6185cf2abcdb1f523dbfb37144730057281a2f2df5aad865ab54ef3f83045f8b
Browse files- brats_2021_task1/BraTS2021_Training_Data/BraTS2021_01661/BraTS2021_01661_t2.nii.gz +3 -0
- brats_2021_task1/BraTS2021_Training_Data/BraTS2021_01662/BraTS2021_01662_flair.nii.gz +3 -0
- brats_2021_task1/BraTS2021_Training_Data/BraTS2021_01662/BraTS2021_01662_seg.nii.gz +0 -0
- brats_2021_task1/BraTS2021_Training_Data/BraTS2021_01662/BraTS2021_01662_t1.nii.gz +3 -0
- brats_2021_task1/BraTS2021_Training_Data/BraTS2021_01662/BraTS2021_01662_t1ce.nii.gz +3 -0
- brats_2021_task1/BraTS2021_Training_Data/BraTS2021_01662/BraTS2021_01662_t2.nii.gz +3 -0
- brats_2021_task1/BraTS2021_Training_Data/BraTS2021_01663/BraTS2021_01663_flair.nii.gz +3 -0
- brats_2021_task1/BraTS2021_Training_Data/BraTS2021_01663/BraTS2021_01663_seg.nii.gz +0 -0
- brats_2021_task1/BraTS2021_Training_Data/BraTS2021_01663/BraTS2021_01663_t1.nii.gz +3 -0
- brats_2021_task1/BraTS2021_Training_Data/BraTS2021_01663/BraTS2021_01663_t1ce.nii.gz +3 -0
- brats_2021_task1/BraTS2021_Training_Data/BraTS2021_01663/BraTS2021_01663_t2.nii.gz +3 -0
- brats_2021_task1/BraTS2021_Training_Data/BraTS2021_01664/BraTS2021_01664_flair.nii.gz +3 -0
- brats_2021_task1/BraTS2021_Training_Data/BraTS2021_01664/BraTS2021_01664_seg.nii.gz +0 -0
- brats_2021_task1/BraTS2021_Training_Data/BraTS2021_01664/BraTS2021_01664_t1.nii.gz +3 -0
- brats_2021_task1/BraTS2021_Training_Data/BraTS2021_01664/BraTS2021_01664_t1ce.nii.gz +3 -0
- brats_2021_task1/BraTS2021_Training_Data/BraTS2021_01664/BraTS2021_01664_t2.nii.gz +3 -0
- brats_2021_task1/BraTS2021_Training_Data/BraTS2021_01665/BraTS2021_01665_flair.nii.gz +3 -0
- brats_2021_task1/BraTS2021_Training_Data/BraTS2021_01665/BraTS2021_01665_seg.nii.gz +0 -0
- brats_2021_task1/BraTS2021_Training_Data/BraTS2021_01665/BraTS2021_01665_t1.nii.gz +3 -0
- brats_2021_task1/BraTS2021_Training_Data/BraTS2021_01665/BraTS2021_01665_t1ce.nii.gz +3 -0
- brats_2021_task1/BraTS2021_Training_Data/BraTS2021_01665/BraTS2021_01665_t2.nii.gz +3 -0
- brats_2021_task1/BraTS2021_Training_Data/BraTS2021_01666/BraTS2021_01666_flair.nii.gz +3 -0
- brats_2021_task1/BraTS2021_Training_Data/BraTS2021_01666/BraTS2021_01666_seg.nii.gz +0 -0
- brats_2021_task1/BraTS2021_Training_Data/BraTS2021_01666/BraTS2021_01666_t1.nii.gz +3 -0
- brats_2021_task1/BraTS2021_Training_Data/BraTS2021_01666/BraTS2021_01666_t1ce.nii.gz +3 -0
- brats_2021_task1/BraTS2021_Training_Data/BraTS2021_01666/BraTS2021_01666_t2.nii.gz +3 -0
- info.json +0 -0
- main.ipynb +1478 -0
brats_2021_task1/BraTS2021_Training_Data/BraTS2021_01661/BraTS2021_01661_t2.nii.gz
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c505210bdc5a038f0feec158af86cbd51fe9044c2e322116b8dedf0d4cfa0ae8
|
3 |
+
size 2142198
|
brats_2021_task1/BraTS2021_Training_Data/BraTS2021_01662/BraTS2021_01662_flair.nii.gz
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:82601944e7b5ed25b7d5260546bcf9fc05735380b1121c808a62a9444728710d
|
3 |
+
size 2245968
|
brats_2021_task1/BraTS2021_Training_Data/BraTS2021_01662/BraTS2021_01662_seg.nii.gz
ADDED
Binary file (36.3 kB). View file
|
|
brats_2021_task1/BraTS2021_Training_Data/BraTS2021_01662/BraTS2021_01662_t1.nii.gz
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:33191e411b78a8ccfabb50385530526178b7c8fe71af12c3b05284d845b4a809
|
3 |
+
size 2350622
|
brats_2021_task1/BraTS2021_Training_Data/BraTS2021_01662/BraTS2021_01662_t1ce.nii.gz
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4ef3e7436f5911064d241bd785872de5953ea58b596d35069bad3daf7e915118
|
3 |
+
size 2363017
|
brats_2021_task1/BraTS2021_Training_Data/BraTS2021_01662/BraTS2021_01662_t2.nii.gz
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a42815be77caed00d9c499717b2b098dcf982d8a2066f9050bb975c18a0bd590
|
3 |
+
size 2058223
|
brats_2021_task1/BraTS2021_Training_Data/BraTS2021_01663/BraTS2021_01663_flair.nii.gz
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d9bab8b5bfa4cdec3e9e3503a0573c320d9bc8ad7c6329124284982686506553
|
3 |
+
size 2563621
|
brats_2021_task1/BraTS2021_Training_Data/BraTS2021_01663/BraTS2021_01663_seg.nii.gz
ADDED
Binary file (17 kB). View file
|
|
brats_2021_task1/BraTS2021_Training_Data/BraTS2021_01663/BraTS2021_01663_t1.nii.gz
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1b839418ba30c21cac53504dbde89a91e3c831c97a0418db52dc60b6453c9859
|
3 |
+
size 2654382
|
brats_2021_task1/BraTS2021_Training_Data/BraTS2021_01663/BraTS2021_01663_t1ce.nii.gz
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c858f60833fd410ea37f9e769537096ce765a4222bd69f1e58e0cdc266c274a0
|
3 |
+
size 3038088
|
brats_2021_task1/BraTS2021_Training_Data/BraTS2021_01663/BraTS2021_01663_t2.nii.gz
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ea430675569e79890f0452cfdd729c48a5548470186dd21fa5a7e4d80e602d60
|
3 |
+
size 3031822
|
brats_2021_task1/BraTS2021_Training_Data/BraTS2021_01664/BraTS2021_01664_flair.nii.gz
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9a52c35931fa86a7454bbc8d1309eac4779b03f4a93b4fd0d553ae600c749c53
|
3 |
+
size 2414151
|
brats_2021_task1/BraTS2021_Training_Data/BraTS2021_01664/BraTS2021_01664_seg.nii.gz
ADDED
Binary file (31.4 kB). View file
|
|
brats_2021_task1/BraTS2021_Training_Data/BraTS2021_01664/BraTS2021_01664_t1.nii.gz
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6dba2effcf0b5a9c500fab9841e438dd1bc187284ab4c69a98a32b7587afa051
|
3 |
+
size 2461810
|
brats_2021_task1/BraTS2021_Training_Data/BraTS2021_01664/BraTS2021_01664_t1ce.nii.gz
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2e583078d125e3eb90d258eaab57cfc6163b3028671f0582cb8fed25c4b471e3
|
3 |
+
size 2815663
|
brats_2021_task1/BraTS2021_Training_Data/BraTS2021_01664/BraTS2021_01664_t2.nii.gz
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6f2dd092f11b2e3e87e63c2d19f497c3051b3bf991b23ae22037a278514f6afd
|
3 |
+
size 2845901
|
brats_2021_task1/BraTS2021_Training_Data/BraTS2021_01665/BraTS2021_01665_flair.nii.gz
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:080b33accc7e6a96af2083cfd3db3d8b118caa4be48d5f34bca489d9e4fc2651
|
3 |
+
size 2297237
|
brats_2021_task1/BraTS2021_Training_Data/BraTS2021_01665/BraTS2021_01665_seg.nii.gz
ADDED
Binary file (27.3 kB). View file
|
|
brats_2021_task1/BraTS2021_Training_Data/BraTS2021_01665/BraTS2021_01665_t1.nii.gz
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2da4767e4fc6070d179cc4353847d92f135e9e875acd3fe764fec45f4c7a14cc
|
3 |
+
size 2327765
|
brats_2021_task1/BraTS2021_Training_Data/BraTS2021_01665/BraTS2021_01665_t1ce.nii.gz
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0c09a49c57ba59e96eb705f616e49588b128a42c7f78ed83e0355e4ef240ebf9
|
3 |
+
size 2693477
|
brats_2021_task1/BraTS2021_Training_Data/BraTS2021_01665/BraTS2021_01665_t2.nii.gz
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:cf5cb3c237e4533b456b0d10917adcd60398563458f4948b678807cdafe308c7
|
3 |
+
size 2639817
|
brats_2021_task1/BraTS2021_Training_Data/BraTS2021_01666/BraTS2021_01666_flair.nii.gz
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4f89012c90e6f4a8b2226fcdb26874f9f5ef49c7ef145dbc3b69cc00816510a3
|
3 |
+
size 2029939
|
brats_2021_task1/BraTS2021_Training_Data/BraTS2021_01666/BraTS2021_01666_seg.nii.gz
ADDED
Binary file (68.5 kB). View file
|
|
brats_2021_task1/BraTS2021_Training_Data/BraTS2021_01666/BraTS2021_01666_t1.nii.gz
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a23f6ac4f2feb8d5f91b920e3dc822c820403d7c698a3834943aba980d5a26b4
|
3 |
+
size 2244910
|
brats_2021_task1/BraTS2021_Training_Data/BraTS2021_01666/BraTS2021_01666_t1ce.nii.gz
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3ef132d2943864bc055c694fa9bdf5dec9d4332f404c0dc5fad4b997584fdf6a
|
3 |
+
size 2268398
|
brats_2021_task1/BraTS2021_Training_Data/BraTS2021_01666/BraTS2021_01666_t2.nii.gz
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3b4a9a57fcd9a525d18c84b0f42fb608c20c1eeb2cbad690870f5d8f2d83719c
|
3 |
+
size 2181088
|
info.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
main.ipynb
ADDED
@@ -0,0 +1,1478 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cells": [
|
3 |
+
{
|
4 |
+
"cell_type": "code",
|
5 |
+
"execution_count": 2,
|
6 |
+
"metadata": {},
|
7 |
+
"outputs": [
|
8 |
+
{
|
9 |
+
"name": "stdout",
|
10 |
+
"output_type": "stream",
|
11 |
+
"text": [
|
12 |
+
"MONAI version: 1.4.dev2409\n",
|
13 |
+
"Numpy version: 1.26.2\n",
|
14 |
+
"Pytorch version: 1.13.0+cu116\n",
|
15 |
+
"MONAI flags: HAS_EXT = False, USE_COMPILED = False, USE_META_DICT = False\n",
|
16 |
+
"MONAI rev id: 46c1b228091283fba829280a5d747f4237f76ed0\n",
|
17 |
+
"MONAI __file__: /usr/local/lib/python3.9/site-packages/monai/__init__.py\n",
|
18 |
+
"\n",
|
19 |
+
"Optional dependencies:\n",
|
20 |
+
"Pytorch Ignite version: NOT INSTALLED or UNKNOWN VERSION.\n",
|
21 |
+
"ITK version: NOT INSTALLED or UNKNOWN VERSION.\n",
|
22 |
+
"Nibabel version: 5.2.1\n",
|
23 |
+
"scikit-image version: NOT INSTALLED or UNKNOWN VERSION.\n",
|
24 |
+
"scipy version: 1.11.4\n",
|
25 |
+
"Pillow version: 10.1.0\n",
|
26 |
+
"Tensorboard version: 2.16.2\n",
|
27 |
+
"gdown version: NOT INSTALLED or UNKNOWN VERSION.\n",
|
28 |
+
"TorchVision version: 0.14.0+cu116\n",
|
29 |
+
"tqdm version: 4.66.1\n",
|
30 |
+
"lmdb version: NOT INSTALLED or UNKNOWN VERSION.\n",
|
31 |
+
"psutil version: 5.9.8\n",
|
32 |
+
"pandas version: 2.2.1\n",
|
33 |
+
"einops version: 0.7.0\n",
|
34 |
+
"transformers version: 4.35.2\n",
|
35 |
+
"mlflow version: NOT INSTALLED or UNKNOWN VERSION.\n",
|
36 |
+
"pynrrd version: NOT INSTALLED or UNKNOWN VERSION.\n",
|
37 |
+
"clearml version: NOT INSTALLED or UNKNOWN VERSION.\n",
|
38 |
+
"\n",
|
39 |
+
"For details about installing the optional dependencies, please visit:\n",
|
40 |
+
" https://docs.monai.io/en/latest/installation.html#installing-the-recommended-dependencies\n",
|
41 |
+
"\n"
|
42 |
+
]
|
43 |
+
}
|
44 |
+
],
|
45 |
+
"source": [
|
46 |
+
"\n",
|
47 |
+
"import matplotlib.pyplot as plt\n",
|
48 |
+
"import numpy as np\n",
|
49 |
+
"from monai.config import print_config\n",
|
50 |
+
"from monai.losses import DiceLoss\n",
|
51 |
+
"from monai.inferers import sliding_window_inference\n",
|
52 |
+
"from monai.transforms import MapTransform\n",
|
53 |
+
"from monai.data import DataLoader, Dataset\n",
|
54 |
+
"from monai.utils import set_determinism\n",
|
55 |
+
"from monai import transforms\n",
|
56 |
+
"import torch\n",
|
57 |
+
"\n",
|
58 |
+
"print_config()"
|
59 |
+
]
|
60 |
+
},
|
61 |
+
{
|
62 |
+
"cell_type": "code",
|
63 |
+
"execution_count": 3,
|
64 |
+
"metadata": {},
|
65 |
+
"outputs": [],
|
66 |
+
"source": [
|
67 |
+
"set_determinism(seed=0)"
|
68 |
+
]
|
69 |
+
},
|
70 |
+
{
|
71 |
+
"cell_type": "code",
|
72 |
+
"execution_count": 9,
|
73 |
+
"metadata": {},
|
74 |
+
"outputs": [
|
75 |
+
{
|
76 |
+
"name": "stdout",
|
77 |
+
"output_type": "stream",
|
78 |
+
"text": [
|
79 |
+
"SỠlượng mẫu trong '/app/brats_2021_task1/BraTS2021_Training_Data' là : 1251\n"
|
80 |
+
]
|
81 |
+
}
|
82 |
+
],
|
83 |
+
"source": [
|
84 |
+
"import os\n",
|
85 |
+
"\n",
|
86 |
+
"parent_folder_path = '/app/brats_2021_task1/BraTS2021_Training_Data'\n",
|
87 |
+
"subfolders = [f for f in os.listdir(parent_folder_path) if os.path.isdir(os.path.join(parent_folder_path, f))]\n",
|
88 |
+
"num_folders = len(subfolders)\n",
|
89 |
+
"print(f\"SỠlượng mẫu trong '{parent_folder_path}' là : {num_folders}\")"
|
90 |
+
]
|
91 |
+
},
|
92 |
+
{
|
93 |
+
"cell_type": "code",
|
94 |
+
"execution_count": null,
|
95 |
+
"metadata": {},
|
96 |
+
"outputs": [],
|
97 |
+
"source": [
|
98 |
+
"import os\n",
|
99 |
+
"import json\n",
|
100 |
+
"\n",
|
101 |
+
"folder_data = []\n",
|
102 |
+
"\n",
|
103 |
+
"for fold_number in os.listdir(parent_folder_path):\n",
|
104 |
+
" fold_path = os.path.join(parent_folder_path, fold_number)\n",
|
105 |
+
"\n",
|
106 |
+
" if os.path.isdir(fold_path):\n",
|
107 |
+
" entry = {\"fold\": 0, \"image\": [], \"label\": \"\"}\n",
|
108 |
+
"\n",
|
109 |
+
" for file_type in ['flair', 't1ce', 't1', 't2']:\n",
|
110 |
+
" file_name = f\"{fold_number}_{file_type}.nii.gz\"\n",
|
111 |
+
" file_path = os.path.join(fold_path, file_name)\n",
|
112 |
+
"\n",
|
113 |
+
" if os.path.exists(file_path):\n",
|
114 |
+
"\n",
|
115 |
+
" entry[\"image\"].append(os.path.abspath(file_path))\n",
|
116 |
+
"\n",
|
117 |
+
" label_name = f\"{fold_number}_seg.nii.gz\"\n",
|
118 |
+
" label_path = os.path.join(fold_path, label_name)\n",
|
119 |
+
" if os.path.exists(label_path):\n",
|
120 |
+
" entry[\"label\"] = os.path.abspath(label_path)\n",
|
121 |
+
"\n",
|
122 |
+
" folder_data.append(entry)\n",
|
123 |
+
"\n",
|
124 |
+
"\n",
|
125 |
+
"json_data = {\"training\": folder_data}\n",
|
126 |
+
"\n",
|
127 |
+
"json_file_path = '/app/info.json'\n",
|
128 |
+
"with open(json_file_path, 'w') as json_file:\n",
|
129 |
+
" json.dump(json_data, json_file, indent=2)\n",
|
130 |
+
"\n",
|
131 |
+
"print(f\"ThΓ΄ng tin ΔΓ£ Δược ghi vΓ o {json_file_path}\")\n"
|
132 |
+
]
|
133 |
+
},
|
134 |
+
{
|
135 |
+
"cell_type": "code",
|
136 |
+
"execution_count": 5,
|
137 |
+
"metadata": {},
|
138 |
+
"outputs": [],
|
139 |
+
"source": [
|
140 |
+
"class ConvertToMultiChannelBasedOnBratsClassesd(MapTransform):\n",
|
141 |
+
" \"\"\"\n",
|
142 |
+
" Convert labels to multi channels based on brats classes:\n",
|
143 |
+
" label 1 is the necrotic and non-enhancing tumor core\n",
|
144 |
+
" label 2 is the peritumoral edema\n",
|
145 |
+
" label 4 is the GD-enhancing tumor\n",
|
146 |
+
" The possible classes are TC (Tumor core), WT (Whole tumor)\n",
|
147 |
+
" and ET (Enhancing tumor).\n",
|
148 |
+
"\n",
|
149 |
+
" \"\"\"\n",
|
150 |
+
"\n",
|
151 |
+
" def __call__(self, data):\n",
|
152 |
+
" d = dict(data)\n",
|
153 |
+
" for key in self.keys:\n",
|
154 |
+
" result = []\n",
|
155 |
+
" # merge label 1 and label 4 to construct TC\n",
|
156 |
+
" result.append(np.logical_or(d[key] == 1, d[key] == 4))\n",
|
157 |
+
" # merge labels 1, 2 and 4 to construct WT\n",
|
158 |
+
" result.append(\n",
|
159 |
+
" np.logical_or(\n",
|
160 |
+
" np.logical_or(d[key] == 1, d[key] == 4), d[key] == 2\n",
|
161 |
+
" )\n",
|
162 |
+
" )\n",
|
163 |
+
" # label 4 is ET\n",
|
164 |
+
" result.append(d[key] == 4)\n",
|
165 |
+
" d[key] = np.stack(result, axis=0).astype(np.float32)\n",
|
166 |
+
" return d"
|
167 |
+
]
|
168 |
+
},
|
169 |
+
{
|
170 |
+
"cell_type": "code",
|
171 |
+
"execution_count": 6,
|
172 |
+
"metadata": {},
|
173 |
+
"outputs": [],
|
174 |
+
"source": [
|
175 |
+
"def datafold_read(datalist, basedir, fold=0, key=\"training\"):\n",
|
176 |
+
" with open(datalist) as f:\n",
|
177 |
+
" json_data = json.load(f)\n",
|
178 |
+
"\n",
|
179 |
+
" json_data = json_data[key]\n",
|
180 |
+
"\n",
|
181 |
+
" for d in json_data:\n",
|
182 |
+
" for k in d:\n",
|
183 |
+
" if isinstance(d[k], list):\n",
|
184 |
+
" d[k] = [os.path.join(basedir, iv) for iv in d[k]]\n",
|
185 |
+
" elif isinstance(d[k], str):\n",
|
186 |
+
" d[k] = os.path.join(basedir, d[k]) if len(d[k]) > 0 else d[k]\n",
|
187 |
+
"\n",
|
188 |
+
" tr = []\n",
|
189 |
+
" val = []\n",
|
190 |
+
" for d in json_data:\n",
|
191 |
+
" if \"fold\" in d and d[\"fold\"] == fold:\n",
|
192 |
+
" val.append(d)\n",
|
193 |
+
" else:\n",
|
194 |
+
" tr.append(d)\n",
|
195 |
+
"\n",
|
196 |
+
" return tr, val"
|
197 |
+
]
|
198 |
+
},
|
199 |
+
{
|
200 |
+
"cell_type": "code",
|
201 |
+
"execution_count": 7,
|
202 |
+
"metadata": {},
|
203 |
+
"outputs": [],
|
204 |
+
"source": [
|
205 |
+
"def split_train_test(datalist, basedir, fold,test_size = 0.2, volume : float = None) :\n",
|
206 |
+
" train_files, _ = datafold_read(datalist=datalist, basedir=basedir, fold=fold)\n",
|
207 |
+
" from sklearn.model_selection import train_test_split\n",
|
208 |
+
" if volume != None :\n",
|
209 |
+
" train_files, _ = train_test_split(train_files,test_size=volume,random_state=42)\n",
|
210 |
+
" \n",
|
211 |
+
" train_files,validation_files = train_test_split(train_files,test_size=test_size, random_state=42)\n",
|
212 |
+
" \n",
|
213 |
+
" validation_files,test_files = train_test_split(validation_files,test_size=test_size, random_state=42)\n",
|
214 |
+
" return train_files, validation_files, test_files"
|
215 |
+
]
|
216 |
+
},
|
217 |
+
{
|
218 |
+
"cell_type": "code",
|
219 |
+
"execution_count": 8,
|
220 |
+
"metadata": {},
|
221 |
+
"outputs": [],
|
222 |
+
"source": [
|
223 |
+
"def get_loader(batch_size, data_dir, json_list, fold, roi,volume :float = None,test_size = 0.2):\n",
|
224 |
+
" train_files,validation_files,test_files = split_train_test(datalist = json_list,basedir = data_dir,test_size=test_size,fold = fold,volume= volume)\n",
|
225 |
+
" \n",
|
226 |
+
" train_transform = transforms.Compose(\n",
|
227 |
+
" [\n",
|
228 |
+
" transforms.LoadImaged(keys=[\"image\", \"label\"]),\n",
|
229 |
+
" transforms.ConvertToMultiChannelBasedOnBratsClassesd(keys=\"label\"),\n",
|
230 |
+
" transforms.CropForegroundd(\n",
|
231 |
+
" keys=[\"image\", \"label\"],\n",
|
232 |
+
" source_key=\"image\",\n",
|
233 |
+
" k_divisible=[roi[0], roi[1], roi[2]],\n",
|
234 |
+
" ),\n",
|
235 |
+
" transforms.RandSpatialCropd(\n",
|
236 |
+
" keys=[\"image\", \"label\"],\n",
|
237 |
+
" roi_size=[roi[0], roi[1], roi[2]],\n",
|
238 |
+
" random_size=False,\n",
|
239 |
+
" ),\n",
|
240 |
+
" transforms.RandFlipd(keys=[\"image\", \"label\"], prob=0.5, spatial_axis=0),\n",
|
241 |
+
" transforms.RandFlipd(keys=[\"image\", \"label\"], prob=0.5, spatial_axis=1),\n",
|
242 |
+
" transforms.RandFlipd(keys=[\"image\", \"label\"], prob=0.5, spatial_axis=2),\n",
|
243 |
+
" transforms.NormalizeIntensityd(keys=\"image\", nonzero=True, channel_wise=True),\n",
|
244 |
+
" transforms.RandScaleIntensityd(keys=\"image\", factors=0.1, prob=1.0),\n",
|
245 |
+
" transforms.RandShiftIntensityd(keys=\"image\", offsets=0.1, prob=1.0),\n",
|
246 |
+
" ]\n",
|
247 |
+
" )\n",
|
248 |
+
" val_transform = transforms.Compose(\n",
|
249 |
+
" [\n",
|
250 |
+
" transforms.LoadImaged(keys=[\"image\", \"label\"]),\n",
|
251 |
+
" transforms.ConvertToMultiChannelBasedOnBratsClassesd(keys=\"label\"),\n",
|
252 |
+
" transforms.NormalizeIntensityd(keys=\"image\", nonzero=True, channel_wise=True),\n",
|
253 |
+
" ]\n",
|
254 |
+
" )\n",
|
255 |
+
"\n",
|
256 |
+
" train_ds = Dataset(data=train_files, transform=train_transform)\n",
|
257 |
+
" train_loader = DataLoader(\n",
|
258 |
+
" train_ds,\n",
|
259 |
+
" batch_size=batch_size,\n",
|
260 |
+
" shuffle=True,\n",
|
261 |
+
" num_workers=2,\n",
|
262 |
+
" pin_memory=True,\n",
|
263 |
+
" )\n",
|
264 |
+
" val_ds = Dataset(data=validation_files, transform=val_transform)\n",
|
265 |
+
" val_loader = DataLoader(\n",
|
266 |
+
" val_ds,\n",
|
267 |
+
" batch_size=1,\n",
|
268 |
+
" shuffle=False,\n",
|
269 |
+
" num_workers=2,\n",
|
270 |
+
" pin_memory=True,\n",
|
271 |
+
" )\n",
|
272 |
+
" test_ds = Dataset(data=test_files, transform=val_transform)\n",
|
273 |
+
" test_loader = DataLoader(\n",
|
274 |
+
" test_ds,\n",
|
275 |
+
" batch_size=1,\n",
|
276 |
+
" shuffle=False,\n",
|
277 |
+
" num_workers=2,\n",
|
278 |
+
" pin_memory=True,\n",
|
279 |
+
" )\n",
|
280 |
+
" return train_loader, val_loader,test_loader"
|
281 |
+
]
|
282 |
+
},
|
283 |
+
{
|
284 |
+
"cell_type": "code",
|
285 |
+
"execution_count": 9,
|
286 |
+
"metadata": {},
|
287 |
+
"outputs": [
|
288 |
+
{
|
289 |
+
"name": "stderr",
|
290 |
+
"output_type": "stream",
|
291 |
+
"text": [
|
292 |
+
"/usr/local/lib/python3.9/site-packages/monai/utils/deprecate_utils.py:321: FutureWarning: monai.transforms.croppad.dictionary CropForegroundd.__init__:allow_smaller: Current default value of argument `allow_smaller=True` has been deprecated since version 1.2. It will be changed to `allow_smaller=False` in version 1.5.\n",
|
293 |
+
" warn_deprecated(argname, msg, warning_category)\n"
|
294 |
+
]
|
295 |
+
}
|
296 |
+
],
|
297 |
+
"source": [
|
298 |
+
"import json\n",
|
299 |
+
"data_dir = \"/app/brats_2021_task1\"\n",
|
300 |
+
"json_list = \"/app/info.json\"\n",
|
301 |
+
"roi = (128, 128, 128)\n",
|
302 |
+
"batch_size = 1\n",
|
303 |
+
"sw_batch_size = 2\n",
|
304 |
+
"fold = 1\n",
|
305 |
+
"infer_overlap = 0.5\n",
|
306 |
+
"max_epochs = 100\n",
|
307 |
+
"val_every = 10\n",
|
308 |
+
"train_loader, val_loader,test_loader = get_loader(batch_size, data_dir, json_list, fold, roi, volume=0.5, test_size=0.2)"
|
309 |
+
]
|
310 |
+
},
|
311 |
+
{
|
312 |
+
"cell_type": "code",
|
313 |
+
"execution_count": 45,
|
314 |
+
"metadata": {},
|
315 |
+
"outputs": [
|
316 |
+
{
|
317 |
+
"data": {
|
318 |
+
"text/plain": [
|
319 |
+
"100"
|
320 |
+
]
|
321 |
+
},
|
322 |
+
"execution_count": 45,
|
323 |
+
"metadata": {},
|
324 |
+
"output_type": "execute_result"
|
325 |
+
}
|
326 |
+
],
|
327 |
+
"source": [
|
328 |
+
"len(val_loader)"
|
329 |
+
]
|
330 |
+
},
|
331 |
+
{
|
332 |
+
"cell_type": "code",
|
333 |
+
"execution_count": 10,
|
334 |
+
"metadata": {},
|
335 |
+
"outputs": [],
|
336 |
+
"source": [
|
337 |
+
"os.environ[\"CUDA_DEVICE_ORDER\"] = \"PCI_BUS_ID\"\n",
|
338 |
+
"device = torch.device(\"cuda\" if torch.cuda.is_available() else \"cpu\")"
|
339 |
+
]
|
340 |
+
},
|
341 |
+
{
|
342 |
+
"cell_type": "markdown",
|
343 |
+
"metadata": {},
|
344 |
+
"source": [
|
345 |
+
"#### Model design, base on SegResNet, VAE and TransBTS"
|
346 |
+
]
|
347 |
+
},
|
348 |
+
{
|
349 |
+
"cell_type": "code",
|
350 |
+
"execution_count": 11,
|
351 |
+
"metadata": {},
|
352 |
+
"outputs": [],
|
353 |
+
"source": [
|
354 |
+
"import torch\n",
|
355 |
+
"import torch.nn as nn\n",
|
356 |
+
"\n",
|
357 |
+
"#Re-use from encoder block\n",
|
358 |
+
"def normalization(planes, norm = 'instance'):\n",
|
359 |
+
" if norm == 'bn':\n",
|
360 |
+
" m = nn.BatchNorm3d(planes)\n",
|
361 |
+
" elif norm == 'gn':\n",
|
362 |
+
" m = nn.GroupNorm(8, planes)\n",
|
363 |
+
" elif norm == 'instance':\n",
|
364 |
+
" m = nn.InstanceNorm3d(planes)\n",
|
365 |
+
" else:\n",
|
366 |
+
" raise ValueError(\"Does not support this kind of norm.\")\n",
|
367 |
+
" return m\n",
|
368 |
+
"class ResNetBlock(nn.Module):\n",
|
369 |
+
" def __init__(self, in_channels, norm = 'instance'):\n",
|
370 |
+
" super().__init__()\n",
|
371 |
+
" self.resnetblock = nn.Sequential(\n",
|
372 |
+
" normalization(in_channels, norm = norm),\n",
|
373 |
+
" nn.LeakyReLU(0.2, inplace=True),\n",
|
374 |
+
" nn.Conv3d(in_channels, in_channels, kernel_size = 3, padding = 1),\n",
|
375 |
+
" normalization(in_channels, norm = norm),\n",
|
376 |
+
" nn.LeakyReLU(0.2, inplace=True),\n",
|
377 |
+
" nn.Conv3d(in_channels, in_channels, kernel_size = 3, padding = 1)\n",
|
378 |
+
" )\n",
|
379 |
+
"\n",
|
380 |
+
" def forward(self, x):\n",
|
381 |
+
" y = self.resnetblock(x)\n",
|
382 |
+
" return y + x"
|
383 |
+
]
|
384 |
+
},
|
385 |
+
{
|
386 |
+
"cell_type": "code",
|
387 |
+
"execution_count": 12,
|
388 |
+
"metadata": {},
|
389 |
+
"outputs": [],
|
390 |
+
"source": [
|
391 |
+
"\n",
|
392 |
+
"\n",
|
393 |
+
"from torch.nn import functional as F\n",
|
394 |
+
"\n",
|
395 |
+
"def calculate_total_dimension(a):\n",
|
396 |
+
" res = 1\n",
|
397 |
+
" for x in a:\n",
|
398 |
+
" res *= x\n",
|
399 |
+
" return res\n",
|
400 |
+
"\n",
|
401 |
+
"class VAE(nn.Module):\n",
|
402 |
+
" def __init__(self, input_shape, latent_dim, num_channels):\n",
|
403 |
+
" super().__init__()\n",
|
404 |
+
" self.input_shape = input_shape\n",
|
405 |
+
" self.in_channels = input_shape[1] #input_shape[0] is batch size\n",
|
406 |
+
" self.latent_dim = latent_dim\n",
|
407 |
+
" self.encoder_channels = self.in_channels // 16\n",
|
408 |
+
"\n",
|
409 |
+
" #Encoder\n",
|
410 |
+
" self.VAE_reshape = nn.Conv3d(self.in_channels, self.encoder_channels,\n",
|
411 |
+
" kernel_size = 3, stride = 2, padding=1)\n",
|
412 |
+
" # self.VAE_reshape = nn.Sequential(\n",
|
413 |
+
" # nn.GroupNorm(8, self.in_channels),\n",
|
414 |
+
" # nn.ReLU(),\n",
|
415 |
+
" # nn.Conv3d(self.in_channels, self.encoder_channels,\n",
|
416 |
+
" # kernel_size = 3, stride = 2, padding=1),\n",
|
417 |
+
" # )\n",
|
418 |
+
"\n",
|
419 |
+
" flatten_input_shape = calculate_total_dimension(input_shape)\n",
|
420 |
+
" flatten_input_shape_after_vae_reshape = \\\n",
|
421 |
+
" flatten_input_shape * self.encoder_channels // (8 * self.in_channels)\n",
|
422 |
+
"\n",
|
423 |
+
" #Convert from total dimension to latent space\n",
|
424 |
+
" self.to_latent_space = nn.Linear(\n",
|
425 |
+
" flatten_input_shape_after_vae_reshape // self.in_channels, 1)\n",
|
426 |
+
"\n",
|
427 |
+
" self.mean = nn.Linear(self.in_channels, self.latent_dim)\n",
|
428 |
+
" self.logvar = nn.Linear(self.in_channels, self.latent_dim)\n",
|
429 |
+
"# self.epsilon = nn.Parameter(torch.randn(1, latent_dim))\n",
|
430 |
+
"\n",
|
431 |
+
" #Decoder\n",
|
432 |
+
" self.to_original_dimension = nn.Linear(self.latent_dim, flatten_input_shape_after_vae_reshape)\n",
|
433 |
+
" self.Reconstruct = nn.Sequential(\n",
|
434 |
+
" nn.LeakyReLU(0.2, inplace=True),\n",
|
435 |
+
" nn.Conv3d(\n",
|
436 |
+
" self.encoder_channels, self.in_channels,\n",
|
437 |
+
" stride = 1, kernel_size = 1),\n",
|
438 |
+
" nn.Upsample(scale_factor=2, mode = 'nearest'),\n",
|
439 |
+
"\n",
|
440 |
+
" nn.Conv3d(\n",
|
441 |
+
" self.in_channels, self.in_channels // 2,\n",
|
442 |
+
" stride = 1, kernel_size = 1),\n",
|
443 |
+
" nn.Upsample(scale_factor=2, mode = 'nearest'),\n",
|
444 |
+
" ResNetBlock(self.in_channels // 2),\n",
|
445 |
+
"\n",
|
446 |
+
" nn.Conv3d(\n",
|
447 |
+
" self.in_channels // 2, self.in_channels // 4,\n",
|
448 |
+
" stride = 1, kernel_size = 1),\n",
|
449 |
+
" nn.Upsample(scale_factor=2, mode = 'nearest'),\n",
|
450 |
+
" ResNetBlock(self.in_channels // 4),\n",
|
451 |
+
"\n",
|
452 |
+
" nn.Conv3d(\n",
|
453 |
+
" self.in_channels // 4, self.in_channels // 8,\n",
|
454 |
+
" stride = 1, kernel_size = 1),\n",
|
455 |
+
" nn.Upsample(scale_factor=2, mode = 'nearest'),\n",
|
456 |
+
" ResNetBlock(self.in_channels // 8),\n",
|
457 |
+
"\n",
|
458 |
+
" nn.InstanceNorm3d(self.in_channels // 8),\n",
|
459 |
+
" nn.LeakyReLU(0.2, inplace=True),\n",
|
460 |
+
" nn.Conv3d(\n",
|
461 |
+
" self.in_channels // 8, num_channels,\n",
|
462 |
+
" kernel_size = 3, padding = 1),\n",
|
463 |
+
"# nn.Sigmoid()\n",
|
464 |
+
" )\n",
|
465 |
+
"\n",
|
466 |
+
"\n",
|
467 |
+
" def forward(self, x): #x has shape = input_shape\n",
|
468 |
+
" #Encoder\n",
|
469 |
+
" # print(x.shape)\n",
|
470 |
+
" x = self.VAE_reshape(x)\n",
|
471 |
+
" shape = x.shape\n",
|
472 |
+
"\n",
|
473 |
+
" x = x.view(self.in_channels, -1)\n",
|
474 |
+
" x = self.to_latent_space(x)\n",
|
475 |
+
" x = x.view(1, self.in_channels)\n",
|
476 |
+
"\n",
|
477 |
+
" mean = self.mean(x)\n",
|
478 |
+
" logvar = self.logvar(x)\n",
|
479 |
+
"# sigma = torch.exp(0.5 * logvar)\n",
|
480 |
+
" # Reparameter\n",
|
481 |
+
" epsilon = torch.randn_like(logvar)\n",
|
482 |
+
" sample = mean + epsilon * torch.exp(0.5*logvar)\n",
|
483 |
+
"\n",
|
484 |
+
" #Decoder\n",
|
485 |
+
" y = self.to_original_dimension(sample)\n",
|
486 |
+
" y = y.view(*shape)\n",
|
487 |
+
" return self.Reconstruct(y), mean, logvar\n",
|
488 |
+
" def total_params(self):\n",
|
489 |
+
" total = sum(p.numel() for p in self.parameters())\n",
|
490 |
+
" return format(total, ',')\n",
|
491 |
+
"\n",
|
492 |
+
" def total_trainable_params(self):\n",
|
493 |
+
" total_trainable = sum(p.numel() for p in self.parameters() if p.requires_grad)\n",
|
494 |
+
" return format(total_trainable, ',')\n",
|
495 |
+
"\n",
|
496 |
+
"\n",
|
497 |
+
"# x = torch.rand((1, 256, 16, 16, 16))\n",
|
498 |
+
"# vae = VAE(input_shape = x.shape, latent_dim = 256, num_channels = 4)\n",
|
499 |
+
"# y = vae(x)\n",
|
500 |
+
"# print(y[0].shape, y[1].shape, y[2].shape)\n",
|
501 |
+
"# print(vae.total_trainable_params())\n"
|
502 |
+
]
|
503 |
+
},
|
504 |
+
{
|
505 |
+
"cell_type": "code",
|
506 |
+
"execution_count": 13,
|
507 |
+
"metadata": {},
|
508 |
+
"outputs": [],
|
509 |
+
"source": [
|
510 |
+
"import torch\n",
|
511 |
+
"from torch import nn\n",
|
512 |
+
"\n",
|
513 |
+
"from einops import rearrange\n",
|
514 |
+
"from einops.layers.torch import Rearrange\n",
|
515 |
+
"\n",
|
516 |
+
"def pair(t):\n",
|
517 |
+
" return t if isinstance(t, tuple) else (t, t)\n",
|
518 |
+
"\n",
|
519 |
+
"\n",
|
520 |
+
"class PreNorm(nn.Module):\n",
|
521 |
+
" def __init__(self, dim, function):\n",
|
522 |
+
" super().__init__()\n",
|
523 |
+
" self.norm = nn.LayerNorm(dim)\n",
|
524 |
+
" self.function = function\n",
|
525 |
+
"\n",
|
526 |
+
" def forward(self, x):\n",
|
527 |
+
" return self.function(self.norm(x))\n",
|
528 |
+
"\n",
|
529 |
+
"\n",
|
530 |
+
"class FeedForward(nn.Module):\n",
|
531 |
+
" def __init__(self, dim, hidden_dim, dropout = 0.0):\n",
|
532 |
+
" super().__init__()\n",
|
533 |
+
" self.net = nn.Sequential(\n",
|
534 |
+
" nn.Linear(dim, hidden_dim),\n",
|
535 |
+
" nn.GELU(),\n",
|
536 |
+
" nn.Dropout(dropout),\n",
|
537 |
+
" nn.Linear(hidden_dim, dim),\n",
|
538 |
+
" nn.Dropout(dropout)\n",
|
539 |
+
" )\n",
|
540 |
+
"\n",
|
541 |
+
" def forward(self, x):\n",
|
542 |
+
" return self.net(x)\n",
|
543 |
+
"\n",
|
544 |
+
"class Attention(nn.Module):\n",
|
545 |
+
" def __init__(self, dim, heads, dim_head, dropout = 0.0):\n",
|
546 |
+
" super().__init__()\n",
|
547 |
+
" all_head_size = heads * dim_head\n",
|
548 |
+
" project_out = not (heads == 1 and dim_head == dim)\n",
|
549 |
+
"\n",
|
550 |
+
" self.heads = heads\n",
|
551 |
+
" self.scale = dim_head ** -0.5\n",
|
552 |
+
"\n",
|
553 |
+
" self.softmax = nn.Softmax(dim = -1)\n",
|
554 |
+
" self.to_qkv = nn.Linear(dim, all_head_size * 3, bias = False)\n",
|
555 |
+
"\n",
|
556 |
+
" self.to_out = nn.Sequential(\n",
|
557 |
+
" nn.Linear(all_head_size, dim),\n",
|
558 |
+
" nn.Dropout(dropout)\n",
|
559 |
+
" ) if project_out else nn.Identity()\n",
|
560 |
+
"\n",
|
561 |
+
" def forward(self, x):\n",
|
562 |
+
" qkv = self.to_qkv(x).chunk(3, dim = -1)\n",
|
563 |
+
" #(batch, heads * dim_head) -> (batch, all_head_size)\n",
|
564 |
+
" q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> b h n d', h = self.heads), qkv)\n",
|
565 |
+
"\n",
|
566 |
+
" dots = torch.matmul(q, k.transpose(-1, -2)) * self.scale\n",
|
567 |
+
"\n",
|
568 |
+
" atten = self.softmax(dots)\n",
|
569 |
+
"\n",
|
570 |
+
" out = torch.matmul(atten, v)\n",
|
571 |
+
" out = rearrange(out, 'b h n d -> b n (h d)')\n",
|
572 |
+
" return self.to_out(out)\n",
|
573 |
+
"\n",
|
574 |
+
"class Transformer(nn.Module):\n",
|
575 |
+
" def __init__(self, dim, depth, heads, dim_head, mlp_dim, dropout = 0.0):\n",
|
576 |
+
" super().__init__()\n",
|
577 |
+
" self.layers = nn.ModuleList([])\n",
|
578 |
+
" for _ in range(depth):\n",
|
579 |
+
" self.layers.append(nn.ModuleList([\n",
|
580 |
+
" PreNorm(dim, Attention(dim, heads, dim_head, dropout)),\n",
|
581 |
+
" PreNorm(dim, FeedForward(dim, mlp_dim, dropout))\n",
|
582 |
+
" ]))\n",
|
583 |
+
" def forward(self, x):\n",
|
584 |
+
" for attention, feedforward in self.layers:\n",
|
585 |
+
" x = attention(x) + x\n",
|
586 |
+
" x = feedforward(x) + x\n",
|
587 |
+
" return x\n",
|
588 |
+
"\n",
|
589 |
+
"class FixedPositionalEncoding(nn.Module):\n",
|
590 |
+
" def __init__(self, embedding_dim, max_length=768):\n",
|
591 |
+
" super(FixedPositionalEncoding, self).__init__()\n",
|
592 |
+
"\n",
|
593 |
+
" pe = torch.zeros(max_length, embedding_dim)\n",
|
594 |
+
" position = torch.arange(0, max_length, dtype=torch.float).unsqueeze(1)\n",
|
595 |
+
" div_term = torch.exp(\n",
|
596 |
+
" torch.arange(0, embedding_dim, 2).float()\n",
|
597 |
+
" * (-torch.log(torch.tensor(10000.0)) / embedding_dim)\n",
|
598 |
+
" )\n",
|
599 |
+
" pe[:, 0::2] = torch.sin(position * div_term)\n",
|
600 |
+
" pe[:, 1::2] = torch.cos(position * div_term)\n",
|
601 |
+
" pe = pe.unsqueeze(0).transpose(0, 1)\n",
|
602 |
+
" self.register_buffer('pe', pe)\n",
|
603 |
+
"\n",
|
604 |
+
" def forward(self, x):\n",
|
605 |
+
" x = x + self.pe[: x.size(0), :]\n",
|
606 |
+
" return x\n",
|
607 |
+
"\n",
|
608 |
+
"\n",
|
609 |
+
"class LearnedPositionalEncoding(nn.Module):\n",
|
610 |
+
" def __init__(self, embedding_dim, seq_length):\n",
|
611 |
+
" super(LearnedPositionalEncoding, self).__init__()\n",
|
612 |
+
" self.seq_length = seq_length\n",
|
613 |
+
" self.position_embeddings = nn.Parameter(torch.zeros(1, seq_length, embedding_dim)) #8x\n",
|
614 |
+
"\n",
|
615 |
+
" def forward(self, x, position_ids=None):\n",
|
616 |
+
" position_embeddings = self.position_embeddings\n",
|
617 |
+
"# print(x.shape, self.position_embeddings.shape)\n",
|
618 |
+
" return x + position_embeddings"
|
619 |
+
]
|
620 |
+
},
|
621 |
+
{
|
622 |
+
"cell_type": "code",
|
623 |
+
"execution_count": 14,
|
624 |
+
"metadata": {},
|
625 |
+
"outputs": [],
|
626 |
+
"source": [
|
627 |
+
"### Encoder ####\n",
|
628 |
+
"import torch.nn as nn\n",
|
629 |
+
"import torch.nn.functional as F\n",
|
630 |
+
"\n",
|
631 |
+
"class InitConv(nn.Module):\n",
|
632 |
+
" def __init__(self, in_channels = 4, out_channels = 16, dropout = 0.2):\n",
|
633 |
+
" super().__init__()\n",
|
634 |
+
" self.layer = nn.Sequential(\n",
|
635 |
+
" nn.Conv3d(in_channels, out_channels, kernel_size = 3, padding = 1),\n",
|
636 |
+
" nn.Dropout3d(dropout)\n",
|
637 |
+
" )\n",
|
638 |
+
" def forward(self, x):\n",
|
639 |
+
" y = self.layer(x)\n",
|
640 |
+
" return y\n",
|
641 |
+
"\n",
|
642 |
+
"\n",
|
643 |
+
"class DownSample(nn.Module):\n",
|
644 |
+
" def __init__(self, in_channels, out_channels):\n",
|
645 |
+
" super().__init__()\n",
|
646 |
+
" self.conv = nn.Conv3d(in_channels, out_channels, kernel_size = 3, stride = 2, padding = 1)\n",
|
647 |
+
" def forward(self, x):\n",
|
648 |
+
" return self.conv(x)\n",
|
649 |
+
"\n",
|
650 |
+
"class Encoder(nn.Module):\n",
|
651 |
+
" def __init__(self, in_channels, base_channels, dropout = 0.2):\n",
|
652 |
+
" super().__init__()\n",
|
653 |
+
"\n",
|
654 |
+
" self.init_conv = InitConv(in_channels, base_channels, dropout = dropout)\n",
|
655 |
+
" self.encoder_block1 = ResNetBlock(in_channels = base_channels)\n",
|
656 |
+
" self.encoder_down1 = DownSample(base_channels, base_channels * 2)\n",
|
657 |
+
"\n",
|
658 |
+
" self.encoder_block2_1 = ResNetBlock(base_channels * 2)\n",
|
659 |
+
" self.encoder_block2_2 = ResNetBlock(base_channels * 2)\n",
|
660 |
+
" self.encoder_down2 = DownSample(base_channels * 2, base_channels * 4)\n",
|
661 |
+
"\n",
|
662 |
+
" self.encoder_block3_1 = ResNetBlock(base_channels * 4)\n",
|
663 |
+
" self.encoder_block3_2 = ResNetBlock(base_channels * 4)\n",
|
664 |
+
" self.encoder_down3 = DownSample(base_channels * 4, base_channels * 8)\n",
|
665 |
+
"\n",
|
666 |
+
" self.encoder_block4_1 = ResNetBlock(base_channels * 8)\n",
|
667 |
+
" self.encoder_block4_2 = ResNetBlock(base_channels * 8)\n",
|
668 |
+
" self.encoder_block4_3 = ResNetBlock(base_channels * 8)\n",
|
669 |
+
" self.encoder_block4_4 = ResNetBlock(base_channels * 8)\n",
|
670 |
+
" # self.encoder_down3 = EncoderDown(base_channels * 8, base_channels * 16)\n",
|
671 |
+
" def forward(self, x):\n",
|
672 |
+
" x = self.init_conv(x) #(1, 16, 128, 128, 128)\n",
|
673 |
+
"\n",
|
674 |
+
" x1 = self.encoder_block1(x)\n",
|
675 |
+
" x1_down = self.encoder_down1(x1) #(1, 32, 64, 64, 64)\n",
|
676 |
+
"\n",
|
677 |
+
" x2 = self.encoder_block2_2(self.encoder_block2_1(x1_down))\n",
|
678 |
+
" x2_down = self.encoder_down2(x2) #(1, 64, 32, 32, 32)\n",
|
679 |
+
"\n",
|
680 |
+
" x3 = self.encoder_block3_2(self.encoder_block3_1(x2_down))\n",
|
681 |
+
" x3_down = self.encoder_down3(x3) #(1, 128, 16, 16, 16)\n",
|
682 |
+
"\n",
|
683 |
+
" output = self.encoder_block4_4(\n",
|
684 |
+
" self.encoder_block4_3(\n",
|
685 |
+
" self.encoder_block4_2(\n",
|
686 |
+
" self.encoder_block4_1(x3_down)))) #(1, 256, 16, 16, 16)\n",
|
687 |
+
" return x1, x2, x3, output\n",
|
688 |
+
"\n",
|
689 |
+
"# x = torch.rand((1, 4, 128, 128, 128))\n",
|
690 |
+
"# Enc = Encoder(4, 32)\n",
|
691 |
+
"# _, _, _, y = Enc(x)\n",
|
692 |
+
"# print(y.shape) (1,256,16,16)"
|
693 |
+
]
|
694 |
+
},
|
695 |
+
{
|
696 |
+
"cell_type": "code",
|
697 |
+
"execution_count": 15,
|
698 |
+
"metadata": {},
|
699 |
+
"outputs": [],
|
700 |
+
"source": [
|
701 |
+
"### Decoder ####\n",
|
702 |
+
"\n",
|
703 |
+
"import torch\n",
|
704 |
+
"import torch.nn as nn\n",
|
705 |
+
"\n",
|
706 |
+
"\n",
|
707 |
+
"class Upsample(nn.Module):\n",
|
708 |
+
" def __init__(self, in_channel, out_channel):\n",
|
709 |
+
" super().__init__()\n",
|
710 |
+
" self.conv1 = nn.Conv3d(in_channel, out_channel, kernel_size = 1)\n",
|
711 |
+
" self.deconv = nn.ConvTranspose3d(out_channel, out_channel, kernel_size = 2, stride = 2)\n",
|
712 |
+
" self.conv2 = nn.Conv3d(out_channel * 2, out_channel, kernel_size = 1)\n",
|
713 |
+
"\n",
|
714 |
+
" def forward(self, prev, x):\n",
|
715 |
+
" x = self.deconv(self.conv1(x))\n",
|
716 |
+
" y = torch.cat((prev, x), dim = 1)\n",
|
717 |
+
" return self.conv2(y)\n",
|
718 |
+
"\n",
|
719 |
+
"class FinalConv(nn.Module): # Input channels are equal to output channels\n",
|
720 |
+
" def __init__(self, in_channels, out_channels=32, norm=\"instance\"):\n",
|
721 |
+
" super(FinalConv, self).__init__()\n",
|
722 |
+
" if norm == \"batch\":\n",
|
723 |
+
" norm_layer = nn.BatchNorm3d(num_features=in_channels)\n",
|
724 |
+
" elif norm == \"group\":\n",
|
725 |
+
" norm_layer = nn.GroupNorm(num_groups=8, num_channels=in_channels)\n",
|
726 |
+
" elif norm == 'instance':\n",
|
727 |
+
" norm_layer = nn.InstanceNorm3d(in_channels)\n",
|
728 |
+
"\n",
|
729 |
+
" self.layer = nn.Sequential(\n",
|
730 |
+
" norm_layer,\n",
|
731 |
+
" nn.LeakyReLU(0.2, inplace=True),\n",
|
732 |
+
" nn.Conv3d(in_channels=in_channels, out_channels=out_channels, kernel_size=3, stride=1, padding=1)\n",
|
733 |
+
" )\n",
|
734 |
+
" def forward(self, x):\n",
|
735 |
+
" return self.layer(x)\n",
|
736 |
+
"\n",
|
737 |
+
"class Decoder(nn.Module):\n",
|
738 |
+
" def __init__(self, img_dim, patch_dim, embedding_dim, num_classes = 3):\n",
|
739 |
+
" super().__init__()\n",
|
740 |
+
" self.img_dim = img_dim\n",
|
741 |
+
" self.patch_dim = patch_dim\n",
|
742 |
+
" self.embedding_dim = embedding_dim\n",
|
743 |
+
"\n",
|
744 |
+
" self.decoder_upsample_1 = Upsample(128, 64)\n",
|
745 |
+
" self.decoder_block_1 = ResNetBlock(64)\n",
|
746 |
+
"\n",
|
747 |
+
" self.decoder_upsample_2 = Upsample(64, 32)\n",
|
748 |
+
" self.decoder_block_2 = ResNetBlock(32)\n",
|
749 |
+
"\n",
|
750 |
+
" self.decoder_upsample_3 = Upsample(32, 16)\n",
|
751 |
+
" self.decoder_block_3 = ResNetBlock(16)\n",
|
752 |
+
"\n",
|
753 |
+
" self.endconv = FinalConv(16, num_classes)\n",
|
754 |
+
" # self.normalize = nn.Sigmoid()\n",
|
755 |
+
"\n",
|
756 |
+
" def forward(self, x1, x2, x3, x):\n",
|
757 |
+
" x = self.decoder_upsample_1(x3, x)\n",
|
758 |
+
" x = self.decoder_block_1(x)\n",
|
759 |
+
"\n",
|
760 |
+
" x = self.decoder_upsample_2(x2, x)\n",
|
761 |
+
" x = self.decoder_block_2(x)\n",
|
762 |
+
"\n",
|
763 |
+
" x = self.decoder_upsample_3(x1, x)\n",
|
764 |
+
" x = self.decoder_block_3(x)\n",
|
765 |
+
"\n",
|
766 |
+
" y = self.endconv(x)\n",
|
767 |
+
" return y"
|
768 |
+
]
|
769 |
+
},
|
770 |
+
{
|
771 |
+
"cell_type": "code",
|
772 |
+
"execution_count": 16,
|
773 |
+
"metadata": {},
|
774 |
+
"outputs": [],
|
775 |
+
"source": [
|
776 |
+
"class FeatureMapping(nn.Module):\n",
|
777 |
+
" def __init__(self, in_channel, out_channel, norm = 'instance'):\n",
|
778 |
+
" super().__init__()\n",
|
779 |
+
" if norm == 'bn':\n",
|
780 |
+
" norm_layer_1 = nn.BatchNorm3d(out_channel)\n",
|
781 |
+
" norm_layer_2 = nn.BatchNorm3d(out_channel)\n",
|
782 |
+
" elif norm == 'gn':\n",
|
783 |
+
" norm_layer_1 = nn.GroupNorm(8, out_channel)\n",
|
784 |
+
" norm_layer_2 = nn.GroupNorm(8, out_channel)\n",
|
785 |
+
" elif norm == 'instance':\n",
|
786 |
+
" norm_layer_1 = nn.InstanceNorm3d(out_channel)\n",
|
787 |
+
" norm_layer_2 = nn.InstanceNorm3d(out_channel)\n",
|
788 |
+
" self.feature_mapping = nn.Sequential(\n",
|
789 |
+
" nn.Conv3d(in_channel, out_channel, kernel_size = 3, padding = 1),\n",
|
790 |
+
" norm_layer_1,\n",
|
791 |
+
" nn.LeakyReLU(0.2, inplace=True),\n",
|
792 |
+
" nn.Conv3d(out_channel, out_channel, kernel_size = 3, padding = 1),\n",
|
793 |
+
" norm_layer_2,\n",
|
794 |
+
" nn.LeakyReLU(0.2, inplace=True)\n",
|
795 |
+
" )\n",
|
796 |
+
"\n",
|
797 |
+
" def forward(self, x):\n",
|
798 |
+
" return self.feature_mapping(x)\n",
|
799 |
+
"\n",
|
800 |
+
"\n",
|
801 |
+
"class FeatureMapping1(nn.Module):\n",
|
802 |
+
" def __init__(self, in_channel, norm = 'instance'):\n",
|
803 |
+
" super().__init__()\n",
|
804 |
+
" if norm == 'bn':\n",
|
805 |
+
" norm_layer_1 = nn.BatchNorm3d(in_channel)\n",
|
806 |
+
" norm_layer_2 = nn.BatchNorm3d(in_channel)\n",
|
807 |
+
" elif norm == 'gn':\n",
|
808 |
+
" norm_layer_1 = nn.GroupNorm(8, in_channel)\n",
|
809 |
+
" norm_layer_2 = nn.GroupNorm(8, in_channel)\n",
|
810 |
+
" elif norm == 'instance':\n",
|
811 |
+
" norm_layer_1 = nn.InstanceNorm3d(in_channel)\n",
|
812 |
+
" norm_layer_2 = nn.InstanceNorm3d(in_channel)\n",
|
813 |
+
" self.feature_mapping1 = nn.Sequential(\n",
|
814 |
+
" nn.Conv3d(in_channel, in_channel, kernel_size = 3, padding = 1),\n",
|
815 |
+
" norm_layer_1,\n",
|
816 |
+
" nn.LeakyReLU(0.2, inplace=True),\n",
|
817 |
+
" nn.Conv3d(in_channel, in_channel, kernel_size = 3, padding = 1),\n",
|
818 |
+
" norm_layer_2,\n",
|
819 |
+
" nn.LeakyReLU(0.2, inplace=True)\n",
|
820 |
+
" )\n",
|
821 |
+
" def forward(self, x):\n",
|
822 |
+
" y = self.feature_mapping1(x)\n",
|
823 |
+
" return x + y #Resnet Like"
|
824 |
+
]
|
825 |
+
},
|
826 |
+
{
|
827 |
+
"cell_type": "code",
|
828 |
+
"execution_count": 17,
|
829 |
+
"metadata": {},
|
830 |
+
"outputs": [],
|
831 |
+
"source": [
|
832 |
+
"\n",
|
833 |
+
"class SegTransVAE(nn.Module):\n",
|
834 |
+
" def __init__(self, img_dim, patch_dim, num_channels, num_classes,\n",
|
835 |
+
" embedding_dim, num_heads, num_layers, hidden_dim, in_channels_vae,\n",
|
836 |
+
" dropout = 0.0, attention_dropout = 0.0,\n",
|
837 |
+
" conv_patch_representation = True, positional_encoding = 'learned',\n",
|
838 |
+
" use_VAE = False):\n",
|
839 |
+
"\n",
|
840 |
+
" super().__init__()\n",
|
841 |
+
" assert embedding_dim % num_heads == 0\n",
|
842 |
+
" assert img_dim[0] % patch_dim == 0 and img_dim[1] % patch_dim == 0 and img_dim[2] % patch_dim == 0\n",
|
843 |
+
"\n",
|
844 |
+
" self.img_dim = img_dim\n",
|
845 |
+
" self.embedding_dim = embedding_dim\n",
|
846 |
+
" self.num_heads = num_heads\n",
|
847 |
+
" self.num_classes = num_classes\n",
|
848 |
+
" self.patch_dim = patch_dim\n",
|
849 |
+
" self.num_channels = num_channels\n",
|
850 |
+
" self.in_channels_vae = in_channels_vae\n",
|
851 |
+
" self.dropout = dropout\n",
|
852 |
+
" self.attention_dropout = attention_dropout\n",
|
853 |
+
" self.conv_patch_representation = conv_patch_representation\n",
|
854 |
+
" self.use_VAE = use_VAE\n",
|
855 |
+
"\n",
|
856 |
+
" self.num_patches = int((img_dim[0] // patch_dim) * (img_dim[1] // patch_dim) * (img_dim[2] // patch_dim))\n",
|
857 |
+
" self.seq_length = self.num_patches\n",
|
858 |
+
" self.flatten_dim = 128 * num_channels\n",
|
859 |
+
"\n",
|
860 |
+
" self.linear_encoding = nn.Linear(self.flatten_dim, self.embedding_dim)\n",
|
861 |
+
" if positional_encoding == \"learned\":\n",
|
862 |
+
" self.position_encoding = LearnedPositionalEncoding(\n",
|
863 |
+
" self.embedding_dim, self.seq_length\n",
|
864 |
+
" )\n",
|
865 |
+
" elif positional_encoding == \"fixed\":\n",
|
866 |
+
" self.position_encoding = FixedPositionalEncoding(\n",
|
867 |
+
" self.embedding_dim,\n",
|
868 |
+
" )\n",
|
869 |
+
" self.pe_dropout = nn.Dropout(self.dropout)\n",
|
870 |
+
"\n",
|
871 |
+
" self.transformer = Transformer(\n",
|
872 |
+
" embedding_dim, num_layers, num_heads, embedding_dim // num_heads, hidden_dim, dropout\n",
|
873 |
+
" )\n",
|
874 |
+
" self.pre_head_ln = nn.LayerNorm(embedding_dim)\n",
|
875 |
+
"\n",
|
876 |
+
" if self.conv_patch_representation:\n",
|
877 |
+
" self.conv_x = nn.Conv3d(128, self.embedding_dim, kernel_size=3, stride=1, padding=1)\n",
|
878 |
+
" self.encoder = Encoder(self.num_channels, 16)\n",
|
879 |
+
" self.bn = nn.InstanceNorm3d(128)\n",
|
880 |
+
" self.relu = nn.LeakyReLU(0.2, inplace=True)\n",
|
881 |
+
" self.FeatureMapping = FeatureMapping(in_channel = self.embedding_dim, out_channel= self.in_channels_vae)\n",
|
882 |
+
" self.FeatureMapping1 = FeatureMapping1(in_channel = self.in_channels_vae)\n",
|
883 |
+
" self.decoder = Decoder(self.img_dim, self.patch_dim, self.embedding_dim, num_classes)\n",
|
884 |
+
"\n",
|
885 |
+
" self.vae_input = (1, self.in_channels_vae, img_dim[0] // 8, img_dim[1] // 8, img_dim[2] // 8)\n",
|
886 |
+
" if use_VAE:\n",
|
887 |
+
" self.vae = VAE(input_shape = self.vae_input , latent_dim= 256, num_channels= self.num_channels)\n",
|
888 |
+
" def encode(self, x):\n",
|
889 |
+
" if self.conv_patch_representation:\n",
|
890 |
+
" x1, x2, x3, x = self.encoder(x)\n",
|
891 |
+
" x = self.bn(x)\n",
|
892 |
+
" x = self.relu(x)\n",
|
893 |
+
" x = self.conv_x(x)\n",
|
894 |
+
" x = x.permute(0, 2, 3, 4, 1).contiguous()\n",
|
895 |
+
" x = x.view(x.size(0), -1, self.embedding_dim)\n",
|
896 |
+
" x = self.position_encoding(x)\n",
|
897 |
+
" x = self.pe_dropout(x)\n",
|
898 |
+
" x = self.transformer(x)\n",
|
899 |
+
" x = self.pre_head_ln(x)\n",
|
900 |
+
"\n",
|
901 |
+
" return x1, x2, x3, x\n",
|
902 |
+
"\n",
|
903 |
+
" def decode(self, x1, x2, x3, x):\n",
|
904 |
+
" #x: (1, 4096, 512) -> (1, 16, 16, 16, 512)\n",
|
905 |
+
"# print(\"In decode...\")\n",
|
906 |
+
"# print(\" x1: {} \\n x2: {} \\n x3: {} \\n x: {}\".format( x1.shape, x2.shape, x3.shape, x.shape))\n",
|
907 |
+
"# break\n",
|
908 |
+
" return self.decoder(x1, x2, x3, x)\n",
|
909 |
+
"\n",
|
910 |
+
" def forward(self, x, is_validation = True):\n",
|
911 |
+
" x1, x2, x3, x = self.encode(x)\n",
|
912 |
+
" x = x.view( x.size(0),\n",
|
913 |
+
" self.img_dim[0] // self.patch_dim,\n",
|
914 |
+
" self.img_dim[1] // self.patch_dim,\n",
|
915 |
+
" self.img_dim[2] // self.patch_dim,\n",
|
916 |
+
" self.embedding_dim)\n",
|
917 |
+
" x = x.permute(0, 4, 1, 2, 3).contiguous()\n",
|
918 |
+
" x = self.FeatureMapping(x)\n",
|
919 |
+
" x = self.FeatureMapping1(x)\n",
|
920 |
+
" if self.use_VAE and not is_validation:\n",
|
921 |
+
" vae_out, mu, sigma = self.vae(x)\n",
|
922 |
+
" y = self.decode(x1, x2, x3, x)\n",
|
923 |
+
" if self.use_VAE and not is_validation:\n",
|
924 |
+
" return y, vae_out, mu, sigma\n",
|
925 |
+
" else:\n",
|
926 |
+
" return y\n",
|
927 |
+
"\n",
|
928 |
+
"\n"
|
929 |
+
]
|
930 |
+
},
|
931 |
+
{
|
932 |
+
"cell_type": "code",
|
933 |
+
"execution_count": 18,
|
934 |
+
"metadata": {},
|
935 |
+
"outputs": [
|
936 |
+
{
|
937 |
+
"name": "stdout",
|
938 |
+
"output_type": "stream",
|
939 |
+
"text": [
|
940 |
+
"CUDA (GPU) is available. Using GPU.\n"
|
941 |
+
]
|
942 |
+
}
|
943 |
+
],
|
944 |
+
"source": [
|
945 |
+
"import torch\n",
|
946 |
+
"\n",
|
947 |
+
"# Check if CUDA (GPU support) is available\n",
|
948 |
+
"if torch.cuda.is_available():\n",
|
949 |
+
" device = torch.device(\"cuda:0\")\n",
|
950 |
+
" print(\"CUDA (GPU) is available. Using GPU.\")\n",
|
951 |
+
"else:\n",
|
952 |
+
" device = torch.device(\"cpu\")\n",
|
953 |
+
" print(\"CUDA (GPU) is not available. Using CPU.\")"
|
954 |
+
]
|
955 |
+
},
|
956 |
+
{
|
957 |
+
"cell_type": "code",
|
958 |
+
"execution_count": 18,
|
959 |
+
"metadata": {},
|
960 |
+
"outputs": [],
|
961 |
+
"source": [
|
962 |
+
"model = SegTransVAE(img_dim = (128, 128, 128),patch_dim= 8,num_channels =4,num_classes= 3,embedding_dim= 768,num_heads= 8,num_layers= 4, hidden_dim= 3072,in_channels_vae=128 , use_VAE = True)"
|
963 |
+
]
|
964 |
+
},
|
965 |
+
{
|
966 |
+
"cell_type": "code",
|
967 |
+
"execution_count": 28,
|
968 |
+
"metadata": {},
|
969 |
+
"outputs": [
|
970 |
+
{
|
971 |
+
"name": "stdout",
|
972 |
+
"output_type": "stream",
|
973 |
+
"text": [
|
974 |
+
"Tα»ng sα» tham sα» của mΓ΄ hΓ¬nh lΓ : 44727120\n",
|
975 |
+
"Tα»ng sα» tham sα» cαΊ§n tΓnh gradient của mΓ΄ hΓ¬nh lΓ : 44727120\n"
|
976 |
+
]
|
977 |
+
}
|
978 |
+
],
|
979 |
+
"source": [
|
980 |
+
"total_params = sum(p.numel() for p in model.parameters())\n",
|
981 |
+
"print(f'Tα»ng sα» tham sα» của mΓ΄ hΓ¬nh lΓ : {total_params}')\n",
|
982 |
+
"\n",
|
983 |
+
"total_params_requires_grad = sum(p.numel() for p in model.parameters() if p.requires_grad)\n",
|
984 |
+
"print(f'Tα»ng sα» tham sα» cαΊ§n tΓnh gradient của mΓ΄ hΓ¬nh lΓ : {total_params_requires_grad}')\n"
|
985 |
+
]
|
986 |
+
},
|
987 |
+
{
|
988 |
+
"cell_type": "code",
|
989 |
+
"execution_count": 19,
|
990 |
+
"metadata": {},
|
991 |
+
"outputs": [],
|
992 |
+
"source": [
|
993 |
+
"class Loss_VAE(nn.Module):\n",
|
994 |
+
" def __init__(self):\n",
|
995 |
+
" super().__init__()\n",
|
996 |
+
" self.mse = nn.MSELoss(reduction='sum')\n",
|
997 |
+
"\n",
|
998 |
+
" def forward(self, recon_x, x, mu, log_var):\n",
|
999 |
+
" mse = self.mse(recon_x, x)\n",
|
1000 |
+
" kld = -0.5 * torch.sum(1 + log_var - mu.pow(2) - log_var.exp())\n",
|
1001 |
+
" loss = mse + kld\n",
|
1002 |
+
" return loss"
|
1003 |
+
]
|
1004 |
+
},
|
1005 |
+
{
|
1006 |
+
"cell_type": "code",
|
1007 |
+
"execution_count": 20,
|
1008 |
+
"metadata": {},
|
1009 |
+
"outputs": [],
|
1010 |
+
"source": [
|
1011 |
+
"def DiceScore(\n",
|
1012 |
+
" y_pred: torch.Tensor,\n",
|
1013 |
+
" y: torch.Tensor,\n",
|
1014 |
+
" include_background: bool = True,\n",
|
1015 |
+
") -> torch.Tensor:\n",
|
1016 |
+
" \"\"\"Computes Dice score metric from full size Tensor and collects average.\n",
|
1017 |
+
" Args:\n",
|
1018 |
+
" y_pred: input data to compute, typical segmentation model output.\n",
|
1019 |
+
" It must be one-hot format and first dim is batch, example shape: [16, 3, 32, 32]. The values\n",
|
1020 |
+
" should be binarized.\n",
|
1021 |
+
" y: ground truth to compute mean dice metric. It must be one-hot format and first dim is batch.\n",
|
1022 |
+
" The values should be binarized.\n",
|
1023 |
+
" include_background: whether to skip Dice computation on the first channel of\n",
|
1024 |
+
" the predicted output. Defaults to True.\n",
|
1025 |
+
" Returns:\n",
|
1026 |
+
" Dice scores per batch and per class, (shape [batch_size, num_classes]).\n",
|
1027 |
+
" Raises:\n",
|
1028 |
+
" ValueError: when `y_pred` and `y` have different shapes.\n",
|
1029 |
+
" \"\"\"\n",
|
1030 |
+
"\n",
|
1031 |
+
" y = y.float()\n",
|
1032 |
+
" y_pred = y_pred.float()\n",
|
1033 |
+
"\n",
|
1034 |
+
" if y.shape != y_pred.shape:\n",
|
1035 |
+
" raise ValueError(\"y_pred and y should have same shapes.\")\n",
|
1036 |
+
"\n",
|
1037 |
+
" # reducing only spatial dimensions (not batch nor channels)\n",
|
1038 |
+
" n_len = len(y_pred.shape)\n",
|
1039 |
+
" reduce_axis = list(range(2, n_len))\n",
|
1040 |
+
" intersection = torch.sum(y * y_pred, dim=reduce_axis)\n",
|
1041 |
+
"\n",
|
1042 |
+
" y_o = torch.sum(y, reduce_axis)\n",
|
1043 |
+
" y_pred_o = torch.sum(y_pred, dim=reduce_axis)\n",
|
1044 |
+
" denominator = y_o + y_pred_o\n",
|
1045 |
+
"\n",
|
1046 |
+
" return torch.where(\n",
|
1047 |
+
" denominator > 0,\n",
|
1048 |
+
" (2.0 * intersection) / denominator,\n",
|
1049 |
+
" torch.tensor(float(\"1\"), device=y_o.device),\n",
|
1050 |
+
" )\n"
|
1051 |
+
]
|
1052 |
+
},
|
1053 |
+
{
|
1054 |
+
"cell_type": "code",
|
1055 |
+
"execution_count": 21,
|
1056 |
+
"metadata": {},
|
1057 |
+
"outputs": [],
|
1058 |
+
"source": [
|
1059 |
+
"# Pytorch Lightning\n",
|
1060 |
+
"import pytorch_lightning as pl\n",
|
1061 |
+
"import matplotlib.pyplot as plt\n",
|
1062 |
+
"import csv\n",
|
1063 |
+
"from monai.transforms import AsDiscrete, Activations, Compose, EnsureType"
|
1064 |
+
]
|
1065 |
+
},
|
1066 |
+
{
|
1067 |
+
"cell_type": "code",
|
1068 |
+
"execution_count": 24,
|
1069 |
+
"metadata": {},
|
1070 |
+
"outputs": [],
|
1071 |
+
"source": [
|
1072 |
+
"class BRATS(pl.LightningModule):\n",
|
1073 |
+
" def __init__(self, use_VAE = True, lr = 1e-4, ):\n",
|
1074 |
+
" super().__init__()\n",
|
1075 |
+
" \n",
|
1076 |
+
" self.use_vae = use_VAE\n",
|
1077 |
+
" self.lr = lr\n",
|
1078 |
+
" self.model = SegTransVAE((128, 128, 128), 8, 4, 3, 768, 8, 4, 3072, in_channels_vae=128, use_VAE = use_VAE)\n",
|
1079 |
+
"\n",
|
1080 |
+
" self.loss_vae = Loss_VAE()\n",
|
1081 |
+
" self.dice_loss = DiceLoss(to_onehot_y=False, sigmoid=True, squared_pred=True)\n",
|
1082 |
+
" self.post_trans_images = Compose(\n",
|
1083 |
+
" [EnsureType(),\n",
|
1084 |
+
" Activations(sigmoid=True), \n",
|
1085 |
+
" AsDiscrete(threshold_values=True), \n",
|
1086 |
+
" ]\n",
|
1087 |
+
" )\n",
|
1088 |
+
"\n",
|
1089 |
+
" self.best_val_dice = 0\n",
|
1090 |
+
" \n",
|
1091 |
+
" self.training_step_outputs = [] \n",
|
1092 |
+
" self.val_step_loss = [] \n",
|
1093 |
+
" self.val_step_dice = []\n",
|
1094 |
+
" self.val_step_dice_tc = [] \n",
|
1095 |
+
" self.val_step_dice_wt = []\n",
|
1096 |
+
" self.val_step_dice_et = [] \n",
|
1097 |
+
" self.test_step_loss = [] \n",
|
1098 |
+
" self.test_step_dice = []\n",
|
1099 |
+
" self.test_step_dice_tc = [] \n",
|
1100 |
+
" self.test_step_dice_wt = []\n",
|
1101 |
+
" self.test_step_dice_et = [] \n",
|
1102 |
+
"\n",
|
1103 |
+
" def forward(self, x, is_validation = True):\n",
|
1104 |
+
" return self.model(x, is_validation) \n",
|
1105 |
+
" def training_step(self, batch, batch_index):\n",
|
1106 |
+
" inputs, labels = (batch['image'], batch['label'])\n",
|
1107 |
+
" \n",
|
1108 |
+
" if not self.use_vae:\n",
|
1109 |
+
" outputs = self.forward(inputs, is_validation=False)\n",
|
1110 |
+
" loss = self.dice_loss(outputs, labels)\n",
|
1111 |
+
" else:\n",
|
1112 |
+
" outputs, recon_batch, mu, sigma = self.forward(inputs, is_validation=False)\n",
|
1113 |
+
" \n",
|
1114 |
+
" vae_loss = self.loss_vae(recon_batch, inputs, mu, sigma)\n",
|
1115 |
+
" dice_loss = self.dice_loss(outputs, labels)\n",
|
1116 |
+
" loss = dice_loss + 1/(4 * 128 * 128 * 128) * vae_loss\n",
|
1117 |
+
" self.training_step_outputs.append(loss)\n",
|
1118 |
+
" self.log('train/vae_loss', vae_loss)\n",
|
1119 |
+
" self.log('train/dice_loss', dice_loss)\n",
|
1120 |
+
" if batch_index == 10:\n",
|
1121 |
+
"\n",
|
1122 |
+
" tensorboard = self.logger.experiment \n",
|
1123 |
+
" fig, ax = plt.subplots(nrows=1, ncols=6, figsize=(10, 5))\n",
|
1124 |
+
" \n",
|
1125 |
+
"\n",
|
1126 |
+
" ax[0].imshow(inputs.detach().cpu()[0][0][:, :, 80], cmap='gray')\n",
|
1127 |
+
" ax[0].set_title(\"Input\")\n",
|
1128 |
+
"\n",
|
1129 |
+
" ax[1].imshow(recon_batch.detach().cpu().float()[0][0][:,:, 80], cmap='gray')\n",
|
1130 |
+
" ax[1].set_title(\"Reconstruction\")\n",
|
1131 |
+
" \n",
|
1132 |
+
" ax[2].imshow(labels.detach().cpu().float()[0][0][:,:, 80], cmap='gray')\n",
|
1133 |
+
" ax[2].set_title(\"Labels TC\")\n",
|
1134 |
+
" \n",
|
1135 |
+
" ax[3].imshow(outputs.sigmoid().detach().cpu().float()[0][0][:,:, 80], cmap='gray')\n",
|
1136 |
+
" ax[3].set_title(\"TC\")\n",
|
1137 |
+
" \n",
|
1138 |
+
" ax[4].imshow(labels.detach().cpu().float()[0][2][:,:, 80], cmap='gray')\n",
|
1139 |
+
" ax[4].set_title(\"Labels ET\")\n",
|
1140 |
+
" \n",
|
1141 |
+
" ax[5].imshow(outputs.sigmoid().detach().cpu().float()[0][2][:,:, 80], cmap='gray')\n",
|
1142 |
+
" ax[5].set_title(\"ET\")\n",
|
1143 |
+
"\n",
|
1144 |
+
" \n",
|
1145 |
+
" tensorboard.add_figure('train_visualize', fig, self.current_epoch)\n",
|
1146 |
+
"\n",
|
1147 |
+
" self.log('train/loss', loss)\n",
|
1148 |
+
" \n",
|
1149 |
+
" return loss\n",
|
1150 |
+
" \n",
|
1151 |
+
" def on_train_epoch_end(self):\n",
|
1152 |
+
" ## F1 Macro all epoch saving outputs and target per batch\n",
|
1153 |
+
"\n",
|
1154 |
+
" # free up the memory\n",
|
1155 |
+
" # --> HERE STEP 3 <--\n",
|
1156 |
+
" epoch_average = torch.stack(self.training_step_outputs).mean()\n",
|
1157 |
+
" self.log(\"training_epoch_average\", epoch_average)\n",
|
1158 |
+
" self.training_step_outputs.clear() # free memory\n",
|
1159 |
+
"\n",
|
1160 |
+
" def validation_step(self, batch, batch_index):\n",
|
1161 |
+
" inputs, labels = (batch['image'], batch['label'])\n",
|
1162 |
+
" roi_size = (128, 128, 128)\n",
|
1163 |
+
" sw_batch_size = 1\n",
|
1164 |
+
" outputs = sliding_window_inference(\n",
|
1165 |
+
" inputs, roi_size, sw_batch_size, self.model, overlap = 0.5)\n",
|
1166 |
+
" loss = self.dice_loss(outputs, labels)\n",
|
1167 |
+
" \n",
|
1168 |
+
" \n",
|
1169 |
+
" val_outputs = self.post_trans_images(outputs)\n",
|
1170 |
+
" \n",
|
1171 |
+
" \n",
|
1172 |
+
" metric_tc = DiceScore(y_pred=val_outputs[:, 0:1], y=labels[:, 0:1], include_background = True)\n",
|
1173 |
+
" metric_wt = DiceScore(y_pred=val_outputs[:, 1:2], y=labels[:, 1:2], include_background = True)\n",
|
1174 |
+
" metric_et = DiceScore(y_pred=val_outputs[:, 2:3], y=labels[:, 2:3], include_background = True)\n",
|
1175 |
+
" mean_val_dice = (metric_tc + metric_wt + metric_et)/3\n",
|
1176 |
+
" self.val_step_loss.append(loss) \n",
|
1177 |
+
" self.val_step_dice.append(mean_val_dice)\n",
|
1178 |
+
" self.val_step_dice_tc.append(metric_tc) \n",
|
1179 |
+
" self.val_step_dice_wt.append(metric_wt)\n",
|
1180 |
+
" self.val_step_dice_et.append(metric_et) \n",
|
1181 |
+
" return {'val_loss': loss, 'val_mean_dice': mean_val_dice, 'val_dice_tc': metric_tc,\n",
|
1182 |
+
" 'val_dice_wt': metric_wt, 'val_dice_et': metric_et}\n",
|
1183 |
+
" \n",
|
1184 |
+
" def on_validation_epoch_end(self):\n",
|
1185 |
+
"\n",
|
1186 |
+
" loss = torch.stack(self.val_step_loss).mean()\n",
|
1187 |
+
" mean_val_dice = torch.stack(self.val_step_dice).mean()\n",
|
1188 |
+
" metric_tc = torch.stack(self.val_step_dice_tc).mean()\n",
|
1189 |
+
" metric_wt = torch.stack(self.val_step_dice_wt).mean()\n",
|
1190 |
+
" metric_et = torch.stack(self.val_step_dice_et).mean()\n",
|
1191 |
+
" self.log('val/Loss', loss)\n",
|
1192 |
+
" self.log('val/MeanDiceScore', mean_val_dice)\n",
|
1193 |
+
" self.log('val/DiceTC', metric_tc)\n",
|
1194 |
+
" self.log('val/DiceWT', metric_wt)\n",
|
1195 |
+
" self.log('val/DiceET', metric_et)\n",
|
1196 |
+
" os.makedirs(self.logger.log_dir, exist_ok=True)\n",
|
1197 |
+
" if self.current_epoch == 0:\n",
|
1198 |
+
" with open('{}/metric_log.csv'.format(self.logger.log_dir), 'w') as f:\n",
|
1199 |
+
" writer = csv.writer(f)\n",
|
1200 |
+
" writer.writerow(['Epoch', 'Mean Dice Score', 'Dice TC', 'Dice WT', 'Dice ET'])\n",
|
1201 |
+
" with open('{}/metric_log.csv'.format(self.logger.log_dir), 'a') as f:\n",
|
1202 |
+
" writer = csv.writer(f)\n",
|
1203 |
+
" writer.writerow([self.current_epoch, mean_val_dice.item(), metric_tc.item(), metric_wt.item(), metric_et.item()])\n",
|
1204 |
+
"\n",
|
1205 |
+
" if mean_val_dice > self.best_val_dice:\n",
|
1206 |
+
" self.best_val_dice = mean_val_dice\n",
|
1207 |
+
" self.best_val_epoch = self.current_epoch\n",
|
1208 |
+
" print(\n",
|
1209 |
+
" f\"\\n Current epoch: {self.current_epoch} Current mean dice: {mean_val_dice:.4f}\"\n",
|
1210 |
+
" f\" tc: {metric_tc:.4f} wt: {metric_wt:.4f} et: {metric_et:.4f}\"\n",
|
1211 |
+
" f\"\\n Best mean dice: {self.best_val_dice}\"\n",
|
1212 |
+
" f\" at epoch: {self.best_val_epoch}\"\n",
|
1213 |
+
" )\n",
|
1214 |
+
" \n",
|
1215 |
+
" self.val_step_loss.clear() \n",
|
1216 |
+
" self.val_step_dice.clear()\n",
|
1217 |
+
" self.val_step_dice_tc.clear() \n",
|
1218 |
+
" self.val_step_dice_wt.clear()\n",
|
1219 |
+
" self.val_step_dice_et.clear()\n",
|
1220 |
+
" return {'val_MeanDiceScore': mean_val_dice}\n",
|
1221 |
+
" def test_step(self, batch, batch_index):\n",
|
1222 |
+
" inputs, labels = (batch['image'], batch['label'])\n",
|
1223 |
+
" \n",
|
1224 |
+
" roi_size = (128, 128, 128)\n",
|
1225 |
+
" sw_batch_size = 1\n",
|
1226 |
+
" test_outputs = sliding_window_inference(\n",
|
1227 |
+
" inputs, roi_size, sw_batch_size, self.forward, overlap = 0.5)\n",
|
1228 |
+
" loss = self.dice_loss(test_outputs, labels)\n",
|
1229 |
+
" test_outputs = self.post_trans_images(test_outputs)\n",
|
1230 |
+
" metric_tc = DiceScore(y_pred=test_outputs[:, 0:1], y=labels[:, 0:1], include_background = True)\n",
|
1231 |
+
" metric_wt = DiceScore(y_pred=test_outputs[:, 1:2], y=labels[:, 1:2], include_background = True)\n",
|
1232 |
+
" metric_et = DiceScore(y_pred=test_outputs[:, 2:3], y=labels[:, 2:3], include_background = True)\n",
|
1233 |
+
" mean_test_dice = (metric_tc + metric_wt + metric_et)/3\n",
|
1234 |
+
" \n",
|
1235 |
+
" self.test_step_loss.append(loss) \n",
|
1236 |
+
" self.test_step_dice.append(mean_test_dice)\n",
|
1237 |
+
" self.test_step_dice_tc.append(metric_tc) \n",
|
1238 |
+
" self.test_step_dice_wt.append(metric_wt)\n",
|
1239 |
+
" self.test_step_dice_et.append(metric_et) \n",
|
1240 |
+
" \n",
|
1241 |
+
" return {'test_loss': loss, 'test_mean_dice': mean_test_dice, 'test_dice_tc': metric_tc,\n",
|
1242 |
+
" 'test_dice_wt': metric_wt, 'test_dice_et': metric_et}\n",
|
1243 |
+
" \n",
|
1244 |
+
" def test_epoch_end(self):\n",
|
1245 |
+
" loss = torch.stack(self.test_step_loss).mean()\n",
|
1246 |
+
" mean_test_dice = torch.stack(self.test_step_dice).mean()\n",
|
1247 |
+
" metric_tc = torch.stack(self.test_step_dice_tc).mean()\n",
|
1248 |
+
" metric_wt = torch.stack(self.test_step_dice_wt).mean()\n",
|
1249 |
+
" metric_et = torch.stack(self.test_step_dice_et).mean()\n",
|
1250 |
+
" self.log('test/Loss', loss)\n",
|
1251 |
+
" self.log('test/MeanDiceScore', mean_test_dice)\n",
|
1252 |
+
" self.log('test/DiceTC', metric_tc)\n",
|
1253 |
+
" self.log('test/DiceWT', metric_wt)\n",
|
1254 |
+
" self.log('test/DiceET', metric_et)\n",
|
1255 |
+
"\n",
|
1256 |
+
" with open('{}/test_log.csv'.format(self.logger.log_dir), 'w') as f:\n",
|
1257 |
+
" writer = csv.writer(f)\n",
|
1258 |
+
" writer.writerow([\"Mean Test Dice\", \"Dice TC\", \"Dice WT\", \"Dice ET\"])\n",
|
1259 |
+
" writer.writerow([mean_test_dice, metric_tc, metric_wt, metric_et])\n",
|
1260 |
+
"\n",
|
1261 |
+
" self.test_step_loss.clear() \n",
|
1262 |
+
" self.test_step_dice.clear()\n",
|
1263 |
+
" self.test_step_dice_tc.clear() \n",
|
1264 |
+
" self.test_step_dice_wt.clear()\n",
|
1265 |
+
" self.test_step_dice_et.clear()\n",
|
1266 |
+
" return {'test_MeanDiceScore': mean_test_dice}\n",
|
1267 |
+
" \n",
|
1268 |
+
" \n",
|
1269 |
+
" def configure_optimizers(self):\n",
|
1270 |
+
" optimizer = torch.optim.Adam(\n",
|
1271 |
+
" self.model.parameters(), self.lr, weight_decay=1e-5, amsgrad=True\n",
|
1272 |
+
" )\n",
|
1273 |
+
"# optimizer = AdaBelief(self.model.parameters(), \n",
|
1274 |
+
"# lr=self.lr, eps=1e-16, \n",
|
1275 |
+
"# betas=(0.9,0.999), weight_decouple = True, \n",
|
1276 |
+
"# rectify = False)\n",
|
1277 |
+
" scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(optimizer, 200)\n",
|
1278 |
+
" return [optimizer], [scheduler]\n",
|
1279 |
+
" \n",
|
1280 |
+
" def train_dataloader(self):\n",
|
1281 |
+
" return train_loader\n",
|
1282 |
+
" def val_dataloader(self):\n",
|
1283 |
+
" return val_loader\n",
|
1284 |
+
" \n",
|
1285 |
+
" def test_dataloader(self):\n",
|
1286 |
+
" return test_loader"
|
1287 |
+
]
|
1288 |
+
},
|
1289 |
+
{
|
1290 |
+
"cell_type": "code",
|
1291 |
+
"execution_count": 1,
|
1292 |
+
"metadata": {},
|
1293 |
+
"outputs": [
|
1294 |
+
{
|
1295 |
+
"name": "stderr",
|
1296 |
+
"output_type": "stream",
|
1297 |
+
"text": [
|
1298 |
+
"/usr/local/lib/python3.9/site-packages/tqdm/auto.py:21: TqdmWarning: IProgress not found. Please update jupyter and ipywidgets. See https://ipywidgets.readthedocs.io/en/stable/user_install.html\n",
|
1299 |
+
" from .autonotebook import tqdm as notebook_tqdm\n"
|
1300 |
+
]
|
1301 |
+
}
|
1302 |
+
],
|
1303 |
+
"source": [
|
1304 |
+
"from pytorch_lightning.callbacks import ModelCheckpoint, EarlyStopping\n",
|
1305 |
+
"import os \n",
|
1306 |
+
"from pytorch_lightning.loggers import TensorBoardLogger"
|
1307 |
+
]
|
1308 |
+
},
|
1309 |
+
{
|
1310 |
+
"cell_type": "code",
|
1311 |
+
"execution_count": 25,
|
1312 |
+
"metadata": {},
|
1313 |
+
"outputs": [
|
1314 |
+
{
|
1315 |
+
"name": "stderr",
|
1316 |
+
"output_type": "stream",
|
1317 |
+
"text": [
|
1318 |
+
"sh: 1: cls: not found\n"
|
1319 |
+
]
|
1320 |
+
},
|
1321 |
+
{
|
1322 |
+
"name": "stdout",
|
1323 |
+
"output_type": "stream",
|
1324 |
+
"text": [
|
1325 |
+
"\u001b[H\u001b[2JTraining ...\n"
|
1326 |
+
]
|
1327 |
+
},
|
1328 |
+
{
|
1329 |
+
"name": "stderr",
|
1330 |
+
"output_type": "stream",
|
1331 |
+
"text": [
|
1332 |
+
"/usr/local/lib/python3.9/site-packages/lightning_fabric/connector.py:563: `precision=16` is supported for historical reasons but its usage is discouraged. Please set your precision to 16-mixed instead!\n",
|
1333 |
+
"Using 16bit Automatic Mixed Precision (AMP)\n",
|
1334 |
+
"GPU available: True (cuda), used: True\n",
|
1335 |
+
"TPU available: False, using: 0 TPU cores\n",
|
1336 |
+
"IPU available: False, using: 0 IPUs\n",
|
1337 |
+
"HPU available: False, using: 0 HPUs\n",
|
1338 |
+
"LOCAL_RANK: 0 - CUDA_VISIBLE_DEVICES: [0]\n",
|
1339 |
+
"\n",
|
1340 |
+
" | Name | Type | Params\n",
|
1341 |
+
"------------------------------------------\n",
|
1342 |
+
"0 | model | SegTransVAE | 44.7 M\n",
|
1343 |
+
"1 | loss_vae | Loss_VAE | 0 \n",
|
1344 |
+
"2 | dice_loss | DiceLoss | 0 \n",
|
1345 |
+
"------------------------------------------\n",
|
1346 |
+
"44.7 M Trainable params\n",
|
1347 |
+
"0 Non-trainable params\n",
|
1348 |
+
"44.7 M Total params\n",
|
1349 |
+
"178.908 Total estimated model params size (MB)\n"
|
1350 |
+
]
|
1351 |
+
},
|
1352 |
+
{
|
1353 |
+
"name": "stdout",
|
1354 |
+
"output_type": "stream",
|
1355 |
+
"text": [
|
1356 |
+
"Sanity Checking DataLoader 0: 100%|ββββββββββ| 2/2 [00:05<00:00, 0.37it/s]\n",
|
1357 |
+
" Current epoch: 0 Current mean dice: 0.0097 tc: 0.0029 wt: 0.0234 et: 0.0028\n",
|
1358 |
+
" Best mean dice: 0.009687595069408417 at epoch: 0\n",
|
1359 |
+
"Epoch 0: 100%|ββββββββββ| 500/500 [05:38<00:00, 1.48it/s, v_num=6] \n",
|
1360 |
+
" Current epoch: 0 Current mean dice: 0.1927 tc: 0.1647 wt: 0.2843 et: 0.1290\n",
|
1361 |
+
" Best mean dice: 0.1926589012145996 at epoch: 0\n",
|
1362 |
+
"Epoch 1: 100%|ββββββββββ| 500/500 [07:35<00:00, 1.10it/s, v_num=6]\n",
|
1363 |
+
" Current epoch: 1 Current mean dice: 0.3212 tc: 0.2691 wt: 0.4253 et: 0.2692\n",
|
1364 |
+
" Best mean dice: 0.32120221853256226 at epoch: 1\n",
|
1365 |
+
"Epoch 2: 100%|ββββββββββ| 500/500 [08:11<00:00, 1.02it/s, v_num=6]\n",
|
1366 |
+
" Current epoch: 2 Current mean dice: 0.3912 tc: 0.3510 wt: 0.5087 et: 0.3137\n",
|
1367 |
+
" Best mean dice: 0.39115065336227417 at epoch: 2\n",
|
1368 |
+
"Epoch 3: 100%|ββββββββββ| 500/500 [08:58<00:00, 0.93it/s, v_num=6]\n",
|
1369 |
+
" Current epoch: 3 Current mean dice: 0.4268 tc: 0.3828 wt: 0.5424 et: 0.3553\n",
|
1370 |
+
" Best mean dice: 0.42682838439941406 at epoch: 3\n",
|
1371 |
+
"Epoch 4: 41%|βββββ | 207/500 [02:51<04:03, 1.21it/s, v_num=6]"
|
1372 |
+
]
|
1373 |
+
},
|
1374 |
+
{
|
1375 |
+
"ename": "",
|
1376 |
+
"evalue": "",
|
1377 |
+
"output_type": "error",
|
1378 |
+
"traceback": [
|
1379 |
+
"\u001b[1;31mThe Kernel crashed while executing code in the current cell or a previous cell. \n",
|
1380 |
+
"\u001b[1;31mPlease review the code in the cell(s) to identify a possible cause of the failure. \n",
|
1381 |
+
"\u001b[1;31mClick <a href='https://aka.ms/vscodeJupyterKernelCrash'>here</a> for more info. \n",
|
1382 |
+
"\u001b[1;31mView Jupyter <a href='command:jupyter.viewOutput'>log</a> for further details."
|
1383 |
+
]
|
1384 |
+
}
|
1385 |
+
],
|
1386 |
+
"source": [
|
1387 |
+
"os.system('cls||clear')\n",
|
1388 |
+
"print(\"Training ...\")\n",
|
1389 |
+
"model = BRATS(use_VAE = True)\n",
|
1390 |
+
"checkpoint_callback = ModelCheckpoint(\n",
|
1391 |
+
" monitor='val/MeanDiceScore',\n",
|
1392 |
+
" dirpath='./app/checkpoints/{}'.format(1),\n",
|
1393 |
+
" filename='Epoch{epoch:3d}-MeanDiceScore{val/MeanDiceScore:.4f}',\n",
|
1394 |
+
" save_top_k=3,\n",
|
1395 |
+
" mode='max',\n",
|
1396 |
+
" save_last= True,\n",
|
1397 |
+
" auto_insert_metric_name=False\n",
|
1398 |
+
")\n",
|
1399 |
+
"early_stop_callback = EarlyStopping(\n",
|
1400 |
+
" monitor='val/MeanDiceScore',\n",
|
1401 |
+
" min_delta=0.0001,\n",
|
1402 |
+
" patience=15,\n",
|
1403 |
+
" verbose=False,\n",
|
1404 |
+
" mode='max'\n",
|
1405 |
+
")\n",
|
1406 |
+
"tensorboardlogger = TensorBoardLogger(\n",
|
1407 |
+
" 'logs', \n",
|
1408 |
+
" name = \"1\", \n",
|
1409 |
+
" default_hp_metric = None \n",
|
1410 |
+
")\n",
|
1411 |
+
"trainer = pl.Trainer(#fast_dev_run = 10, \n",
|
1412 |
+
"# accelerator='ddp',\n",
|
1413 |
+
" #overfit_batches=5,\n",
|
1414 |
+
" devices = [0], \n",
|
1415 |
+
" precision=16,\n",
|
1416 |
+
" max_epochs = 200, \n",
|
1417 |
+
" enable_progress_bar=True, \n",
|
1418 |
+
" callbacks=[checkpoint_callback, early_stop_callback], \n",
|
1419 |
+
"# auto_lr_find=True,\n",
|
1420 |
+
" num_sanity_val_steps=2,\n",
|
1421 |
+
" logger = tensorboardlogger,\n",
|
1422 |
+
"# limit_train_batches=0.01, \n",
|
1423 |
+
"# limit_val_batches=0.01\n",
|
1424 |
+
" )\n",
|
1425 |
+
"# trainer.tune(model)\n",
|
1426 |
+
"trainer.fit(model)\n",
|
1427 |
+
"\n",
|
1428 |
+
"\n",
|
1429 |
+
"\n"
|
1430 |
+
]
|
1431 |
+
},
|
1432 |
+
{
|
1433 |
+
"cell_type": "code",
|
1434 |
+
"execution_count": null,
|
1435 |
+
"metadata": {},
|
1436 |
+
"outputs": [],
|
1437 |
+
"source": [
|
1438 |
+
"import pytorch_lightning as pl\n",
|
1439 |
+
"from trainer import BRATS\n",
|
1440 |
+
"import os \n",
|
1441 |
+
"import torch\n",
|
1442 |
+
"os.system('cls||clear')\n",
|
1443 |
+
"print(\"Testing ...\")\n",
|
1444 |
+
"\n",
|
1445 |
+
"CKPT = ''\n",
|
1446 |
+
"model = BRATS(use_VAE=True).load_from_checkpoint(CKPT).eval()\n",
|
1447 |
+
"val_dataloader = get_val_dataloader()\n",
|
1448 |
+
"test_dataloader = get_test_dataloader()\n",
|
1449 |
+
"trainer = pl.Trainer(gpus = [0], precision=32, progress_bar_refresh_rate=10)\n",
|
1450 |
+
"\n",
|
1451 |
+
"trainer.test(model, dataloaders = val_dataloader)\n",
|
1452 |
+
"trainer.test(model, dataloaders = test_dataloader)\n",
|
1453 |
+
"\n"
|
1454 |
+
]
|
1455 |
+
}
|
1456 |
+
],
|
1457 |
+
"metadata": {
|
1458 |
+
"kernelspec": {
|
1459 |
+
"display_name": "Python 3 (ipykernel)",
|
1460 |
+
"language": "python",
|
1461 |
+
"name": "python3"
|
1462 |
+
},
|
1463 |
+
"language_info": {
|
1464 |
+
"codemirror_mode": {
|
1465 |
+
"name": "ipython",
|
1466 |
+
"version": 3
|
1467 |
+
},
|
1468 |
+
"file_extension": ".py",
|
1469 |
+
"mimetype": "text/x-python",
|
1470 |
+
"name": "python",
|
1471 |
+
"nbconvert_exporter": "python",
|
1472 |
+
"pygments_lexer": "ipython3",
|
1473 |
+
"version": "3.9.18"
|
1474 |
+
}
|
1475 |
+
},
|
1476 |
+
"nbformat": 4,
|
1477 |
+
"nbformat_minor": 2
|
1478 |
+
}
|