|
""" |
|
# Example: Load index from Hugging Face Hub and retrieve from SciFact dataset |
|
|
|
This shows how to load an index from the Hugging Face Hub created with BM25HF.index and |
|
saved with BM25HF.save_to_hub. We will retrieve the top-k results for custom queries. |
|
|
|
To run this example, you need to install the following dependencies: |
|
|
|
```bash |
|
pip install bm25s[full] |
|
``` |
|
|
|
To build an index, please refer to the `examples/index_and_upload_to_hf.py` script. You |
|
can run this script with: |
|
|
|
```bash |
|
python examples/index_and_upload_to_hf.py |
|
``` |
|
|
|
Then, run this script with: |
|
|
|
```bash |
|
python examples/retrieve_from_hf.py |
|
``` |
|
""" |
|
import os |
|
import Stemmer |
|
|
|
import bm25s.hf |
|
|
|
def main(user, repo_name="bm25s-scifact-index"): |
|
queries = [ |
|
"Is chemotherapy effective for treating cancer?", |
|
"Is Cardiac injury is common in critical cases of COVID-19?", |
|
] |
|
|
|
|
|
|
|
|
|
retriever = bm25s.hf.BM25HF.load_from_hub( |
|
f"{user}/{repo_name}", load_corpus=True, mmap=True |
|
) |
|
|
|
|
|
stemmer = Stemmer.Stemmer("english") |
|
queries_tokenized = bm25s.tokenize(queries, stemmer=stemmer) |
|
|
|
|
|
results = retriever.retrieve(queries_tokenized, k=3) |
|
|
|
result = results.documents[0] |
|
print(f"First score (# 1 result):{results.scores[0, 0]}") |
|
print(f"First result (# 1 result):\n{result[0]}") |
|
|
|
if __name__ == "__main__": |
|
user = os.getenv("HF_USERNAME", "write-your-username-here") |
|
main(user=user) |