DrishtiSharma commited on
Commit
9aaed25
·
verified ·
1 Parent(s): 96def5f

Add new SentenceTransformer model.

Browse files
.gitattributes CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ tokenizer.json filter=lfs diff=lfs merge=lfs -text
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 1536,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
2_Dense/config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"in_features": 1536, "out_features": 1024, "bias": true, "activation_function": "torch.nn.modules.linear.Identity"}
2_Dense/model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d8267c28b7b2bd2136d38abc648512d12d9caeb9b98906b5ad6a4d1ea95faa6f
3
+ size 6295712
README.md ADDED
@@ -0,0 +1,714 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ tags:
3
+ - sentence-transformers
4
+ - sentence-similarity
5
+ - feature-extraction
6
+ - generated_from_trainer
7
+ - dataset_size:22291
8
+ - loss:MultipleNegativesRankingLoss
9
+ base_model: dunzhang/stella_en_1.5B_v5
10
+ widget:
11
+ - source_sentence: What specific information should be included in the annual report
12
+ to adequately explain a company's business model and strategy in alignment with
13
+ Principle 7?
14
+ sentences:
15
+ - 'REGULATORY REQUIREMENTS FOR AUTHORISED PERSONS ENGAGED IN REGULATED ACTIVITIES
16
+ IN RELATION TO VIRTUAL ASSETS
17
+
18
+ Anti-Money Laundering and Countering Financing of Terrorism
19
+
20
+ On 22 February 2019, FATF issued a public statement recognising the need to adequately
21
+ mitigate the ML and TF risks associated with digital asset activities. As per
22
+ the statement, FATF proposed more details relating to the regulation and supervision/monitoring
23
+ of virtual assets (“VAs”) and virtual asset services providers (“VASPs”) by way
24
+ of its (Draft) Interpretive Note to Recommendation 15, “New technologies”.
25
+
26
+ '
27
+ - "REGULATORY REQUIREMENTS FOR AUTHORISED PERSONS ENGAGED IN REGULATED ACTIVITIES\
28
+ \ IN RELATION TO VIRTUAL ASSETS\nTechnology Governance and Controls\nWhen complying\
29
+ \ with GEN Rule 3.3 and COBS Rule 17.5, Authorised Persons should have due regard\
30
+ \ to the following key areas from a technology perspective:\n\na)\tCareful maintenance\
31
+ \ and development of systems and architecture (e.g., code version control, implementation\
32
+ \ of updates, issue resolution, and regular internal and third party testing);\n\
33
+ \nb)\tSecurity measures and procedures for the safe storage and transmission of\
34
+ \ data;\n\nc)\tBusiness continuity and Client engagement planning in the event\
35
+ \ of both planned and unplanned system outages;\n\nd)\tProcesses and procedures\
36
+ \ specifying management of personnel and decision-making by qualified staff; and\n\
37
+ \ne)\tProcedures for the creation and management of services, interfaces and channels\
38
+ \ provided by or to third parties (as recipients and providers of data or services).\n"
39
+ - Other stakeholders. The Directors should include in the annual report an explanation
40
+ of the basis on which the Reporting Entity generates or preserves value over the
41
+ longer term (the business model) and the strategy for delivering the objectives
42
+ of the Reporting Entity.
43
+ - source_sentence: Could you elaborate on the types of 'relevant events' that must
44
+ be reported by Fund Administrators, particularly those which might undermine their
45
+ ability to fulfill their duties as per Rule 17.1.5(d)?
46
+ sentences:
47
+ - "The Regulator would expect any agreement required under this Rule ‎17.1.5 to\
48
+ \ include as a minimum the following provisions:\n(a)\tunambiguous descriptions\
49
+ \ and definitions of the activities and functions to be provided by the Fund Administrator\
50
+ \ and the duties to be performed by both parties;\n(b)\tan agreed standard in\
51
+ \ respect of resources and services supported as necessary by performance measures\
52
+ \ in accordance with the applicable legislation;\n(c)\tthe requirement for regular\
53
+ \ detailed reporting to a specified frequency from the Fund Administrator in respect\
54
+ \ of its duties and activities;\n(d)\tprovisions relating to the reporting of\
55
+ \ relevant events such as technological changes or error reporting and, in particular,\
56
+ \ any event which undermines the ability of the Fund Administrator to fulfil its\
57
+ \ duties;\n(e)\tthe requirement for an annual review (at a minimum) of the performance\
58
+ \ of the functions by the Fund Administrator; and\n(f)\tprovisions relating to\
59
+ \ records and adequate access by the Foreign Fund Manager, the Fund's auditor\
60
+ \ or any other Persons providing control or risk management functions for the\
61
+ \ Fund, as required by the Foreign Fund Manager or applicable laws to that Fund."
62
+ - "A Relevant Person which is part of a Group must ensure that it:\n(a)\thas developed\
63
+ \ and implemented policies and procedures for the sharing of information between\
64
+ \ Group entities, including the sharing of information relating to CDD and money\
65
+ \ laundering risks;\n(b)\thas in place adequate safeguards on the confidentiality\
66
+ \ and use of information exchanged between Group entities, including consideration\
67
+ \ of relevant data protection legislation;\n(c)\tremains aware of the money laundering\
68
+ \ risks of the Group as a whole and of its exposure to the Group and takes active\
69
+ \ steps to mitigate such risks;\n(d)\tcontributes to a Group-wide risk assessment\
70
+ \ to identify and assess money laundering risks for the Group; and\n(e)\tprovides\
71
+ \ its Group-wide compliance, audit and AML/TFS functions with customer account\
72
+ \ and Transaction information from its Branches and Subsidiaries when necessary\
73
+ \ for AML/TFS purposes."
74
+ - '
75
+
76
+ There are two methods for calculating the Equity Risk Capital Requirement: the
77
+ standard method and the simplified method. The standard method requires two separate
78
+ calculations. The first is Specific Risk and the second is General Market Risk.
79
+ The simplified method is easier to calculate but usually results in a higher Capital
80
+ Requirement than the standard method. In addition, Authorised Persons must calculate
81
+ an Interest Rate Risk Capital Requirement for a forward, a Future, an Option or
82
+ a company issued Warrant.'
83
+ - source_sentence: Can a Third Party be compelled to provide access to material under
84
+ Section 255 if that material is relevant to an issue that identifies the Third
85
+ Party?
86
+ sentences:
87
+ - This Chapter deals with the regulatory requirements arising out of the need for
88
+ Authorised Persons to carry out a self assessment of their risk which can be reviewed
89
+ and assessed by the Regulator. This Chapter details the Rules stipulating the
90
+ need to complete internal risk assessments by Authorised Persons in defined frequencies
91
+ and the Regulator's role in reviewing the results of such assessments. In the
92
+ case of Authorised Persons facing financial risks, the requirements in this Chapter
93
+ mandate completion of an Internal Capital Adequacy Assessment Process. The Regulator
94
+ will review the results of such internal risk assessments. This Chapter also sets
95
+ out how the Regulator may impose an additional Capital Requirement on a firm specific
96
+ basis in addition to the minimum requirement specified in Chapter 3 of these Rules
97
+ to address higher-than-normal risk.
98
+ - Accounting Records must be maintained by an Authorised Person and Recognised Body
99
+ such as to enable its Governing Body to ensure that any financial statements prepared
100
+ by the Authorised Person or Recognised Body comply with the Regulations and Rules.
101
+ - Section ‎255 applies to a Third Party as it applies to the person to whom the
102
+ notice to which this section applies was given, in so far as the material to which
103
+ access must be given under that section relates to the matter which identifies
104
+ the Third Party.
105
+ - source_sentence: What is the immediate action required by an Authorised Person or
106
+ Recognised Body upon discovering that an Employee may have committed a fraud against
107
+ a Customer?
108
+ sentences:
109
+ - "Fraud and errors. Each Authorised Person and Recognised Body must notify the\
110
+ \ Regulator immediately if one of the following events arises in relation to its\
111
+ \ activities in or from the ADGM:\n(a)\tit becomes aware that an Employee may\
112
+ \ have committed a fraud against one of its Customers;\n(b)\ta serious fraud has\
113
+ \ been committed against it;\n(c)\tit has reason to believe that a Person is acting\
114
+ \ with intent to commit a serious fraud against it;\n(d)\tit identifies significant\
115
+ \ irregularities in its accounting or other records, whether or not there is evidence\
116
+ \ of fraud; or\n(e)\tit suspects that one of its Employees who is Connected with\
117
+ \ the Authorised Person or Recognised Body's Regulated Activities may be guilty\
118
+ \ of serious misconduct concerning his honesty or integrity.\n"
119
+ - "If a Relevant Person acquires another business, either in whole or in substantial\
120
+ \ part, the Regulator would permit the Relevant Person to rely on the CDD conducted\
121
+ \ by the business it is acquiring, but would expect the Relevant Person to have\
122
+ \ done the following:\n(a)\tas part of its due diligence for the acquisition,\
123
+ \ to have taken a reasonable sample of the prospective customers to assess the\
124
+ \ quality of the CDD undertaken; and\n(b)\tto have undertaken CDD on all the customers\
125
+ \ to cover any deficiencies identified in (a) as soon as possible following the\
126
+ \ acquisition, prioritising high-risk customers."
127
+ - 'Additionally, given their heavy dependence on collecting and processing client
128
+ data and the risks of cyberattacks to their automated and largely digital mode
129
+ of operations, Digital Investment Managers must also put in place robust data
130
+ security policies and systems to ensure compliance with all relevant data protection
131
+ regulations, including the ADGM’s Data Protection Regulations and, as appropriate,
132
+ PRU 6.6 – 6.9.
133
+
134
+ '
135
+ - source_sentence: Are there any anticipated changes to the COBS Rule 17.3 / MIR Rule
136
+ 3.2.1 that Authorised Persons should be preparing for in the near future? If so,
137
+ what is the expected timeline for these changes to take effect?
138
+ sentences:
139
+ - "A Relevant Person must ensure that its MLRO implements and has oversight of and\
140
+ \ is responsible for the following matters:\n(a)\tthe day-to-day operations for\
141
+ \ compliance by the Relevant Person with its AML/TFS policies, procedures, systems\
142
+ \ and controls;\n(b)\tacting as the point of contact to receive internal notifications\
143
+ \ of suspicious activity from the Relevant Person's Employees under Rule ‎14.2.2;\n\
144
+ (c)\ttaking appropriate action under Rule ‎14.3.1 following receipt of a notification\
145
+ \ from an Employee;\n(d)\tmaking, in accordance with Federal AML Legislation,\
146
+ \ Suspicious Activity/Transaction Reports;\n(e)\tacting as the point of contact\
147
+ \ within the Relevant Person for competent U.A.E. authorities and the Regulator\
148
+ \ regarding money laundering issues;\n(f)\tresponding promptly to any request\
149
+ \ for information made by competent U.A.E. authorities or the Regulator;\n(g)\t\
150
+ receiving and acting upon any relevant findings, recommendations, guidance, directives,\
151
+ \ resolutions, Sanctions, notices or other conclusions described in Chapter ‎11;\
152
+ \ and\n(h)\testablishing and maintaining an appropriate money laundering training\
153
+ \ programme and adequate awareness arrangements under Chapter ‎13."
154
+ - 'REGULATORY REQUIREMENTS FOR AUTHORISED PERSONS ENGAGED IN REGULATED ACTIVITIES
155
+ IN RELATION TO VIRTUAL ASSETS
156
+
157
+ Capital Requirements
158
+
159
+ When applying COBS Rule 17.3 / MIR Rule 3.2.1 to an Authorised Person, the FSRA
160
+ will apply proportionality in considering whether any additional capital buffer
161
+ must be held, based on the size, scope, complexity and nature of the activities
162
+ and operations of the Authorised Person and, if so, the appropriate amount of
163
+ regulatory capital required as an additional buffer. An Authorised Person that
164
+ the FSRA considers to be high risk may attract higher regulatory capital requirements.
165
+
166
+ '
167
+ - "In exceptional circumstances, where the Bail-in Tool is applied, the Regulator\
168
+ \ may exclude or partially exclude certain liabilities from the application of\
169
+ \ the Write Down or Conversion Power where—\n(a)\tit is not possible to bail-in\
170
+ \ that liability within a reasonable time despite the reasonable efforts of the\
171
+ \ Regulator;\n(b)\tthe exclusion is strictly necessary and is proportionate to\
172
+ \ achieve the continuity of Critical Functions and Core Business Lines in a manner\
173
+ \ that maintains the ability of the Institution in Resolution to continue key\
174
+ \ operations, services and transactions;\n(c)\tthe exclusion is strictly necessary\
175
+ \ and proportionate to avoid giving rise to widespread contagion, in particular\
176
+ \ as regards Deposits and Eligible Deposits which would severely disrupt the functioning\
177
+ \ of financial markets, including financial market infrastructures, in a manner\
178
+ \ that could cause broader financial instability; or\n(d)\tthe application of\
179
+ \ the Bail-in Tool to those liabilities would cause a destruction of value such\
180
+ \ that the losses borne by other creditors would be higher than if those liabilities\
181
+ \ were excluded from bail-in."
182
+ pipeline_tag: sentence-similarity
183
+ library_name: sentence-transformers
184
+ metrics:
185
+ - cosine_accuracy@1
186
+ - cosine_accuracy@3
187
+ - cosine_accuracy@5
188
+ - cosine_accuracy@10
189
+ - cosine_precision@1
190
+ - cosine_precision@3
191
+ - cosine_precision@5
192
+ - cosine_precision@10
193
+ - cosine_recall@1
194
+ - cosine_recall@3
195
+ - cosine_recall@5
196
+ - cosine_recall@10
197
+ - cosine_ndcg@10
198
+ - cosine_mrr@10
199
+ - cosine_map@100
200
+ - dot_accuracy@1
201
+ - dot_accuracy@3
202
+ - dot_accuracy@5
203
+ - dot_accuracy@10
204
+ - dot_precision@1
205
+ - dot_precision@3
206
+ - dot_precision@5
207
+ - dot_precision@10
208
+ - dot_recall@1
209
+ - dot_recall@3
210
+ - dot_recall@5
211
+ - dot_recall@10
212
+ - dot_ndcg@10
213
+ - dot_mrr@10
214
+ - dot_map@100
215
+ model-index:
216
+ - name: SentenceTransformer based on dunzhang/stella_en_1.5B_v5
217
+ results:
218
+ - task:
219
+ type: information-retrieval
220
+ name: Information Retrieval
221
+ dataset:
222
+ name: Unknown
223
+ type: unknown
224
+ metrics:
225
+ - type: cosine_accuracy@1
226
+ value: 0.6233859397417504
227
+ name: Cosine Accuracy@1
228
+ - type: cosine_accuracy@3
229
+ value: 0.7636298421807748
230
+ name: Cosine Accuracy@3
231
+ - type: cosine_accuracy@5
232
+ value: 0.8113342898134863
233
+ name: Cosine Accuracy@5
234
+ - type: cosine_accuracy@10
235
+ value: 0.8558106169296987
236
+ name: Cosine Accuracy@10
237
+ - type: cosine_precision@1
238
+ value: 0.6233859397417504
239
+ name: Cosine Precision@1
240
+ - type: cosine_precision@3
241
+ value: 0.2687709230033477
242
+ name: Cosine Precision@3
243
+ - type: cosine_precision@5
244
+ value: 0.17568149210903872
245
+ name: Cosine Precision@5
246
+ - type: cosine_precision@10
247
+ value: 0.09533715925394547
248
+ name: Cosine Precision@10
249
+ - type: cosine_recall@1
250
+ value: 0.5457735533237685
251
+ name: Cosine Recall@1
252
+ - type: cosine_recall@3
253
+ value: 0.6823290291726446
254
+ name: Cosine Recall@3
255
+ - type: cosine_recall@5
256
+ value: 0.7313605930176948
257
+ name: Cosine Recall@5
258
+ - type: cosine_recall@10
259
+ value: 0.7834947393591583
260
+ name: Cosine Recall@10
261
+ - type: cosine_ndcg@10
262
+ value: 0.6892546786573623
263
+ name: Cosine Ndcg@10
264
+ - type: cosine_mrr@10
265
+ value: 0.7027094577668452
266
+ name: Cosine Mrr@10
267
+ - type: cosine_map@100
268
+ value: 0.6454912452493724
269
+ name: Cosine Map@100
270
+ - type: dot_accuracy@1
271
+ value: 0.3446915351506456
272
+ name: Dot Accuracy@1
273
+ - type: dot_accuracy@3
274
+ value: 0.5656384505021521
275
+ name: Dot Accuracy@3
276
+ - type: dot_accuracy@5
277
+ value: 0.6639167862266858
278
+ name: Dot Accuracy@5
279
+ - type: dot_accuracy@10
280
+ value: 0.7786944045911047
281
+ name: Dot Accuracy@10
282
+ - type: dot_precision@1
283
+ value: 0.3446915351506456
284
+ name: Dot Precision@1
285
+ - type: dot_precision@3
286
+ value: 0.19548063127690102
287
+ name: Dot Precision@3
288
+ - type: dot_precision@5
289
+ value: 0.14031563845050213
290
+ name: Dot Precision@5
291
+ - type: dot_precision@10
292
+ value: 0.0854734576757532
293
+ name: Dot Precision@10
294
+ - type: dot_recall@1
295
+ value: 0.3028813964610234
296
+ name: Dot Recall@1
297
+ - type: dot_recall@3
298
+ value: 0.49997010999521757
299
+ name: Dot Recall@3
300
+ - type: dot_recall@5
301
+ value: 0.5915172166427547
302
+ name: Dot Recall@5
303
+ - type: dot_recall@10
304
+ value: 0.7070540411286466
305
+ name: Dot Recall@10
306
+ - type: dot_ndcg@10
307
+ value: 0.5127009608010437
308
+ name: Dot Ndcg@10
309
+ - type: dot_mrr@10
310
+ value: 0.4801890471635807
311
+ name: Dot Mrr@10
312
+ - type: dot_map@100
313
+ value: 0.4463977594142586
314
+ name: Dot Map@100
315
+ ---
316
+
317
+ # SentenceTransformer based on dunzhang/stella_en_1.5B_v5
318
+
319
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [dunzhang/stella_en_1.5B_v5](https://huggingface.co/dunzhang/stella_en_1.5B_v5). It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
320
+
321
+ ## Model Details
322
+
323
+ ### Model Description
324
+ - **Model Type:** Sentence Transformer
325
+ - **Base model:** [dunzhang/stella_en_1.5B_v5](https://huggingface.co/dunzhang/stella_en_1.5B_v5) <!-- at revision 221e30586ab5186c4360cbb7aeb643b6efc9d8f8 -->
326
+ - **Maximum Sequence Length:** 512 tokens
327
+ - **Output Dimensionality:** 1024 tokens
328
+ - **Similarity Function:** Cosine Similarity
329
+ <!-- - **Training Dataset:** Unknown -->
330
+ <!-- - **Language:** Unknown -->
331
+ <!-- - **License:** Unknown -->
332
+
333
+ ### Model Sources
334
+
335
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
336
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
337
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
338
+
339
+ ### Full Model Architecture
340
+
341
+ ```
342
+ SentenceTransformer(
343
+ (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: Qwen2Model
344
+ (1): Pooling({'word_embedding_dimension': 1536, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
345
+ (2): Dense({'in_features': 1536, 'out_features': 1024, 'bias': True, 'activation_function': 'torch.nn.modules.linear.Identity'})
346
+ )
347
+ ```
348
+
349
+ ## Usage
350
+
351
+ ### Direct Usage (Sentence Transformers)
352
+
353
+ First install the Sentence Transformers library:
354
+
355
+ ```bash
356
+ pip install -U sentence-transformers
357
+ ```
358
+
359
+ Then you can load this model and run inference.
360
+ ```python
361
+ from sentence_transformers import SentenceTransformer
362
+
363
+ # Download from the 🤗 Hub
364
+ model = SentenceTransformer("DrishtiSharma/stella_en_1.5B_v5-obliqa-5-epochs")
365
+ # Run inference
366
+ sentences = [
367
+ 'Are there any anticipated changes to the COBS Rule 17.3 / MIR Rule 3.2.1 that Authorised Persons should be preparing for in the near future? If so, what is the expected timeline for these changes to take effect?',
368
+ 'REGULATORY REQUIREMENTS FOR AUTHORISED PERSONS ENGAGED IN REGULATED ACTIVITIES IN RELATION TO VIRTUAL ASSETS\nCapital Requirements\nWhen applying COBS Rule 17.3 / MIR Rule 3.2.1 to an Authorised Person, the FSRA will apply proportionality in considering whether any additional capital buffer must be held, based on the size, scope, complexity and nature of the activities and operations of the Authorised Person and, if so, the appropriate amount of regulatory capital required as an additional buffer. An Authorised Person that the FSRA considers to be high risk may attract higher regulatory capital requirements.\n',
369
+ 'In exceptional circumstances, where the Bail-in Tool is applied, the Regulator may exclude or partially exclude certain liabilities from the application of the Write Down or Conversion Power where—\n(a)\tit is not possible to bail-in that liability within a reasonable time despite the reasonable efforts of the Regulator;\n(b)\tthe exclusion is strictly necessary and is proportionate to achieve the continuity of Critical Functions and Core Business Lines in a manner that maintains the ability of the Institution in Resolution to continue key operations, services and transactions;\n(c)\tthe exclusion is strictly necessary and proportionate to avoid giving rise to widespread contagion, in particular as regards Deposits and Eligible Deposits which would severely disrupt the functioning of financial markets, including financial market infrastructures, in a manner that could cause broader financial instability; or\n(d)\tthe application of the Bail-in Tool to those liabilities would cause a destruction of value such that the losses borne by other creditors would be higher than if those liabilities were excluded from bail-in.',
370
+ ]
371
+ embeddings = model.encode(sentences)
372
+ print(embeddings.shape)
373
+ # [3, 1024]
374
+
375
+ # Get the similarity scores for the embeddings
376
+ similarities = model.similarity(embeddings, embeddings)
377
+ print(similarities.shape)
378
+ # [3, 3]
379
+ ```
380
+
381
+ <!--
382
+ ### Direct Usage (Transformers)
383
+
384
+ <details><summary>Click to see the direct usage in Transformers</summary>
385
+
386
+ </details>
387
+ -->
388
+
389
+ <!--
390
+ ### Downstream Usage (Sentence Transformers)
391
+
392
+ You can finetune this model on your own dataset.
393
+
394
+ <details><summary>Click to expand</summary>
395
+
396
+ </details>
397
+ -->
398
+
399
+ <!--
400
+ ### Out-of-Scope Use
401
+
402
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
403
+ -->
404
+
405
+ ## Evaluation
406
+
407
+ ### Metrics
408
+
409
+ #### Information Retrieval
410
+
411
+ * Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
412
+
413
+ | Metric | Value |
414
+ |:--------------------|:-----------|
415
+ | cosine_accuracy@1 | 0.6234 |
416
+ | cosine_accuracy@3 | 0.7636 |
417
+ | cosine_accuracy@5 | 0.8113 |
418
+ | cosine_accuracy@10 | 0.8558 |
419
+ | cosine_precision@1 | 0.6234 |
420
+ | cosine_precision@3 | 0.2688 |
421
+ | cosine_precision@5 | 0.1757 |
422
+ | cosine_precision@10 | 0.0953 |
423
+ | cosine_recall@1 | 0.5458 |
424
+ | cosine_recall@3 | 0.6823 |
425
+ | cosine_recall@5 | 0.7314 |
426
+ | cosine_recall@10 | 0.7835 |
427
+ | cosine_ndcg@10 | 0.6893 |
428
+ | cosine_mrr@10 | 0.7027 |
429
+ | **cosine_map@100** | **0.6455** |
430
+ | dot_accuracy@1 | 0.3447 |
431
+ | dot_accuracy@3 | 0.5656 |
432
+ | dot_accuracy@5 | 0.6639 |
433
+ | dot_accuracy@10 | 0.7787 |
434
+ | dot_precision@1 | 0.3447 |
435
+ | dot_precision@3 | 0.1955 |
436
+ | dot_precision@5 | 0.1403 |
437
+ | dot_precision@10 | 0.0855 |
438
+ | dot_recall@1 | 0.3029 |
439
+ | dot_recall@3 | 0.5 |
440
+ | dot_recall@5 | 0.5915 |
441
+ | dot_recall@10 | 0.7071 |
442
+ | dot_ndcg@10 | 0.5127 |
443
+ | dot_mrr@10 | 0.4802 |
444
+ | dot_map@100 | 0.4464 |
445
+
446
+ <!--
447
+ ## Bias, Risks and Limitations
448
+
449
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
450
+ -->
451
+
452
+ <!--
453
+ ### Recommendations
454
+
455
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
456
+ -->
457
+
458
+ ## Training Details
459
+
460
+ ### Training Dataset
461
+
462
+ #### Unnamed Dataset
463
+
464
+
465
+ * Size: 22,291 training samples
466
+ * Columns: <code>sentence_0</code> and <code>sentence_1</code>
467
+ * Approximate statistics based on the first 1000 samples:
468
+ | | sentence_0 | sentence_1 |
469
+ |:--------|:-----------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------|
470
+ | type | string | string |
471
+ | details | <ul><li>min: 16 tokens</li><li>mean: 33.53 tokens</li><li>max: 71 tokens</li></ul> | <ul><li>min: 15 tokens</li><li>mean: 118.07 tokens</li><li>max: 512 tokens</li></ul> |
472
+ * Samples:
473
+ | sentence_0 | sentence_1 |
474
+ |:--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
475
+ | <code>What constitutes a "sufficiently advanced stage of development" for a FinTech Proposal to qualify for a live test under the RegLab framework, as mentioned in criterion (c)?</code> | <code>Evaluation Criteria. To qualify for authorisation under the RegLab framework, the applicant must demonstrate how it satisfies the following evaluation criteria:<br>(a) the FinTech Proposal promotes FinTech innovation, in terms of the business application and deployment model of the technology.<br>(b) the FinTech Proposal has the potential to:<br>i. promote significant growth, efficiency or competition in the financial sector;<br>ii. promote better risk management solutions and regulatory outcomes for the financial industry; or<br>iii. improve the choices and welfare of clients.<br>(c) the FinTech Proposal is at a sufficiently advanced stage of development to mount a live test.<br>(d) the FinTech Proposal can be deployed in the ADGM and the UAE on a broader scale or contribute to the development of ADGM as a financial centre, and, if so, how the applicant intends to do so on completion of the validity period.<br><br></code> |
476
+ | <code>Are there any upcoming regulatory changes that Authorised Persons should be aware of regarding the handling or classification of Virtual Assets within the ADGM?</code> | <code>CONCEPTS RELATING TO THE DISCLOSURE OF PETROLEUM ACTIVITIES<br>Petroleum Projects and materiality<br>If a Petroleum Reporting Entity discloses estimates that it viewed as material at the time of disclosure, but subsequently forms a view that they are no longer material, the FSRA expects the Petroleum Reporting Entity to make a further disclosure providing the clear rationale for the change view on materiality. Such reasoning would generally follow the considerations outlined in paragraph 24 above.<br><br></code> |
477
+ | <code>What are the ADGM's requirements for VC Managers regarding the periodic assessment and audit of their compliance frameworks, and who is qualified to conduct such assessments?</code> | <code>Principle 1 – A Robust and Transparent Risk-Based Regulatory Framework. The framework encompasses a suite of regulations, activity-specific rules and supporting guidance that delivers protection to investors, maintains market integrity and future-proofs against financial stability risks. In particular, it introduces a clear taxonomy defining VAs as commodities within the wider Digital Asset universe and requires the licensing of entities engaged in regulated activities that use VAs within ADGM.</code> |
478
+ * Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
479
+ ```json
480
+ {
481
+ "scale": 20.0,
482
+ "similarity_fct": "cos_sim"
483
+ }
484
+ ```
485
+
486
+ ### Training Hyperparameters
487
+ #### Non-Default Hyperparameters
488
+
489
+ - `eval_strategy`: steps
490
+ - `per_device_train_batch_size`: 10
491
+ - `per_device_eval_batch_size`: 10
492
+ - `multi_dataset_batch_sampler`: round_robin
493
+
494
+ #### All Hyperparameters
495
+ <details><summary>Click to expand</summary>
496
+
497
+ - `overwrite_output_dir`: False
498
+ - `do_predict`: False
499
+ - `eval_strategy`: steps
500
+ - `prediction_loss_only`: True
501
+ - `per_device_train_batch_size`: 10
502
+ - `per_device_eval_batch_size`: 10
503
+ - `per_gpu_train_batch_size`: None
504
+ - `per_gpu_eval_batch_size`: None
505
+ - `gradient_accumulation_steps`: 1
506
+ - `eval_accumulation_steps`: None
507
+ - `torch_empty_cache_steps`: None
508
+ - `learning_rate`: 5e-05
509
+ - `weight_decay`: 0.0
510
+ - `adam_beta1`: 0.9
511
+ - `adam_beta2`: 0.999
512
+ - `adam_epsilon`: 1e-08
513
+ - `max_grad_norm`: 1
514
+ - `num_train_epochs`: 3
515
+ - `max_steps`: -1
516
+ - `lr_scheduler_type`: linear
517
+ - `lr_scheduler_kwargs`: {}
518
+ - `warmup_ratio`: 0.0
519
+ - `warmup_steps`: 0
520
+ - `log_level`: passive
521
+ - `log_level_replica`: warning
522
+ - `log_on_each_node`: True
523
+ - `logging_nan_inf_filter`: True
524
+ - `save_safetensors`: True
525
+ - `save_on_each_node`: False
526
+ - `save_only_model`: False
527
+ - `restore_callback_states_from_checkpoint`: False
528
+ - `no_cuda`: False
529
+ - `use_cpu`: False
530
+ - `use_mps_device`: False
531
+ - `seed`: 42
532
+ - `data_seed`: None
533
+ - `jit_mode_eval`: False
534
+ - `use_ipex`: False
535
+ - `bf16`: False
536
+ - `fp16`: False
537
+ - `fp16_opt_level`: O1
538
+ - `half_precision_backend`: auto
539
+ - `bf16_full_eval`: False
540
+ - `fp16_full_eval`: False
541
+ - `tf32`: None
542
+ - `local_rank`: 0
543
+ - `ddp_backend`: None
544
+ - `tpu_num_cores`: None
545
+ - `tpu_metrics_debug`: False
546
+ - `debug`: []
547
+ - `dataloader_drop_last`: False
548
+ - `dataloader_num_workers`: 0
549
+ - `dataloader_prefetch_factor`: None
550
+ - `past_index`: -1
551
+ - `disable_tqdm`: False
552
+ - `remove_unused_columns`: True
553
+ - `label_names`: None
554
+ - `load_best_model_at_end`: False
555
+ - `ignore_data_skip`: False
556
+ - `fsdp`: []
557
+ - `fsdp_min_num_params`: 0
558
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
559
+ - `fsdp_transformer_layer_cls_to_wrap`: None
560
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
561
+ - `deepspeed`: None
562
+ - `label_smoothing_factor`: 0.0
563
+ - `optim`: adamw_torch
564
+ - `optim_args`: None
565
+ - `adafactor`: False
566
+ - `group_by_length`: False
567
+ - `length_column_name`: length
568
+ - `ddp_find_unused_parameters`: None
569
+ - `ddp_bucket_cap_mb`: None
570
+ - `ddp_broadcast_buffers`: False
571
+ - `dataloader_pin_memory`: True
572
+ - `dataloader_persistent_workers`: False
573
+ - `skip_memory_metrics`: True
574
+ - `use_legacy_prediction_loop`: False
575
+ - `push_to_hub`: False
576
+ - `resume_from_checkpoint`: None
577
+ - `hub_model_id`: None
578
+ - `hub_strategy`: every_save
579
+ - `hub_private_repo`: False
580
+ - `hub_always_push`: False
581
+ - `gradient_checkpointing`: False
582
+ - `gradient_checkpointing_kwargs`: None
583
+ - `include_inputs_for_metrics`: False
584
+ - `eval_do_concat_batches`: True
585
+ - `fp16_backend`: auto
586
+ - `push_to_hub_model_id`: None
587
+ - `push_to_hub_organization`: None
588
+ - `mp_parameters`:
589
+ - `auto_find_batch_size`: False
590
+ - `full_determinism`: False
591
+ - `torchdynamo`: None
592
+ - `ray_scope`: last
593
+ - `ddp_timeout`: 1800
594
+ - `torch_compile`: False
595
+ - `torch_compile_backend`: None
596
+ - `torch_compile_mode`: None
597
+ - `dispatch_batches`: None
598
+ - `split_batches`: None
599
+ - `include_tokens_per_second`: False
600
+ - `include_num_input_tokens_seen`: False
601
+ - `neftune_noise_alpha`: None
602
+ - `optim_target_modules`: None
603
+ - `batch_eval_metrics`: False
604
+ - `eval_on_start`: False
605
+ - `use_liger_kernel`: False
606
+ - `eval_use_gather_object`: False
607
+ - `batch_sampler`: batch_sampler
608
+ - `multi_dataset_batch_sampler`: round_robin
609
+
610
+ </details>
611
+
612
+ ### Training Logs
613
+ | Epoch | Step | Training Loss | cosine_map@100 |
614
+ |:------:|:----:|:-------------:|:--------------:|
615
+ | 0.0897 | 200 | - | 0.5597 |
616
+ | 0.1794 | 400 | - | 0.5674 |
617
+ | 0.2242 | 500 | 0.7416 | - |
618
+ | 0.2691 | 600 | - | 0.4684 |
619
+ | 0.3587 | 800 | - | 0.5593 |
620
+ | 0.4484 | 1000 | 0.6613 | 0.5502 |
621
+ | 0.5381 | 1200 | - | 0.5740 |
622
+ | 0.6278 | 1400 | - | 0.5398 |
623
+ | 0.6726 | 1500 | 0.5382 | - |
624
+ | 0.7175 | 1600 | - | 0.5820 |
625
+ | 0.8072 | 1800 | - | 0.5770 |
626
+ | 0.8969 | 2000 | 0.4959 | 0.5834 |
627
+ | 0.9865 | 2200 | - | 0.5382 |
628
+ | 1.0 | 2230 | - | 0.3223 |
629
+ | 1.0762 | 2400 | - | 0.5532 |
630
+ | 1.1211 | 2500 | 0.3796 | - |
631
+ | 1.1659 | 2600 | - | 0.5817 |
632
+ | 1.2556 | 2800 | - | 0.5929 |
633
+ | 1.3453 | 3000 | 0.367 | 0.5937 |
634
+ | 1.4350 | 3200 | - | 0.5907 |
635
+ | 1.5247 | 3400 | - | 0.6024 |
636
+ | 1.5695 | 3500 | 0.2877 | - |
637
+ | 1.6143 | 3600 | - | 0.6006 |
638
+ | 1.7040 | 3800 | - | 0.6131 |
639
+ | 1.7937 | 4000 | 0.2818 | 0.6167 |
640
+ | 1.8834 | 4200 | - | 0.6040 |
641
+ | 1.9731 | 4400 | - | 0.6144 |
642
+ | 2.0 | 4460 | - | 0.6225 |
643
+ | 2.0179 | 4500 | 0.2529 | - |
644
+ | 2.0628 | 4600 | - | 0.6196 |
645
+ | 2.1525 | 4800 | - | 0.6222 |
646
+ | 2.2422 | 5000 | 0.1409 | 0.6278 |
647
+ | 2.3318 | 5200 | - | 0.6337 |
648
+ | 2.4215 | 5400 | - | 0.6409 |
649
+ | 2.4664 | 5500 | 0.1213 | - |
650
+ | 2.5112 | 5600 | - | 0.6424 |
651
+ | 2.6009 | 5800 | - | 0.6412 |
652
+ | 2.6906 | 6000 | 0.1218 | 0.6432 |
653
+ | 2.7803 | 6200 | - | 0.6456 |
654
+ | 2.8700 | 6400 | - | 0.6446 |
655
+ | 2.9148 | 6500 | 0.1247 | - |
656
+ | 2.9596 | 6600 | - | 0.6458 |
657
+ | 3.0 | 6690 | - | 0.6455 |
658
+
659
+
660
+ ### Framework Versions
661
+ - Python: 3.10.12
662
+ - Sentence Transformers: 3.1.1
663
+ - Transformers: 4.45.2
664
+ - PyTorch: 2.1.0+cu118
665
+ - Accelerate: 1.2.0.dev0
666
+ - Datasets: 3.1.0
667
+ - Tokenizers: 0.20.3
668
+
669
+ ## Citation
670
+
671
+ ### BibTeX
672
+
673
+ #### Sentence Transformers
674
+ ```bibtex
675
+ @inproceedings{reimers-2019-sentence-bert,
676
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
677
+ author = "Reimers, Nils and Gurevych, Iryna",
678
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
679
+ month = "11",
680
+ year = "2019",
681
+ publisher = "Association for Computational Linguistics",
682
+ url = "https://arxiv.org/abs/1908.10084",
683
+ }
684
+ ```
685
+
686
+ #### MultipleNegativesRankingLoss
687
+ ```bibtex
688
+ @misc{henderson2017efficient,
689
+ title={Efficient Natural Language Response Suggestion for Smart Reply},
690
+ author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
691
+ year={2017},
692
+ eprint={1705.00652},
693
+ archivePrefix={arXiv},
694
+ primaryClass={cs.CL}
695
+ }
696
+ ```
697
+
698
+ <!--
699
+ ## Glossary
700
+
701
+ *Clearly define terms in order to be accessible across audiences.*
702
+ -->
703
+
704
+ <!--
705
+ ## Model Card Authors
706
+
707
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
708
+ -->
709
+
710
+ <!--
711
+ ## Model Card Contact
712
+
713
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
714
+ -->
added_tokens.json ADDED
@@ -0,0 +1,5 @@
 
 
 
 
 
 
1
+ {
2
+ "<|endoftext|>": 151643,
3
+ "<|im_end|>": 151645,
4
+ "<|im_start|>": 151644
5
+ }
config.json ADDED
@@ -0,0 +1,34 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "dunzhang/stella_en_1.5B_v5",
3
+ "architectures": [
4
+ "Qwen2Model"
5
+ ],
6
+ "attention_dropout": 0.0,
7
+ "auto_map": {
8
+ "AutoModel": "dunzhang/stella_en_1.5B_v5--modeling_qwen.Qwen2Model",
9
+ "AutoModelForCausalLM": "dunzhang/stella_en_1.5B_v5--modeling_qwen.Qwen2ForCausalLM",
10
+ "AutoModelForSequenceClassification": "dunzhang/stella_en_1.5B_v5--modeling_qwen.Qwen2ForSequenceClassification"
11
+ },
12
+ "bos_token_id": 151643,
13
+ "eos_token_id": 151643,
14
+ "hidden_act": "silu",
15
+ "hidden_size": 1536,
16
+ "initializer_range": 0.02,
17
+ "intermediate_size": 8960,
18
+ "max_position_embeddings": 131072,
19
+ "max_window_layers": 21,
20
+ "model_type": "qwen2",
21
+ "num_attention_heads": 12,
22
+ "num_hidden_layers": 28,
23
+ "num_key_value_heads": 2,
24
+ "rms_norm_eps": 1e-06,
25
+ "rope_scaling": null,
26
+ "rope_theta": 1000000.0,
27
+ "sliding_window": null,
28
+ "tie_word_embeddings": false,
29
+ "torch_dtype": "float32",
30
+ "transformers_version": "4.45.2",
31
+ "use_cache": true,
32
+ "use_sliding_window": false,
33
+ "vocab_size": 151646
34
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,13 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.1.1",
4
+ "transformers": "4.45.2",
5
+ "pytorch": "2.1.0+cu118"
6
+ },
7
+ "prompts": {
8
+ "s2p_query": "Instruct: Given a web search query, retrieve relevant passages that answer the query.\nQuery: ",
9
+ "s2s_query": "Instruct: Retrieve semantically similar text.\nQuery: "
10
+ },
11
+ "default_prompt_name": null,
12
+ "similarity_fn_name": "cosine"
13
+ }
merges.txt ADDED
The diff for this file is too large to render. See raw diff
 
model-00001-of-00002.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1ad749bd5b680f1711c07242a0f6fb58dc7f9e382a88b7f1fc7e9109686884da
3
+ size 4994887136
model-00002-of-00002.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3cc402883b4d5edb25db49a88cc9d4def40750a2f1151935c5322ec1111a68f2
3
+ size 1178224504
model.safetensors.index.json ADDED
@@ -0,0 +1,345 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metadata": {
3
+ "total_size": 6173075456
4
+ },
5
+ "weight_map": {
6
+ "embed_tokens.weight": "model-00001-of-00002.safetensors",
7
+ "layers.0.input_layernorm.weight": "model-00001-of-00002.safetensors",
8
+ "layers.0.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
9
+ "layers.0.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
10
+ "layers.0.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
11
+ "layers.0.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
12
+ "layers.0.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
13
+ "layers.0.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
14
+ "layers.0.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
15
+ "layers.0.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
16
+ "layers.0.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
17
+ "layers.0.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
18
+ "layers.0.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
19
+ "layers.1.input_layernorm.weight": "model-00001-of-00002.safetensors",
20
+ "layers.1.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
21
+ "layers.1.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
22
+ "layers.1.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
23
+ "layers.1.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
24
+ "layers.1.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
25
+ "layers.1.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
26
+ "layers.1.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
27
+ "layers.1.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
28
+ "layers.1.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
29
+ "layers.1.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
30
+ "layers.1.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
31
+ "layers.10.input_layernorm.weight": "model-00001-of-00002.safetensors",
32
+ "layers.10.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
33
+ "layers.10.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
34
+ "layers.10.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
35
+ "layers.10.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
36
+ "layers.10.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
37
+ "layers.10.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
38
+ "layers.10.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
39
+ "layers.10.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
40
+ "layers.10.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
41
+ "layers.10.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
42
+ "layers.10.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
43
+ "layers.11.input_layernorm.weight": "model-00001-of-00002.safetensors",
44
+ "layers.11.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
45
+ "layers.11.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
46
+ "layers.11.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
47
+ "layers.11.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
48
+ "layers.11.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
49
+ "layers.11.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
50
+ "layers.11.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
51
+ "layers.11.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
52
+ "layers.11.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
53
+ "layers.11.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
54
+ "layers.11.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
55
+ "layers.12.input_layernorm.weight": "model-00001-of-00002.safetensors",
56
+ "layers.12.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
57
+ "layers.12.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
58
+ "layers.12.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
59
+ "layers.12.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
60
+ "layers.12.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
61
+ "layers.12.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
62
+ "layers.12.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
63
+ "layers.12.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
64
+ "layers.12.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
65
+ "layers.12.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
66
+ "layers.12.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
67
+ "layers.13.input_layernorm.weight": "model-00001-of-00002.safetensors",
68
+ "layers.13.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
69
+ "layers.13.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
70
+ "layers.13.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
71
+ "layers.13.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
72
+ "layers.13.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
73
+ "layers.13.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
74
+ "layers.13.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
75
+ "layers.13.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
76
+ "layers.13.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
77
+ "layers.13.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
78
+ "layers.13.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
79
+ "layers.14.input_layernorm.weight": "model-00001-of-00002.safetensors",
80
+ "layers.14.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
81
+ "layers.14.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
82
+ "layers.14.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
83
+ "layers.14.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
84
+ "layers.14.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
85
+ "layers.14.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
86
+ "layers.14.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
87
+ "layers.14.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
88
+ "layers.14.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
89
+ "layers.14.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
90
+ "layers.14.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
91
+ "layers.15.input_layernorm.weight": "model-00001-of-00002.safetensors",
92
+ "layers.15.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
93
+ "layers.15.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
94
+ "layers.15.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
95
+ "layers.15.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
96
+ "layers.15.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
97
+ "layers.15.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
98
+ "layers.15.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
99
+ "layers.15.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
100
+ "layers.15.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
101
+ "layers.15.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
102
+ "layers.15.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
103
+ "layers.16.input_layernorm.weight": "model-00001-of-00002.safetensors",
104
+ "layers.16.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
105
+ "layers.16.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
106
+ "layers.16.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
107
+ "layers.16.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
108
+ "layers.16.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
109
+ "layers.16.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
110
+ "layers.16.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
111
+ "layers.16.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
112
+ "layers.16.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
113
+ "layers.16.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
114
+ "layers.16.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
115
+ "layers.17.input_layernorm.weight": "model-00001-of-00002.safetensors",
116
+ "layers.17.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
117
+ "layers.17.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
118
+ "layers.17.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
119
+ "layers.17.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
120
+ "layers.17.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
121
+ "layers.17.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
122
+ "layers.17.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
123
+ "layers.17.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
124
+ "layers.17.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
125
+ "layers.17.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
126
+ "layers.17.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
127
+ "layers.18.input_layernorm.weight": "model-00001-of-00002.safetensors",
128
+ "layers.18.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
129
+ "layers.18.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
130
+ "layers.18.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
131
+ "layers.18.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
132
+ "layers.18.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
133
+ "layers.18.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
134
+ "layers.18.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
135
+ "layers.18.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
136
+ "layers.18.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
137
+ "layers.18.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
138
+ "layers.18.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
139
+ "layers.19.input_layernorm.weight": "model-00001-of-00002.safetensors",
140
+ "layers.19.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
141
+ "layers.19.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
142
+ "layers.19.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
143
+ "layers.19.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
144
+ "layers.19.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
145
+ "layers.19.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
146
+ "layers.19.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
147
+ "layers.19.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
148
+ "layers.19.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
149
+ "layers.19.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
150
+ "layers.19.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
151
+ "layers.2.input_layernorm.weight": "model-00001-of-00002.safetensors",
152
+ "layers.2.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
153
+ "layers.2.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
154
+ "layers.2.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
155
+ "layers.2.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
156
+ "layers.2.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
157
+ "layers.2.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
158
+ "layers.2.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
159
+ "layers.2.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
160
+ "layers.2.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
161
+ "layers.2.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
162
+ "layers.2.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
163
+ "layers.20.input_layernorm.weight": "model-00001-of-00002.safetensors",
164
+ "layers.20.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
165
+ "layers.20.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
166
+ "layers.20.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
167
+ "layers.20.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
168
+ "layers.20.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
169
+ "layers.20.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
170
+ "layers.20.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
171
+ "layers.20.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
172
+ "layers.20.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
173
+ "layers.20.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
174
+ "layers.20.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
175
+ "layers.21.input_layernorm.weight": "model-00002-of-00002.safetensors",
176
+ "layers.21.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
177
+ "layers.21.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
178
+ "layers.21.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
179
+ "layers.21.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
180
+ "layers.21.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
181
+ "layers.21.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
182
+ "layers.21.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
183
+ "layers.21.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
184
+ "layers.21.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
185
+ "layers.21.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
186
+ "layers.21.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
187
+ "layers.22.input_layernorm.weight": "model-00002-of-00002.safetensors",
188
+ "layers.22.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
189
+ "layers.22.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
190
+ "layers.22.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
191
+ "layers.22.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
192
+ "layers.22.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
193
+ "layers.22.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
194
+ "layers.22.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
195
+ "layers.22.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
196
+ "layers.22.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
197
+ "layers.22.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
198
+ "layers.22.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
199
+ "layers.23.input_layernorm.weight": "model-00002-of-00002.safetensors",
200
+ "layers.23.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
201
+ "layers.23.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
202
+ "layers.23.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
203
+ "layers.23.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
204
+ "layers.23.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
205
+ "layers.23.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
206
+ "layers.23.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
207
+ "layers.23.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
208
+ "layers.23.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
209
+ "layers.23.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
210
+ "layers.23.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
211
+ "layers.24.input_layernorm.weight": "model-00002-of-00002.safetensors",
212
+ "layers.24.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
213
+ "layers.24.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
214
+ "layers.24.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
215
+ "layers.24.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
216
+ "layers.24.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
217
+ "layers.24.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
218
+ "layers.24.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
219
+ "layers.24.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
220
+ "layers.24.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
221
+ "layers.24.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
222
+ "layers.24.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
223
+ "layers.25.input_layernorm.weight": "model-00002-of-00002.safetensors",
224
+ "layers.25.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
225
+ "layers.25.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
226
+ "layers.25.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
227
+ "layers.25.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
228
+ "layers.25.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
229
+ "layers.25.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
230
+ "layers.25.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
231
+ "layers.25.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
232
+ "layers.25.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
233
+ "layers.25.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
234
+ "layers.25.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
235
+ "layers.26.input_layernorm.weight": "model-00002-of-00002.safetensors",
236
+ "layers.26.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
237
+ "layers.26.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
238
+ "layers.26.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
239
+ "layers.26.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
240
+ "layers.26.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
241
+ "layers.26.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
242
+ "layers.26.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
243
+ "layers.26.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
244
+ "layers.26.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
245
+ "layers.26.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
246
+ "layers.26.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
247
+ "layers.27.input_layernorm.weight": "model-00002-of-00002.safetensors",
248
+ "layers.27.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
249
+ "layers.27.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
250
+ "layers.27.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
251
+ "layers.27.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
252
+ "layers.27.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
253
+ "layers.27.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
254
+ "layers.27.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
255
+ "layers.27.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
256
+ "layers.27.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
257
+ "layers.27.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
258
+ "layers.27.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
259
+ "layers.3.input_layernorm.weight": "model-00001-of-00002.safetensors",
260
+ "layers.3.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
261
+ "layers.3.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
262
+ "layers.3.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
263
+ "layers.3.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
264
+ "layers.3.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
265
+ "layers.3.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
266
+ "layers.3.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
267
+ "layers.3.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
268
+ "layers.3.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
269
+ "layers.3.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
270
+ "layers.3.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
271
+ "layers.4.input_layernorm.weight": "model-00001-of-00002.safetensors",
272
+ "layers.4.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
273
+ "layers.4.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
274
+ "layers.4.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
275
+ "layers.4.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
276
+ "layers.4.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
277
+ "layers.4.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
278
+ "layers.4.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
279
+ "layers.4.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
280
+ "layers.4.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
281
+ "layers.4.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
282
+ "layers.4.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
283
+ "layers.5.input_layernorm.weight": "model-00001-of-00002.safetensors",
284
+ "layers.5.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
285
+ "layers.5.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
286
+ "layers.5.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
287
+ "layers.5.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
288
+ "layers.5.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
289
+ "layers.5.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
290
+ "layers.5.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
291
+ "layers.5.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
292
+ "layers.5.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
293
+ "layers.5.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
294
+ "layers.5.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
295
+ "layers.6.input_layernorm.weight": "model-00001-of-00002.safetensors",
296
+ "layers.6.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
297
+ "layers.6.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
298
+ "layers.6.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
299
+ "layers.6.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
300
+ "layers.6.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
301
+ "layers.6.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
302
+ "layers.6.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
303
+ "layers.6.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
304
+ "layers.6.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
305
+ "layers.6.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
306
+ "layers.6.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
307
+ "layers.7.input_layernorm.weight": "model-00001-of-00002.safetensors",
308
+ "layers.7.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
309
+ "layers.7.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
310
+ "layers.7.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
311
+ "layers.7.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
312
+ "layers.7.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
313
+ "layers.7.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
314
+ "layers.7.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
315
+ "layers.7.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
316
+ "layers.7.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
317
+ "layers.7.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
318
+ "layers.7.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
319
+ "layers.8.input_layernorm.weight": "model-00001-of-00002.safetensors",
320
+ "layers.8.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
321
+ "layers.8.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
322
+ "layers.8.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
323
+ "layers.8.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
324
+ "layers.8.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
325
+ "layers.8.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
326
+ "layers.8.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
327
+ "layers.8.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
328
+ "layers.8.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
329
+ "layers.8.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
330
+ "layers.8.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
331
+ "layers.9.input_layernorm.weight": "model-00001-of-00002.safetensors",
332
+ "layers.9.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
333
+ "layers.9.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
334
+ "layers.9.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
335
+ "layers.9.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
336
+ "layers.9.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
337
+ "layers.9.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
338
+ "layers.9.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
339
+ "layers.9.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
340
+ "layers.9.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
341
+ "layers.9.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
342
+ "layers.9.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
343
+ "norm.weight": "model-00002-of-00002.safetensors"
344
+ }
345
+ }
modules.json ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ },
14
+ {
15
+ "idx": 2,
16
+ "name": "2",
17
+ "path": "2_Dense",
18
+ "type": "sentence_transformers.models.Dense"
19
+ }
20
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 512,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "additional_special_tokens": [
3
+ "<|im_start|>",
4
+ "<|im_end|>"
5
+ ],
6
+ "eos_token": {
7
+ "content": "<|endoftext|>",
8
+ "lstrip": false,
9
+ "normalized": false,
10
+ "rstrip": false,
11
+ "single_word": false
12
+ },
13
+ "pad_token": {
14
+ "content": "<|endoftext|>",
15
+ "lstrip": false,
16
+ "normalized": false,
17
+ "rstrip": false,
18
+ "single_word": false
19
+ }
20
+ }
tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f9f198d74f8167446195840e984e047a0336be641303805c5bb11e25d9ffbe90
3
+ size 11419303
tokenizer_config.json ADDED
@@ -0,0 +1,50 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_eos_token": true,
3
+ "add_prefix_space": false,
4
+ "added_tokens_decoder": {
5
+ "151643": {
6
+ "content": "<|endoftext|>",
7
+ "lstrip": false,
8
+ "normalized": false,
9
+ "rstrip": false,
10
+ "single_word": false,
11
+ "special": true
12
+ },
13
+ "151644": {
14
+ "content": "<|im_start|>",
15
+ "lstrip": false,
16
+ "normalized": false,
17
+ "rstrip": false,
18
+ "single_word": false,
19
+ "special": true
20
+ },
21
+ "151645": {
22
+ "content": "<|im_end|>",
23
+ "lstrip": false,
24
+ "normalized": false,
25
+ "rstrip": false,
26
+ "single_word": false,
27
+ "special": true
28
+ }
29
+ },
30
+ "additional_special_tokens": [
31
+ "<|im_start|>",
32
+ "<|im_end|>"
33
+ ],
34
+ "auto_map": {
35
+ "AutoTokenizer": [
36
+ "dunzhang/stella_en_1.5B_v5--tokenization_qwen.Qwen2Tokenizer",
37
+ "dunzhang/stella_en_1.5B_v5--tokenization_qwen.Qwen2TokenizerFast"
38
+ ]
39
+ },
40
+ "bos_token": null,
41
+ "chat_template": "{% for message in messages %}{{'<|im_start|>' + message['role'] + '\n' + message['content'] + '<|im_end|>' + '\n'}}{% endfor %}{% if add_generation_prompt %}{{ '<|im_start|>assistant\n' }}{% endif %}",
42
+ "clean_up_tokenization_spaces": false,
43
+ "eos_token": "<|endoftext|>",
44
+ "errors": "replace",
45
+ "model_max_length": 512,
46
+ "pad_token": "<|endoftext|>",
47
+ "split_special_tokens": false,
48
+ "tokenizer_class": "Qwen2Tokenizer",
49
+ "unk_token": null
50
+ }
vocab.json ADDED
The diff for this file is too large to render. See raw diff