dim // num_heads, hidden_dim, dropout\n",
|
| 873 |
+
" )\n",
|
| 874 |
+
" self.pre_head_ln = nn.LayerNorm(embedding_dim)\n",
|
| 875 |
+
"\n",
|
| 876 |
+
" if self.conv_patch_representation:\n",
|
| 877 |
+
" self.conv_x = nn.Conv3d(128, self.embedding_dim, kernel_size=3, stride=1, padding=1)\n",
|
| 878 |
+
" self.encoder = Encoder(self.num_channels, 16)\n",
|
| 879 |
+
" self.bn = nn.InstanceNorm3d(128)\n",
|
| 880 |
+
" self.relu = nn.LeakyReLU(0.2, inplace=True)\n",
|
| 881 |
+
" self.FeatureMapping = FeatureMapping(in_channel = self.embedding_dim, out_channel= self.in_channels_vae)\n",
|
| 882 |
+
" self.FeatureMapping1 = FeatureMapping1(in_channel = self.in_channels_vae)\n",
|
| 883 |
+
" self.decoder = Decoder(self.img_dim, self.patch_dim, self.embedding_dim, num_classes)\n",
|
| 884 |
+
"\n",
|
| 885 |
+
" self.vae_input = (1, self.in_channels_vae, img_dim[0] // 8, img_dim[1] // 8, img_dim[2] // 8)\n",
|
| 886 |
+
" if use_VAE:\n",
|
| 887 |
+
" self.vae = VAE(input_shape = self.vae_input , latent_dim= 256, num_channels= self.num_channels)\n",
|
| 888 |
+
" def encode(self, x):\n",
|
| 889 |
+
" if self.conv_patch_representation:\n",
|
| 890 |
+
" x1, x2, x3, x = self.encoder(x)\n",
|
| 891 |
+
" x = self.bn(x)\n",
|
| 892 |
+
" x = self.relu(x)\n",
|
| 893 |
+
" x = self.conv_x(x)\n",
|
| 894 |
+
" x = x.permute(0, 2, 3, 4, 1).contiguous()\n",
|
| 895 |
+
" x = x.view(x.size(0), -1, self.embedding_dim)\n",
|
| 896 |
+
" x = self.position_encoding(x)\n",
|
| 897 |
+
" x = self.pe_dropout(x)\n",
|
| 898 |
+
" x = self.transformer(x)\n",
|
| 899 |
+
" x = self.pre_head_ln(x)\n",
|
| 900 |
+
"\n",
|
| 901 |
+
" return x1, x2, x3, x\n",
|
| 902 |
+
"\n",
|
| 903 |
+
" def decode(self, x1, x2, x3, x):\n",
|
| 904 |
+
" #x: (1, 4096, 512) -> (1, 16, 16, 16, 512)\n",
|
| 905 |
+
"# print(\"In decode...\")\n",
|
| 906 |
+
"# print(\" x1: {} \\n x2: {} \\n x3: {} \\n x: {}\".format( x1.shape, x2.shape, x3.shape, x.shape))\n",
|
| 907 |
+
"# break\n",
|
| 908 |
+
" return self.decoder(x1, x2, x3, x)\n",
|
| 909 |
+
"\n",
|
| 910 |
+
" def forward(self, x, is_validation = True):\n",
|
| 911 |
+
" x1, x2, x3, x = self.encode(x)\n",
|
| 912 |
+
" x = x.view( x.size(0),\n",
|
| 913 |
+
" self.img_dim[0] // self.patch_dim,\n",
|
| 914 |
+
" self.img_dim[1] // self.patch_dim,\n",
|
| 915 |
+
" self.img_dim[2] // self.patch_dim,\n",
|
| 916 |
+
" self.embedding_dim)\n",
|
| 917 |
+
" x = x.permute(0, 4, 1, 2, 3).contiguous()\n",
|
| 918 |
+
" x = self.FeatureMapping(x)\n",
|
| 919 |
+
" x = self.FeatureMapping1(x)\n",
|
| 920 |
+
" if self.use_VAE and not is_validation:\n",
|
| 921 |
+
" vae_out, mu, sigma = self.vae(x)\n",
|
| 922 |
+
" y = self.decode(x1, x2, x3, x)\n",
|
| 923 |
+
" if self.use_VAE and not is_validation:\n",
|
| 924 |
+
" return y, vae_out, mu, sigma\n",
|
| 925 |
+
" else:\n",
|
| 926 |
+
" return y\n",
|
| 927 |
+
"\n",
|
| 928 |
+
"\n"
|
| 929 |
+
]
|
| 930 |
+
},
|
| 931 |
+
{
|
| 932 |
+
"cell_type": "code",
|
| 933 |
+
"execution_count": 18,
|
| 934 |
+
"metadata": {},
|
| 935 |
+
"outputs": [
|
| 936 |
+
{
|
| 937 |
+
"name": "stdout",
|
| 938 |
+
"output_type": "stream",
|
| 939 |
+
"text": [
|
| 940 |
+
"CUDA (GPU) is available. Using GPU.\n"
|
| 941 |
+
]
|
| 942 |
+
}
|
| 943 |
+
],
|
| 944 |
+
"source": [
|
| 945 |
+
"import torch\n",
|
| 946 |
+
"\n",
|
| 947 |
+
"# Check if CUDA (GPU support) is available\n",
|
| 948 |
+
"if torch.cuda.is_available():\n",
|
| 949 |
+
" device = torch.device(\"cuda:0\")\n",
|
| 950 |
+
" print(\"CUDA (GPU) is available. Using GPU.\")\n",
|
| 951 |
+
"else:\n",
|
| 952 |
+
" device = torch.device(\"cpu\")\n",
|
| 953 |
+
" print(\"CUDA (GPU) is not available. Using CPU.\")"
|
| 954 |
+
]
|
| 955 |
+
},
|
| 956 |
+
{
|
| 957 |
+
"cell_type": "code",
|
| 958 |
+
"execution_count": 18,
|
| 959 |
+
"metadata": {},
|
| 960 |
+
"outputs": [],
|
| 961 |
+
"source": [
|
| 962 |
+
"model = SegTransVAE(img_dim = (128, 128, 128),patch_dim= 8,num_channels =4,num_classes= 3,embedding_dim= 768,num_heads= 8,num_layers= 4, hidden_dim= 3072,in_channels_vae=128 , use_VAE = True)"
|
| 963 |
+
]
|
| 964 |
+
},
|
| 965 |
+
{
|
| 966 |
+
"cell_type": "code",
|
| 967 |
+
"execution_count": 28,
|
| 968 |
+
"metadata": {},
|
| 969 |
+
"outputs": [
|
| 970 |
+
{
|
| 971 |
+
"name": "stdout",
|
| 972 |
+
"output_type": "stream",
|
| 973 |
+
"text": [
|
| 974 |
+
"Tα»ng sα» tham sα» cα»§a mΓ΄ hΓ¬nh lΓ : 44727120\n",
|
| 975 |
+
"Tα»ng sα» tham sα» cαΊ§n tΓnh gradient cα»§a mΓ΄ hΓ¬nh lΓ : 44727120\n"
|
| 976 |
+
]
|
| 977 |
+
}
|
| 978 |
+
],
|
| 979 |
+
"source": [
|
| 980 |
+
"total_params = sum(p.numel() for p in model.parameters())\n",
|
| 981 |
+
"print(f'Tα»ng sα» tham sα» cα»§a mΓ΄ hΓ¬nh lΓ : {total_params}')\n",
|
| 982 |
+
"\n",
|
| 983 |
+
"total_params_requires_grad = sum(p.numel() for p in model.parameters() if p.requires_grad)\n",
|
| 984 |
+
"print(f'Tα»ng sα» tham sα» cαΊ§n tΓnh gradient cα»§a mΓ΄ hΓ¬nh lΓ : {total_params_requires_grad}')\n"
|
| 985 |
+
]
|
| 986 |
+
},
|
| 987 |
+
{
|
| 988 |
+
"cell_type": "code",
|
| 989 |
+
"execution_count": 19,
|
| 990 |
+
"metadata": {},
|
| 991 |
+
"outputs": [],
|
| 992 |
+
"source": [
|
| 993 |
+
"class Loss_VAE(nn.Module):\n",
|
| 994 |
+
" def __init__(self):\n",
|
| 995 |
+
" super().__init__()\n",
|
| 996 |
+
" self.mse = nn.MSELoss(reduction='sum')\n",
|
| 997 |
+
"\n",
|
| 998 |
+
" def forward(self, recon_x, x, mu, log_var):\n",
|
| 999 |
+
" mse = self.mse(recon_x, x)\n",
|
| 1000 |
+
" kld = -0.5 * torch.sum(1 + log_var - mu.pow(2) - log_var.exp())\n",
|
| 1001 |
+
" loss = mse + kld\n",
|
| 1002 |
+
" return loss"
|
| 1003 |
+
]
|
| 1004 |
+
},
|
| 1005 |
+
{
|
| 1006 |
+
"cell_type": "code",
|
| 1007 |
+
"execution_count": 20,
|
| 1008 |
+
"metadata": {},
|
| 1009 |
+
"outputs": [],
|
| 1010 |
+
"source": [
|
| 1011 |
+
"def DiceScore(\n",
|
| 1012 |
+
" y_pred: torch.Tensor,\n",
|
| 1013 |
+
" y: torch.Tensor,\n",
|
| 1014 |
+
" include_background: bool = True,\n",
|
| 1015 |
+
") -> torch.Tensor:\n",
|
| 1016 |
+
" \"\"\"Computes Dice score metric from full size Tensor and collects average.\n",
|
| 1017 |
+
" Args:\n",
|
| 1018 |
+
" y_pred: input data to compute, typical segmentation model output.\n",
|
| 1019 |
+
" It must be one-hot format and first dim is batch, example shape: [16, 3, 32, 32]. The values\n",
|
| 1020 |
+
" should be binarized.\n",
|
| 1021 |
+
" y: ground truth to compute mean dice metric. It must be one-hot format and first dim is batch.\n",
|
| 1022 |
+
" The values should be binarized.\n",
|
| 1023 |
+
" include_background: whether to skip Dice computation on the first channel of\n",
|
| 1024 |
+
" the predicted output. Defaults to True.\n",
|
| 1025 |
+
" Returns:\n",
|
| 1026 |
+
" Dice scores per batch and per class, (shape [batch_size, num_classes]).\n",
|
| 1027 |
+
" Raises:\n",
|
| 1028 |
+
" ValueError: when `y_pred` and `y` have different shapes.\n",
|
| 1029 |
+
" \"\"\"\n",
|
| 1030 |
+
"\n",
|
| 1031 |
+
" y = y.float()\n",
|
| 1032 |
+
" y_pred = y_pred.float()\n",
|
| 1033 |
+
"\n",
|
| 1034 |
+
" if y.shape != y_pred.shape:\n",
|
| 1035 |
+
" raise ValueError(\"y_pred and y should have same shapes.\")\n",
|
| 1036 |
+
"\n",
|
| 1037 |
+
" # reducing only spatial dimensions (not batch nor channels)\n",
|
| 1038 |
+
" n_len = len(y_pred.shape)\n",
|
| 1039 |
+
" reduce_axis = list(range(2, n_len))\n",
|
| 1040 |
+
" intersection = torch.sum(y * y_pred, dim=reduce_axis)\n",
|
| 1041 |
+
"\n",
|
| 1042 |
+
" y_o = torch.sum(y, reduce_axis)\n",
|
| 1043 |
+
" y_pred_o = torch.sum(y_pred, dim=reduce_axis)\n",
|
| 1044 |
+
" denominator = y_o + y_pred_o\n",
|
| 1045 |
+
"\n",
|
| 1046 |
+
" return torch.where(\n",
|
| 1047 |
+
" denominator > 0,\n",
|
| 1048 |
+
" (2.0 * intersection) / denominator,\n",
|
| 1049 |
+
" torch.tensor(float(\"1\"), device=y_o.device),\n",
|
| 1050 |
+
" )\n"
|
| 1051 |
+
]
|
| 1052 |
+
},
|
| 1053 |
+
{
|
| 1054 |
+
"cell_type": "code",
|
| 1055 |
+
"execution_count": 21,
|
| 1056 |
+
"metadata": {},
|
| 1057 |
+
"outputs": [],
|
| 1058 |
+
"source": [
|
| 1059 |
+
"# Pytorch Lightning\n",
|
| 1060 |
+
"import pytorch_lightning as pl\n",
|
| 1061 |
+
"import matplotlib.pyplot as plt\n",
|
| 1062 |
+
"import csv\n",
|
| 1063 |
+
"from monai.transforms import AsDiscrete, Activations, Compose, EnsureType"
|
| 1064 |
+
]
|
| 1065 |
+
},
|
| 1066 |
+
{
|
| 1067 |
+
"cell_type": "code",
|
| 1068 |
+
"execution_count": 24,
|
| 1069 |
+
"metadata": {},
|
| 1070 |
+
"outputs": [],
|
| 1071 |
+
"source": [
|
| 1072 |
+
"class BRATS(pl.LightningModule):\n",
|
| 1073 |
+
" def __init__(self, use_VAE = True, lr = 1e-4, ):\n",
|
| 1074 |
+
" super().__init__()\n",
|
| 1075 |
+
" \n",
|
| 1076 |
+
" self.use_vae = use_VAE\n",
|
| 1077 |
+
" self.lr = lr\n",
|
| 1078 |
+
" self.model = SegTransVAE((128, 128, 128), 8, 4, 3, 768, 8, 4, 3072, in_channels_vae=128, use_VAE = use_VAE)\n",
|
| 1079 |
+
"\n",
|
| 1080 |
+
" self.loss_vae = Loss_VAE()\n",
|
| 1081 |
+
" self.dice_loss = DiceLoss(to_onehot_y=False, sigmoid=True, squared_pred=True)\n",
|
| 1082 |
+
" self.post_trans_images = Compose(\n",
|
| 1083 |
+
" [EnsureType(),\n",
|
| 1084 |
+
" Activations(sigmoid=True), \n",
|
| 1085 |
+
" AsDiscrete(threshold_values=True), \n",
|
| 1086 |
+
" ]\n",
|
| 1087 |
+
" )\n",
|
| 1088 |
+
"\n",
|
| 1089 |
+
" self.best_val_dice = 0\n",
|
| 1090 |
+
" \n",
|
| 1091 |
+
" self.training_step_outputs = [] \n",
|
| 1092 |
+
" self.val_step_loss = [] \n",
|
| 1093 |
+
" self.val_step_dice = []\n",
|
| 1094 |
+
" self.val_step_dice_tc = [] \n",
|
| 1095 |
+
" self.val_step_dice_wt = []\n",
|
| 1096 |
+
" self.val_step_dice_et = [] \n",
|
| 1097 |
+
" self.test_step_loss = [] \n",
|
| 1098 |
+
" self.test_step_dice = []\n",
|
| 1099 |
+
" self.test_step_dice_tc = [] \n",
|
| 1100 |
+
" self.test_step_dice_wt = []\n",
|
| 1101 |
+
" self.test_step_dice_et = [] \n",
|
| 1102 |
+
"\n",
|
| 1103 |
+
" def forward(self, x, is_validation = True):\n",
|
| 1104 |
+
" return self.model(x, is_validation) \n",
|
| 1105 |
+
" def training_step(self, batch, batch_index):\n",
|
| 1106 |
+
" inputs, labels = (batch['image'], batch['label'])\n",
|
| 1107 |
+
" \n",
|
| 1108 |
+
" if not self.use_vae:\n",
|
| 1109 |
+
" outputs = self.forward(inputs, is_validation=False)\n",
|
| 1110 |
+
" loss = self.dice_loss(outputs, labels)\n",
|
| 1111 |
+
" else:\n",
|
| 1112 |
+
" outputs, recon_batch, mu, sigma = self.forward(inputs, is_validation=False)\n",
|
| 1113 |
+
" \n",
|
| 1114 |
+
" vae_loss = self.loss_vae(recon_batch, inputs, mu, sigma)\n",
|
| 1115 |
+
" dice_loss = self.dice_loss(outputs, labels)\n",
|
| 1116 |
+
" loss = dice_loss + 1/(4 * 128 * 128 * 128) * vae_loss\n",
|
| 1117 |
+
" self.training_step_outputs.append(loss)\n",
|
| 1118 |
+
" self.log('train/vae_loss', vae_loss)\n",
|
| 1119 |
+
" self.log('train/dice_loss', dice_loss)\n",
|
| 1120 |
+
" if batch_index == 10:\n",
|
| 1121 |
+
"\n",
|
| 1122 |
+
" tensorboard = self.logger.experiment \n",
|
| 1123 |
+
" fig, ax = plt.subplots(nrows=1, ncols=6, figsize=(10, 5))\n",
|
| 1124 |
+
" \n",
|
| 1125 |
+
"\n",
|
| 1126 |
+
" ax[0].imshow(inputs.detach().cpu()[0][0][:, :, 80], cmap='gray')\n",
|
| 1127 |
+
" ax[0].set_title(\"Input\")\n",
|
| 1128 |
+
"\n",
|
| 1129 |
+
" ax[1].imshow(recon_batch.detach().cpu().float()[0][0][:,:, 80], cmap='gray')\n",
|
| 1130 |
+
" ax[1].set_title(\"Reconstruction\")\n",
|
| 1131 |
+
" \n",
|
| 1132 |
+
" ax[2].imshow(labels.detach().cpu().float()[0][0][:,:, 80], cmap='gray')\n",
|
| 1133 |
+
" ax[2].set_title(\"Labels TC\")\n",
|
| 1134 |
+
" \n",
|
| 1135 |
+
" ax[3].imshow(outputs.sigmoid().detach().cpu().float()[0][0][:,:, 80], cmap='gray')\n",
|
| 1136 |
+
" ax[3].set_title(\"TC\")\n",
|
| 1137 |
+
" \n",
|
| 1138 |
+
" ax[4].imshow(labels.detach().cpu().float()[0][2][:,:, 80], cmap='gray')\n",
|
| 1139 |
+
" ax[4].set_title(\"Labels ET\")\n",
|
| 1140 |
+
" \n",
|
| 1141 |
+
" ax[5].imshow(outputs.sigmoid().detach().cpu().float()[0][2][:,:, 80], cmap='gray')\n",
|
| 1142 |
+
" ax[5].set_title(\"ET\")\n",
|
| 1143 |
+
"\n",
|
| 1144 |
+
" \n",
|
| 1145 |
+
" tensorboard.add_figure('train_visualize', fig, self.current_epoch)\n",
|
| 1146 |
+
"\n",
|
| 1147 |
+
" self.log('train/loss', loss)\n",
|
| 1148 |
+
" \n",
|
| 1149 |
+
" return loss\n",
|
| 1150 |
+
" \n",
|
| 1151 |
+
" def on_train_epoch_end(self):\n",
|
| 1152 |
+
" ## F1 Macro all epoch saving outputs and target per batch\n",
|
| 1153 |
+
"\n",
|
| 1154 |
+
" # free up the memory\n",
|
| 1155 |
+
" # --> HERE STEP 3 <--\n",
|
| 1156 |
+
" epoch_average = torch.stack(self.training_step_outputs).mean()\n",
|
| 1157 |
+
" self.log(\"training_epoch_average\", epoch_average)\n",
|
| 1158 |
+
" self.training_step_outputs.clear() # free memory\n",
|
| 1159 |
+
"\n",
|
| 1160 |
+
" def validation_step(self, batch, batch_index):\n",
|
| 1161 |
+
" inputs, labels = (batch['image'], batch['label'])\n",
|
| 1162 |
+
" roi_size = (128, 128, 128)\n",
|
| 1163 |
+
" sw_batch_size = 1\n",
|
| 1164 |
+
" outputs = sliding_window_inference(\n",
|
| 1165 |
+
" inputs, roi_size, sw_batch_size, self.model, overlap = 0.5)\n",
|
| 1166 |
+
" loss = self.dice_loss(outputs, labels)\n",
|
| 1167 |
+
" \n",
|
| 1168 |
+
" \n",
|
| 1169 |
+
" val_outputs = self.post_trans_images(outputs)\n",
|
| 1170 |
+
" \n",
|
| 1171 |
+
" \n",
|
| 1172 |
+
" metric_tc = DiceScore(y_pred=val_outputs[:, 0:1], y=labels[:, 0:1], include_background = True)\n",
|
| 1173 |
+
" metric_wt = DiceScore(y_pred=val_outputs[:, 1:2], y=labels[:, 1:2], include_background = True)\n",
|
| 1174 |
+
" metric_et = DiceScore(y_pred=val_outputs[:, 2:3], y=labels[:, 2:3], include_background = True)\n",
|
| 1175 |
+
" mean_val_dice = (metric_tc + metric_wt + metric_et)/3\n",
|
| 1176 |
+
" self.val_step_loss.append(loss) \n",
|
| 1177 |
+
" self.val_step_dice.append(mean_val_dice)\n",
|
| 1178 |
+
" self.val_step_dice_tc.append(metric_tc) \n",
|
| 1179 |
+
" self.val_step_dice_wt.append(metric_wt)\n",
|
| 1180 |
+
" self.val_step_dice_et.append(metric_et) \n",
|
| 1181 |
+
" return {'val_loss': loss, 'val_mean_dice': mean_val_dice, 'val_dice_tc': metric_tc,\n",
|
| 1182 |
+
" 'val_dice_wt': metric_wt, 'val_dice_et': metric_et}\n",
|
| 1183 |
+
" \n",
|
| 1184 |
+
" def on_validation_epoch_end(self):\n",
|
| 1185 |
+
"\n",
|
| 1186 |
+
" loss = torch.stack(self.val_step_loss).mean()\n",
|
| 1187 |
+
" mean_val_dice = torch.stack(self.val_step_dice).mean()\n",
|
| 1188 |
+
" metric_tc = torch.stack(self.val_step_dice_tc).mean()\n",
|
| 1189 |
+
" metric_wt = torch.stack(self.val_step_dice_wt).mean()\n",
|
| 1190 |
+
" metric_et = torch.stack(self.val_step_dice_et).mean()\n",
|
| 1191 |
+
" self.log('val/Loss', loss)\n",
|
| 1192 |
+
" self.log('val/MeanDiceScore', mean_val_dice)\n",
|
| 1193 |
+
" self.log('val/DiceTC', metric_tc)\n",
|
| 1194 |
+
" self.log('val/DiceWT', metric_wt)\n",
|
| 1195 |
+
" self.log('val/DiceET', metric_et)\n",
|
| 1196 |
+
" os.makedirs(self.logger.log_dir, exist_ok=True)\n",
|
| 1197 |
+
" if self.current_epoch == 0:\n",
|
| 1198 |
+
" with open('{}/metric_log.csv'.format(self.logger.log_dir), 'w') as f:\n",
|
| 1199 |
+
" writer = csv.writer(f)\n",
|
| 1200 |
+
" writer.writerow(['Epoch', 'Mean Dice Score', 'Dice TC', 'Dice WT', 'Dice ET'])\n",
|
| 1201 |
+
" with open('{}/metric_log.csv'.format(self.logger.log_dir), 'a') as f:\n",
|
| 1202 |
+
" writer = csv.writer(f)\n",
|
| 1203 |
+
" writer.writerow([self.current_epoch, mean_val_dice.item(), metric_tc.item(), metric_wt.item(), metric_et.item()])\n",
|
| 1204 |
+
"\n",
|
| 1205 |
+
" if mean_val_dice > self.best_val_dice:\n",
|
| 1206 |
+
" self.best_val_dice = mean_val_dice\n",
|
| 1207 |
+
" self.best_val_epoch = self.current_epoch\n",
|
| 1208 |
+
" print(\n",
|
| 1209 |
+
" f\"\\n Current epoch: {self.current_epoch} Current mean dice: {mean_val_dice:.4f}\"\n",
|
| 1210 |
+
" f\" tc: {metric_tc:.4f} wt: {metric_wt:.4f} et: {metric_et:.4f}\"\n",
|
| 1211 |
+
" f\"\\n Best mean dice: {self.best_val_dice}\"\n",
|
| 1212 |
+
" f\" at epoch: {self.best_val_epoch}\"\n",
|
| 1213 |
+
" )\n",
|
| 1214 |
+
" \n",
|
| 1215 |
+
" self.val_step_loss.clear() \n",
|
| 1216 |
+
" self.val_step_dice.clear()\n",
|
| 1217 |
+
" self.val_step_dice_tc.clear() \n",
|
| 1218 |
+
" self.val_step_dice_wt.clear()\n",
|
| 1219 |
+
" self.val_step_dice_et.clear()\n",
|
| 1220 |
+
" return {'val_MeanDiceScore': mean_val_dice}\n",
|
| 1221 |
+
" def test_step(self, batch, batch_index):\n",
|
| 1222 |
+
" inputs, labels = (batch['image'], batch['label'])\n",
|
| 1223 |
+
" \n",
|
| 1224 |
+
" roi_size = (128, 128, 128)\n",
|
| 1225 |
+
" sw_batch_size = 1\n",
|
| 1226 |
+
" test_outputs = sliding_window_inference(\n",
|
| 1227 |
+
" inputs, roi_size, sw_batch_size, self.forward, overlap = 0.5)\n",
|
| 1228 |
+
" loss = self.dice_loss(test_outputs, labels)\n",
|
| 1229 |
+
" test_outputs = self.post_trans_images(test_outputs)\n",
|
| 1230 |
+
" metric_tc = DiceScore(y_pred=test_outputs[:, 0:1], y=labels[:, 0:1], include_background = True)\n",
|
| 1231 |
+
" metric_wt = DiceScore(y_pred=test_outputs[:, 1:2], y=labels[:, 1:2], include_background = True)\n",
|
| 1232 |
+
" metric_et = DiceScore(y_pred=test_outputs[:, 2:3], y=labels[:, 2:3], include_background = True)\n",
|
| 1233 |
+
" mean_test_dice = (metric_tc + metric_wt + metric_et)/3\n",
|
| 1234 |
+
" \n",
|
| 1235 |
+
" self.test_step_loss.append(loss) \n",
|
| 1236 |
+
" self.test_step_dice.append(mean_test_dice)\n",
|
| 1237 |
+
" self.test_step_dice_tc.append(metric_tc) \n",
|
| 1238 |
+
" self.test_step_dice_wt.append(metric_wt)\n",
|
| 1239 |
+
" self.test_step_dice_et.append(metric_et) \n",
|
| 1240 |
+
" \n",
|
| 1241 |
+
" return {'test_loss': loss, 'test_mean_dice': mean_test_dice, 'test_dice_tc': metric_tc,\n",
|
| 1242 |
+
" 'test_dice_wt': metric_wt, 'test_dice_et': metric_et}\n",
|
| 1243 |
+
" \n",
|
| 1244 |
+
" def test_epoch_end(self):\n",
|
| 1245 |
+
" loss = torch.stack(self.test_step_loss).mean()\n",
|
| 1246 |
+
" mean_test_dice = torch.stack(self.test_step_dice).mean()\n",
|
| 1247 |
+
" metric_tc = torch.stack(self.test_step_dice_tc).mean()\n",
|
| 1248 |
+
" metric_wt = torch.stack(self.test_step_dice_wt).mean()\n",
|
| 1249 |
+
" metric_et = torch.stack(self.test_step_dice_et).mean()\n",
|
| 1250 |
+
" self.log('test/Loss', loss)\n",
|
| 1251 |
+
" self.log('test/MeanDiceScore', mean_test_dice)\n",
|
| 1252 |
+
" self.log('test/DiceTC', metric_tc)\n",
|
| 1253 |
+
" self.log('test/DiceWT', metric_wt)\n",
|
| 1254 |
+
" self.log('test/DiceET', metric_et)\n",
|
| 1255 |
+
"\n",
|
| 1256 |
+
" with open('{}/test_log.csv'.format(self.logger.log_dir), 'w') as f:\n",
|
| 1257 |
+
" writer = csv.writer(f)\n",
|
| 1258 |
+
" writer.writerow([\"Mean Test Dice\", \"Dice TC\", \"Dice WT\", \"Dice ET\"])\n",
|
| 1259 |
+
" writer.writerow([mean_test_dice, metric_tc, metric_wt, metric_et])\n",
|
| 1260 |
+
"\n",
|
| 1261 |
+
" self.test_step_loss.clear() \n",
|
| 1262 |
+
" self.test_step_dice.clear()\n",
|
| 1263 |
+
" self.test_step_dice_tc.clear() \n",
|
| 1264 |
+
" self.test_step_dice_wt.clear()\n",
|
| 1265 |
+
" self.test_step_dice_et.clear()\n",
|
| 1266 |
+
" return {'test_MeanDiceScore': mean_test_dice}\n",
|
| 1267 |
+
" \n",
|
| 1268 |
+
" \n",
|
| 1269 |
+
" def configure_optimizers(self):\n",
|
| 1270 |
+
" optimizer = torch.optim.Adam(\n",
|
| 1271 |
+
" self.model.parameters(), self.lr, weight_decay=1e-5, amsgrad=True\n",
|
| 1272 |
+
" )\n",
|
| 1273 |
+
"# optimizer = AdaBelief(self.model.parameters(), \n",
|
| 1274 |
+
"# lr=self.lr, eps=1e-16, \n",
|
| 1275 |
+
"# betas=(0.9,0.999), weight_decouple = True, \n",
|
| 1276 |
+
"# rectify = False)\n",
|
| 1277 |
+
" scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(optimizer, 200)\n",
|
| 1278 |
+
" return [optimizer], [scheduler]\n",
|
| 1279 |
+
" \n",
|
| 1280 |
+
" def train_dataloader(self):\n",
|
| 1281 |
+
" return train_loader\n",
|
| 1282 |
+
" def val_dataloader(self):\n",
|
| 1283 |
+
" return val_loader\n",
|
| 1284 |
+
" \n",
|
| 1285 |
+
" def test_dataloader(self):\n",
|
| 1286 |
+
" return test_loader"
|
| 1287 |
+
]
|
| 1288 |
+
},
|
| 1289 |
+
{
|
| 1290 |
+
"cell_type": "code",
|
| 1291 |
+
"execution_count": 1,
|
| 1292 |
+
"metadata": {},
|
| 1293 |
+
"outputs": [
|
| 1294 |
+
{
|
| 1295 |
+
"name": "stderr",
|
| 1296 |
+
"output_type": "stream",
|
| 1297 |
+
"text": [
|
| 1298 |
+
"/usr/local/lib/python3.9/site-packages/tqdm/auto.py:21: TqdmWarning: IProgress not found. Please update jupyter and ipywidgets. See https://ipywidgets.readthedocs.io/en/stable/user_install.html\n",
|
| 1299 |
+
" from .autonotebook import tqdm as notebook_tqdm\n"
|
| 1300 |
+
]
|
| 1301 |
+
}
|
| 1302 |
+
],
|
| 1303 |
+
"source": [
|
| 1304 |
+
"from pytorch_lightning.callbacks import ModelCheckpoint, EarlyStopping\n",
|
| 1305 |
+
"import os \n",
|
| 1306 |
+
"from pytorch_lightning.loggers import TensorBoardLogger"
|
| 1307 |
+
]
|
| 1308 |
+
},
|
| 1309 |
+
{
|
| 1310 |
+
"cell_type": "code",
|
| 1311 |
+
"execution_count": 25,
|
| 1312 |
+
"metadata": {},
|
| 1313 |
+
"outputs": [
|
| 1314 |
+
{
|
| 1315 |
+
"name": "stderr",
|
| 1316 |
+
"output_type": "stream",
|
| 1317 |
+
"text": [
|
| 1318 |
+
"sh: 1: cls: not found\n"
|
| 1319 |
+
]
|
| 1320 |
+
},
|
| 1321 |
+
{
|
| 1322 |
+
"name": "stdout",
|
| 1323 |
+
"output_type": "stream",
|
| 1324 |
+
"text": [
|
| 1325 |
+
"\u001b[H\u001b[2JTraining ...\n"
|
| 1326 |
+
]
|
| 1327 |
+
},
|
| 1328 |
+
{
|
| 1329 |
+
"name": "stderr",
|
| 1330 |
+
"output_type": "stream",
|
| 1331 |
+
"text": [
|
| 1332 |
+
"/usr/local/lib/python3.9/site-packages/lightning_fabric/connector.py:563: `precision=16` is supported for historical reasons but its usage is discouraged. Please set your precision to 16-mixed instead!\n",
|
| 1333 |
+
"Using 16bit Automatic Mixed Precision (AMP)\n",
|
| 1334 |
+
"GPU available: True (cuda), used: True\n",
|
| 1335 |
+
"TPU available: False, using: 0 TPU cores\n",
|
| 1336 |
+
"IPU available: False, using: 0 IPUs\n",
|
| 1337 |
+
"HPU available: False, using: 0 HPUs\n",
|
| 1338 |
+
"LOCAL_RANK: 0 - CUDA_VISIBLE_DEVICES: [0]\n",
|
| 1339 |
+
"\n",
|
| 1340 |
+
" | Name | Type | Params\n",
|
| 1341 |
+
"------------------------------------------\n",
|
| 1342 |
+
"0 | model | SegTransVAE | 44.7 M\n",
|
| 1343 |
+
"1 | loss_vae | Loss_VAE | 0 \n",
|
| 1344 |
+
"2 | dice_loss | DiceLoss | 0 \n",
|
| 1345 |
+
"------------------------------------------\n",
|
| 1346 |
+
"44.7 M Trainable params\n",
|
| 1347 |
+
"0 Non-trainable params\n",
|
| 1348 |
+
"44.7 M Total params\n",
|
| 1349 |
+
"178.908 Total estimated model params size (MB)\n"
|
| 1350 |
+
]
|
| 1351 |
+
},
|
| 1352 |
+
{
|
| 1353 |
+
"name": "stdout",
|
| 1354 |
+
"output_type": "stream",
|
| 1355 |
+
"text": [
|
| 1356 |
+
"Sanity Checking DataLoader 0: 100%|ββββββββββ| 2/2 [00:05<00:00, 0.37it/s]\n",
|
| 1357 |
+
" Current epoch: 0 Current mean dice: 0.0097 tc: 0.0029 wt: 0.0234 et: 0.0028\n",
|
| 1358 |
+
" Best mean dice: 0.009687595069408417 at epoch: 0\n",
|
| 1359 |
+
"Epoch 0: 100%|ββββββββββ| 500/500 [05:38<00:00, 1.48it/s, v_num=6] \n",
|
| 1360 |
+
" Current epoch: 0 Current mean dice: 0.1927 tc: 0.1647 wt: 0.2843 et: 0.1290\n",
|
| 1361 |
+
" Best mean dice: 0.1926589012145996 at epoch: 0\n",
|
| 1362 |
+
"Epoch 1: 100%|ββββββββββ| 500/500 [07:35<00:00, 1.10it/s, v_num=6]\n",
|
| 1363 |
+
" Current epoch: 1 Current mean dice: 0.3212 tc: 0.2691 wt: 0.4253 et: 0.2692\n",
|
| 1364 |
+
" Best mean dice: 0.32120221853256226 at epoch: 1\n",
|
| 1365 |
+
"Epoch 2: 100%|ββββββββββ| 500/500 [08:11<00:00, 1.02it/s, v_num=6]\n",
|
| 1366 |
+
" Current epoch: 2 Current mean dice: 0.3912 tc: 0.3510 wt: 0.5087 et: 0.3137\n",
|
| 1367 |
+
" Best mean dice: 0.39115065336227417 at epoch: 2\n",
|
| 1368 |
+
"Epoch 3: 100%|ββββββββββ| 500/500 [08:58<00:00, 0.93it/s, v_num=6]\n",
|
| 1369 |
+
" Current epoch: 3 Current mean dice: 0.4268 tc: 0.3828 wt: 0.5424 et: 0.3553\n",
|
| 1370 |
+
" Best mean dice: 0.42682838439941406 at epoch: 3\n",
|
| 1371 |
+
"Epoch 4: 41%|βββββ | 207/500 [02:51<04:03, 1.21it/s, v_num=6]"
|
| 1372 |
+
]
|
| 1373 |
+
},
|
| 1374 |
+
{
|
| 1375 |
+
"ename": "",
|
| 1376 |
+
"evalue": "",
|
| 1377 |
+
"output_type": "error",
|
| 1378 |
+
"traceback": [
|
| 1379 |
+
"\u001b[1;31mThe Kernel crashed while executing code in the current cell or a previous cell. \n",
|
| 1380 |
+
"\u001b[1;31mPlease review the code in the cell(s) to identify a possible cause of the failure. \n",
|
| 1381 |
+
"\u001b[1;31mClick <a href='https://aka.ms/vscodeJupyterKernelCrash'>here</a> for more info. \n",
|
| 1382 |
+
"\u001b[1;31mView Jupyter <a href='command:jupyter.viewOutput'>log</a> for further details."
|
| 1383 |
+
]
|
| 1384 |
+
}
|
| 1385 |
+
],
|
| 1386 |
+
"source": [
|
| 1387 |
+
"os.system('cls||clear')\n",
|
| 1388 |
+
"print(\"Training ...\")\n",
|
| 1389 |
+
"model = BRATS(use_VAE = True)\n",
|
| 1390 |
+
"checkpoint_callback = ModelCheckpoint(\n",
|
| 1391 |
+
" monitor='val/MeanDiceScore',\n",
|
| 1392 |
+
" dirpath='./app/checkpoints/{}'.format(1),\n",
|
| 1393 |
+
" filename='Epoch{epoch:3d}-MeanDiceScore{val/MeanDiceScore:.4f}',\n",
|
| 1394 |
+
" save_top_k=3,\n",
|
| 1395 |
+
" mode='max',\n",
|
| 1396 |
+
" save_last= True,\n",
|
| 1397 |
+
" auto_insert_metric_name=False\n",
|
| 1398 |
+
")\n",
|
| 1399 |
+
"early_stop_callback = EarlyStopping(\n",
|
| 1400 |
+
" monitor='val/MeanDiceScore',\n",
|
| 1401 |
+
" min_delta=0.0001,\n",
|
| 1402 |
+
" patience=15,\n",
|
| 1403 |
+
" verbose=False,\n",
|
| 1404 |
+
" mode='max'\n",
|
| 1405 |
+
")\n",
|
| 1406 |
+
"tensorboardlogger = TensorBoardLogger(\n",
|
| 1407 |
+
" 'logs', \n",
|
| 1408 |
+
" name = \"1\", \n",
|
| 1409 |
+
" default_hp_metric = None \n",
|
| 1410 |
+
")\n",
|
| 1411 |
+
"trainer = pl.Trainer(#fast_dev_run = 10, \n",
|
| 1412 |
+
"# accelerator='ddp',\n",
|
| 1413 |
+
" #overfit_batches=5,\n",
|
| 1414 |
+
" devices = [0], \n",
|
| 1415 |
+
" precision=16,\n",
|
| 1416 |
+
" max_epochs = 200, \n",
|
| 1417 |
+
" enable_progress_bar=True, \n",
|
| 1418 |
+
" callbacks=[checkpoint_callback, early_stop_callback], \n",
|
| 1419 |
+
"# auto_lr_find=True,\n",
|
| 1420 |
+
" num_sanity_val_steps=2,\n",
|
| 1421 |
+
" logger = tensorboardlogger,\n",
|
| 1422 |
+
"# limit_train_batches=0.01, \n",
|
| 1423 |
+
"# limit_val_batches=0.01\n",
|
| 1424 |
+
" )\n",
|
| 1425 |
+
"# trainer.tune(model)\n",
|
| 1426 |
+
"trainer.fit(model)\n",
|
| 1427 |
+
"\n",
|
| 1428 |
+
"\n",
|
| 1429 |
+
"\n"
|
| 1430 |
+
]
|
| 1431 |
+
},
|
| 1432 |
+
{
|
| 1433 |
+
"cell_type": "code",
|
| 1434 |
+
"execution_count": null,
|
| 1435 |
+
"metadata": {},
|
| 1436 |
+
"outputs": [],
|
| 1437 |
+
"source": [
|
| 1438 |
+
"import pytorch_lightning as pl\n",
|
| 1439 |
+
"from trainer import BRATS\n",
|
| 1440 |
+
"import os \n",
|
| 1441 |
+
"import torch\n",
|
| 1442 |
+
"os.system('cls||clear')\n",
|
| 1443 |
+
"print(\"Testing ...\")\n",
|
| 1444 |
+
"\n",
|
| 1445 |
+
"CKPT = ''\n",
|
| 1446 |
+
"model = BRATS(use_VAE=True).load_from_checkpoint(CKPT).eval()\n",
|
| 1447 |
+
"val_dataloader = get_val_dataloader()\n",
|
| 1448 |
+
"test_dataloader = get_test_dataloader()\n",
|
| 1449 |
+
"trainer = pl.Trainer(gpus = [0], precision=32, progress_bar_refresh_rate=10)\n",
|
| 1450 |
+
"\n",
|
| 1451 |
+
"trainer.test(model, dataloaders = val_dataloader)\n",
|
| 1452 |
+
"trainer.test(model, dataloaders = test_dataloader)\n",
|
| 1453 |
+
"\n"
|
| 1454 |
+
]
|
| 1455 |
+
}
|
| 1456 |
+
],
|
| 1457 |
+
"metadata": {
|
| 1458 |
+
"kernelspec": {
|
| 1459 |
+
"display_name": "Python 3 (ipykernel)",
|
| 1460 |
+
"language": "python",
|
| 1461 |
+
"name": "python3"
|
| 1462 |
+
},
|
| 1463 |
+
"language_info": {
|
| 1464 |
+
"codemirror_mode": {
|
| 1465 |
+
"name": "ipython",
|
| 1466 |
+
"version": 3
|
| 1467 |
+
},
|
| 1468 |
+
"file_extension": ".py",
|
| 1469 |
+
"mimetype": "text/x-python",
|
| 1470 |
+
"name": "python",
|
| 1471 |
+
"nbconvert_exporter": "python",
|
| 1472 |
+
"pygments_lexer": "ipython3",
|
| 1473 |
+
"version": "3.9.18"
|
| 1474 |
+
}
|
| 1475 |
+
},
|
| 1476 |
+
"nbformat": 4,
|
| 1477 |
+
"nbformat_minor": 2
|
| 1478 |
+
}
|