Update README.md
Browse files
README.md
CHANGED
@@ -5,40 +5,80 @@ tags:
|
|
5 |
model-index:
|
6 |
- name: bert-base-cased-finetuned-ner-DFKI-SLT_few-NERd
|
7 |
results: []
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
8 |
---
|
9 |
|
10 |
-
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
11 |
-
should probably proofread and complete it, then remove this comment. -->
|
12 |
-
|
13 |
# bert-base-cased-finetuned-ner-DFKI-SLT_few-NERd
|
14 |
|
15 |
-
This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased)
|
|
|
16 |
It achieves the following results on the evaluation set:
|
17 |
- Loss: 0.1312
|
18 |
-
-
|
19 |
-
-
|
20 |
-
-
|
21 |
-
-
|
22 |
-
-
|
23 |
-
-
|
24 |
-
-
|
25 |
-
-
|
26 |
-
-
|
27 |
-
-
|
28 |
-
-
|
29 |
-
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
30 |
|
31 |
## Model description
|
32 |
|
33 |
-
|
34 |
|
35 |
## Intended uses & limitations
|
36 |
|
37 |
-
|
38 |
|
39 |
## Training and evaluation data
|
40 |
|
41 |
-
|
42 |
|
43 |
## Training procedure
|
44 |
|
@@ -57,15 +97,14 @@ The following hyperparameters were used during training:
|
|
57 |
|
58 |
### Training results
|
59 |
|
60 |
-
| Training Loss | Epoch | Step
|
61 |
-
|
62 |
-
| 0.1796
|
63 |
-
| 0.1542
|
64 |
-
|
65 |
|
66 |
### Framework versions
|
67 |
|
68 |
- Transformers 4.30.2
|
69 |
- Pytorch 2.0.1+cu118
|
70 |
- Datasets 2.13.1
|
71 |
-
- Tokenizers 0.13.3
|
|
|
5 |
model-index:
|
6 |
- name: bert-base-cased-finetuned-ner-DFKI-SLT_few-NERd
|
7 |
results: []
|
8 |
+
language:
|
9 |
+
- en
|
10 |
+
metrics:
|
11 |
+
- seqeval
|
12 |
+
- f1
|
13 |
+
- accuracy
|
14 |
+
- recall
|
15 |
+
- precision
|
16 |
+
pipeline_tag: token-classification
|
17 |
---
|
18 |
|
|
|
|
|
|
|
19 |
# bert-base-cased-finetuned-ner-DFKI-SLT_few-NERd
|
20 |
|
21 |
+
This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased).
|
22 |
+
|
23 |
It achieves the following results on the evaluation set:
|
24 |
- Loss: 0.1312
|
25 |
+
- Person
|
26 |
+
- Precision: 0.8860048426150121
|
27 |
+
- Recall: 0.9401849948612538
|
28 |
+
- F1: 0.912291199202194
|
29 |
+
- Number': 29190
|
30 |
+
- Location
|
31 |
+
- Precision: 0.8686381704207632
|
32 |
+
- Recall: 0.8152889539136796
|
33 |
+
- F1: 0.841118472477534
|
34 |
+
- Number: 95690
|
35 |
+
- Organization
|
36 |
+
- Precision: 0.7919078915181266
|
37 |
+
- Recall': 0.7449641777764141
|
38 |
+
- F1': 0.7677190874452579
|
39 |
+
- Number': 65183
|
40 |
+
- Product
|
41 |
+
- Precision: 0.7065968977761166
|
42 |
+
- Recall: 0.8295304958315051
|
43 |
+
- F1: 0.7631446160056513
|
44 |
+
- Number: 9116
|
45 |
+
- Art
|
46 |
+
- Precision: 0.8407258064516129
|
47 |
+
- Recall: 0.8614333386302241
|
48 |
+
- F1: 0.8509536143159878
|
49 |
+
- Number: 6293
|
50 |
+
- Other
|
51 |
+
- Precision: 0.7303024586555996
|
52 |
+
- Recall: 0.8314124132006586
|
53 |
+
- F1: 0.7775843599357258
|
54 |
+
- Nnumber: 13969
|
55 |
+
- Building
|
56 |
+
- Precision: 0.5162234691388143
|
57 |
+
- Recall: 0.3648904983617865
|
58 |
+
- F1: 0.4275611234592847
|
59 |
+
- Number: 5799
|
60 |
+
- Event
|
61 |
+
- Precision: 0.605920892987139
|
62 |
+
- Recall: 0.35144264602392683
|
63 |
+
- F1: 0.44486014608943525
|
64 |
+
- Number': 7105
|
65 |
+
- Overall
|
66 |
+
- Precision: 0.8203
|
67 |
+
- Recall: 0.7886
|
68 |
+
- F1: 0.8041
|
69 |
+
- Accuracy: 0.9498
|
70 |
|
71 |
## Model description
|
72 |
|
73 |
+
For more information on how it was created, check out the following link:
|
74 |
|
75 |
## Intended uses & limitations
|
76 |
|
77 |
+
This model is intended to demonstrate my ability to solve a complex problem using technology.
|
78 |
|
79 |
## Training and evaluation data
|
80 |
|
81 |
+
Dataset Source: https://huggingface.co/datasets/DFKI-SLT/few-nerd
|
82 |
|
83 |
## Training procedure
|
84 |
|
|
|
97 |
|
98 |
### Training results
|
99 |
|
100 |
+
| Training Loss | Epoch | Step | Validation Loss | Person Precision | Person Recall | Person F1 | Person Number | Location Precision | Location Recall | Location F1 | Location Number | Organization Precision | Organization Recall | Organization F1 | Organization Number | Product Precision | Product Recall | Product F1 | Product Number | Art Precision | Art Recall | Art F1 | Art Number | Other Precision | Other Recall | Other F1 | Other Number | Building Precision | Building Recall | Building F1 | Building Number | Event Precision | Event Recall | Event F1 | Event Number | Overall Precision | Overall Recall | Overall F1 | Overall Accuracy |
|
101 |
+
|:-----:|:-----:|:-----:|:-----:|:-----:|:-----:|:-----:|:-----:|:-----:|:-----:|:-----:|:-----:|:-----:|:-----:|:-----:|:-----:|:-----:|:-----:|:-----:|:-----:|:-----:|:-----:|:-----:|:-----:|:-----:|:-----:|:-----:|:-----:|:-----:|:-----:|:-----:|:-----:|:-----:|:-----:|:-----:|:-----:|:-----:|:-----:|:-----:|:-----:|
|
102 |
+
| 0.1796 | 1.0 | 11293 | 0.1427 | 0.8741 | 0.9272 | 0.8999 | 29190 | 0.8576 | 0.8072 | 0.8316 | 95690 | 0.7699 | 0.7688 | 0.7694 | 65183 | 0.6711 | 0.75 | 0.7084 | 9116 | 0.8347 | 0.8154 | 0.8249 | 6293 | 0.6743 | 0.8195 | 0.7398 | 13969 | 0.4812 | 0.3951 | 0.4339 | 5799 | 0.5998 | 0.3253 | 0.4218 | 7105 | 0.8000 | 0.7852 | 0.7925 | 0.9483 |
|
103 |
+
| 0.1542 | 2.0 | 22586 | 0.1312 | 0.8860 | 0.9402 | 0.9123 | 29190 | 0.8686 | 0.8153 | 0.8411 | 95690 | 0.7919 | 0.7450 | 0.7677 | 65183 | 0.7066 | 0.8295 | 0.7631 | 9116 | 0.8407 | 0.8614 | 0.8510 | 6293 | 0.7303 | 0.8314 | 0.7776 | 13969 | 0.5162 | 0.3649 | 0.4276 | 5799 | 0.6059 | 0.3514 | 0.4449 | 7105 | 0.8203 | 0.7886 | 0.8041 | 0.9498 |
|
|
|
104 |
|
105 |
### Framework versions
|
106 |
|
107 |
- Transformers 4.30.2
|
108 |
- Pytorch 2.0.1+cu118
|
109 |
- Datasets 2.13.1
|
110 |
+
- Tokenizers 0.13.3
|