Graduation / pipelines /bm25s /examples /retrieve_from_hf.py
DuyTa's picture
Upload folder using huggingface_hub
74b1bac verified
raw
history blame
1.7 kB
"""
# Example: Load index from Hugging Face Hub and retrieve from SciFact dataset
This shows how to load an index from the Hugging Face Hub created with BM25HF.index and
saved with BM25HF.save_to_hub. We will retrieve the top-k results for custom queries.
To run this example, you need to install the following dependencies:
```bash
pip install bm25s[full]
```
To build an index, please refer to the `examples/index_and_upload_to_hf.py` script. You
can run this script with:
```bash
python examples/index_and_upload_to_hf.py
```
Then, run this script with:
```bash
python examples/retrieve_from_hf.py
```
"""
import os
import Stemmer
import bm25s.hf
def main(user, repo_name="bm25s-scifact-index"):
queries = [
"Is chemotherapy effective for treating cancer?",
"Is Cardiac injury is common in critical cases of COVID-19?",
]
# Load the BM25 index from Hugging Face Hub
# mmap=True helps to reduce memory usage by memory-mapping the index
# load_corpus=True loads the corpus along with the index, so you can access the documents
retriever = bm25s.hf.BM25HF.load_from_hub(
f"{user}/{repo_name}", load_corpus=True, mmap=True
)
# Tokenize the queries
stemmer = Stemmer.Stemmer("english")
queries_tokenized = bm25s.tokenize(queries, stemmer=stemmer)
# Retrieve the top-k results
results = retriever.retrieve(queries_tokenized, k=3)
# show first results
result = results.documents[0]
print(f"First score (# 1 result):{results.scores[0, 0]}")
print(f"First result (# 1 result):\n{result[0]}")
if __name__ == "__main__":
user = os.getenv("HF_USERNAME", "write-your-username-here")
main(user=user)