File size: 2,305 Bytes
c82c0ef |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 |
---
base_model: microsoft/codebert-base
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: codebert-base-password-strength-classifier-normal-weight-balancing
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# codebert-base-password-strength-classifier-normal-weight-balancing
This model is a fine-tuned version of [microsoft/codebert-base](https://huggingface.co/microsoft/codebert-base) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0083
- Accuracy: 0.9977
- Weighted f1: 0.9977
- Micro f1: 0.9977
- Macro f1: 0.9966
- Weighted recall: 0.9977
- Micro recall: 0.9977
- Macro recall: 0.9979
- Weighted precision: 0.9977
- Micro precision: 0.9977
- Macro precision: 0.9953
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 2
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Weighted f1 | Micro f1 | Macro f1 | Weighted recall | Micro recall | Macro recall | Weighted precision | Micro precision | Macro precision |
|:-------------:|:-----:|:-----:|:---------------:|:--------:|:-----------:|:--------:|:--------:|:---------------:|:------------:|:------------:|:------------------:|:---------------:|:---------------:|
| 0.0345 | 1.0 | 37667 | 0.0522 | 0.9825 | 0.9829 | 0.9825 | 0.9755 | 0.9825 | 0.9825 | 0.9915 | 0.9844 | 0.9825 | 0.9619 |
| 0.0099 | 2.0 | 75334 | 0.0083 | 0.9977 | 0.9977 | 0.9977 | 0.9966 | 0.9977 | 0.9977 | 0.9979 | 0.9977 | 0.9977 | 0.9953 |
### Framework versions
- Transformers 4.34.0.dev0
- Pytorch 2.0.1+cu118
- Datasets 2.14.6.dev0
- Tokenizers 0.13.3
|