File size: 6,559 Bytes
3773bdd
 
 
 
 
 
 
728573e
 
 
 
 
 
 
3773bdd
 
 
 
979b0dd
 
3773bdd
 
 
 
 
979b0dd
 
 
 
 
 
3773bdd
 
 
6b7dc1d
3773bdd
 
 
979b0dd
3773bdd
 
 
979b0dd
3773bdd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
979b0dd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3773bdd
 
 
 
 
 
 
728573e
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
---
license: other
tags:
- generated_from_trainer
model-index:
- name: mit-b0-Image_segmentation_Dominoes_v2
  results: []
datasets:
- adelavega/dominoes_raw
language:
- en
metrics:
- mean_iou
pipeline_tag: image-segmentation
---

# mit-b0-Image_segmentation_Dominoes_v2

This model is a fine-tuned version of [nvidia/mit-b0](https://huggingface.co/nvidia/mit-b0).

It achieves the following results on the evaluation set:
- Loss: 0.1149
- Mean Iou: 0.9198
- Mean Accuracy: 0.9515
- Overall Accuracy: 0.9778
- Per Category Iou:
  - Segment 0: 0.974110559111975
  - Segment 1: 0.8655745252092782
- Per Category Accuracy
  - Segment 0: 0.9897833441005461
  - Segment 1: 0.913253525550903

## Model description

For more information on how it was created, check out the following link: https://github.com/DunnBC22/Vision_Audio_and_Multimodal_Projects/blob/main/Computer%20Vision/Image%20Segmentation/Dominoes/Fine-Tuning%20-%20Dominoes%20-%20Image%20Segmentation%20with%20LoRA.ipynb

## Intended uses & limitations

This model is intended to demonstrate my ability to solve a complex problem using technology.

## Training and evaluation data

Dataset Source: https://huggingface.co/datasets/adelavega/dominoes_raw

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0005
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 25

### Training results

| Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Per Category Iou Segment 0 | Per Category Iou Segment 1 | Per Category Accuracy Segment 0 | Per Category Accuracy Segment 1|
|:-------------:|:-----:|:----:|:---------------:|:--------:|:-------------:|:----------------:|:------------------:|:-------------------:|:---------------------:|:-----------------:|
| 0.0461        | 1.0   | 86   | 0.1233          | 0.9150   | 0.9527        | 0.9762           | 0.9721967854031923 | 0.8578619172251059 | 0.9869082633464498 | 0.9184139264010376 |
| 0.0708        | 2.0   | 172  | 0.1366          | 0.9172   | 0.9490        | 0.9771           | 0.9732821853093164 | 0.8611008788165083 | 0.9898473600751747 | 0.9082362492748777 |
| 0.048         | 3.0   | 258  | 0.1260          | 0.9199   | 0.9534        | 0.9777           | 0.9740118174014271 | 0.8658241844233872 | 0.9888392553004053 | 0.9179240730467295 |
| 0.0535        | 4.0   | 344  | 0.1184          | 0.9200   | 0.9520        | 0.9778           | 0.974142444792198 | 0.8658711064023369 | 0.9896291184589182 | 0.9142864290038782 |
| 0.0185        | 5.0   | 430  | 0.1296          | 0.9182   | 0.9477        | 0.9775           | 0.9737715695013129 | 0.8627108292167807 | 0.9910418746696423 | 0.904378218719681  |
| 0.036         | 6.0   | 516  | 0.1410          | 0.9213   | 0.9538        | 0.9782           | 0.9745002408443008 | 0.8680673581922554 | 0.9892677512186527 | 0.9182967669045321 |
| 0.0376        | 7.0   | 602  | 0.1451          | 0.9206   | 0.9550        | 0.9779           | 0.9741455743906073 | 0.8669703237367214 | 0.9883004639689904 | 0.9216576612178001 |
| 0.0186        | 8.0   | 688  | 0.1380          | 0.9175   | 0.9496        | 0.9772           | 0.9733616852468584 | 0.8616466350192237 | 0.9897043519116697 | 0.9094762400541087 |
| 0.0162        | 9.0   | 774  | 0.1459          | 0.9218   | 0.9539        | 0.9783           | 0.9746840649852051 | 0.8688930149000804 | 0.989455276913138 | 0.9182917005479264  |
| 0.0169        | 10.0  | 860  | 0.1467          | 0.9191   | 0.9502        | 0.9776           | 0.9739086600912814 | 0.8642187978193332 | 0.9901195747929759 | 0.9102564589713776 |
| 0.0102        | 11.0  | 946  | 0.1549          | 0.9191   | 0.9524        | 0.9775           | 0.9737696499931041 | 0.8644247331609153 | 0.9889789745698009 | 0.915789237032027  |
| 0.0204        | 12.0  | 1032 | 0.1502          | 0.9215   | 0.9527        | 0.9783           | 0.974639596078376 | 0.8682964916021273  | 0.989902977623774 | 0.9155653673995151  |
| 0.0268        | 13.0  | 1118 | 0.1413          | 0.9194   | 0.9505        | 0.9777           | 0.9740020531855834 | 0.8647199376136    | 0.99011699066189 | 0.9107963425971664   |
| 0.0166        | 14.0  | 1204 | 0.1584          | 0.9173   | 0.9518        | 0.9770           | 0.9731154475737929 | 0.8614276032542578 | 0.9884142831972749 | 0.9152366875147241 |
| 0.0159        | 15.0  | 1290 | 0.1563          | 0.9170   | 0.9492        | 0.9770           | 0.9731832402253996 | 0.8607442858381036 | 0.9896456803899689 | 0.9087960816798012 |
| 0.0211        | 16.0  | 1376 | 0.1435          | 0.9150   | 0.9481        | 0.9764           | 0.9725201360275898 | 0.8574847000491036 | 0.989323310037 | 0.9068449010920532     |
| 0.0128        | 17.0  | 1462 | 0.1421          | 0.9212   | 0.9519        | 0.9782           | 0.9745789801464504 | 0.8677394402794754 | 0.9901920479238856 | 0.9136255861141298 |
| 0.0167        | 18.0  | 1548 | 0.1558          | 0.9217   | 0.9532        | 0.9783           | 0.9746811993626879 | 0.8686470009484697 | 0.9897428202266988 | 0.9166850322093621 |
| 0.0201        | 19.0  | 1634 | 0.1623          | 0.9156   | 0.9484        | 0.9766           | 0.9727184720007118 | 0.8584339325695252 | 0.9894484642039114 | 0.9072695251050635 |
| 0.0133        | 20.0  | 1720 | 0.1573          | 0.9189   | 0.9505        | 0.9776           | 0.9738320500157303 | 0.8640203613069115 | 0.9898665061373113 | 0.9112263496140702 |
| 0.012         | 21.0  | 1806 | 0.1631          | 0.9165   | 0.9472        | 0.9769           | 0.9731344243001482 | 0.8597866189796295 | 0.9904592118400188 | 0.9040137576913626 |
| 0.0148        | 22.0  | 1892 | 0.1629          | 0.9181   | 0.9507        | 0.9773           | 0.9735162429121835 | 0.8627239955489192 | 0.9894034768309156 | 0.9120129014770962 |
| 0.0137        | 23.0  | 1978 | 0.1701          | 0.9136   | 0.9484        | 0.9760           | 0.9719681843338751 | 0.8552607882028388 | 0.9885083690609032 | 0.908250815050119  |
| 0.0142        | 24.0  | 2064 | 0.1646          | 0.9146   | 0.9488        | 0.9763           | 0.9723134197764093 | 0.8568918401744342 | 0.9887405884771245 | 0.9089100747034281 |
| 0.0156        | 25.0  | 2150 | 0.1615          | 0.9144   | 0.9465        | 0.9763           | 0.9723929259786395 | 0.856345354289624  | 0.9898487696012216 | 0.9032139066422469 |


### Framework versions

- Transformers 4.26.1
- Pytorch 2.0.1
- Datasets 2.13.1
- Tokenizers 0.13.3