Downtown-Case
commited on
Commit
•
2ec7b3f
1
Parent(s):
c75625f
Upload folder using huggingface_hub
Browse files- .gitattributes +1 -0
- README.md +268 -0
- config.json +38 -0
- generation_config.json +6 -0
- megabeam_git_demo.gif +3 -0
- model.safetensors.index.json +298 -0
- niah_megabeam-mistral-7b-512k.png +0 -0
- output.safetensors +3 -0
- special_tokens_map.json +5 -0
- tokenizer.json +0 -0
- tokenizer.model +3 -0
- tokenizer_config.json +43 -0
.gitattributes
CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
megabeam_git_demo.gif filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,268 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
inference: false
|
4 |
+
---
|
5 |
+
|
6 |
+
# MegaBeam-Mistral-7B-512k Model
|
7 |
+
|
8 |
+
`MegaBeam-Mistral-7B-512k` is a Large-Context LLM that supports 524,288 tokens in its context. `MegaBeam-Mistral-7B-512k` was trained on [Mistral-7B Instruct-v0.2](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.2), and can be deployed using various serving frameworks like [vLLM](https://github.com/vllm-project/vllm) and Amazon SageMaker's [DJL](https://docs.aws.amazon.com/sagemaker/latest/dg/deploy-models-frameworks-djl-serving.html) endpoint.
|
9 |
+
|
10 |
+
|
11 |
+
## Evaluations
|
12 |
+
We evaluated `MegaBeam-Mistral-7B-512k` on three long-context benchmarks. For each benchmark, we deployed the `MegaBeam-Mistral-7B-512k` model with [vLLM (v0.5.1)](https://github.com/vllm-project/vllm/releases/tag/v0.5.1) on an EC2 instance and obtained LLM responses through the OpenAI API provided by vLLM.
|
13 |
+
|
14 |
+
|
15 |
+
**[1. Needle In A Haystack - Pressure Testing LLMs](https://github.com/Arize-ai/LLMTest_NeedleInAHaystack)**
|
16 |
+
|
17 |
+
The [Arize-ai NIAH](https://github.com/Arize-ai/LLMTest_NeedleInAHaystack) varies the target random number and introduces a random city for each question, requiring the LLM to extract the random number from various selected context locations.
|
18 |
+
|
19 |
+
`MegaBeam-Mistral-7B-512k` scored `100%` on this NIAH benchmark as shown in this plot.
|
20 |
+
|
21 |
+
![NIAH](niah_megabeam-mistral-7b-512k.png)
|
22 |
+
|
23 |
+
**[2. RULER: What’s the Real Context Size of Your Long-Context Language Models?](https://github.com/hsiehjackson/RULER)**
|
24 |
+
|
25 |
+
The [RULER](https://github.com/hsiehjackson/RULER) benchmark evaluates long-context language models across four task categories - Retrieval, Multi-hop Tracing, Aggregation, and Question Answering - with a total of 13 tasks. RULER goes beyond simple in-context recall by introducing more complex long-context scenarios.
|
26 |
+
|
27 |
+
`MegaBeam-Mistral-7B-512k` scored an average of `88.70` across different context lengths as shown in this table (*adapted from the [RULER project](https://github.com/hsiehjackson/RULER)*).
|
28 |
+
|
29 |
+
| Models | 4K | 8K | 16K | 32K | 64K | 128K | Avg. |
|
30 |
+
|------------------------------|------|------|------|------|------|------|------|
|
31 |
+
| **MegaBeam-Mistral-7B-512k** | 93.3 | 91.8 | 91.5 | 88.9 | 83.7 | 82.8 | 88.7 |
|
32 |
+
| | | | | | | | |
|
33 |
+
| [Gemini-1.5-pro](https://ai.google.dev/gemini-api/docs/models/gemini#:~:text=Gemini-,Gemini%201.5%20Pro%20(Preview%20only),-Text%20and%20images) | 96.7 | 95.8 | 96 | 95.9 | 95.9 | 94.4 | 95.8 |
|
34 |
+
| [GPT-4-1106-preview](https://platform.openai.com/docs/models/gpt-4-turbo-and-gpt-4#:~:text=gpt%2D4%2D1106%2Dpreview,Up%20to%20Apr%202023) | 96.6 | 96.3 | 95.2 | 93.2 | 87 | 81.2 | 91.6 |
|
35 |
+
[Llama3.1](https://huggingface.co/meta-llama/Meta-Llama-3.1-70B-Instruct) (70B)|96.5|95.8|95.4|94.8|88.4|66.6|89.6|
|
36 |
+
| [Qwen2](https://huggingface.co/Qwen/Qwen2-72B-Instruct) (72B) | 96.9 | 96.1 | 94.9 | 94.1 | 79.8 | 53.7 | 85.9 |
|
37 |
+
| [Command-R-plus](https://huggingface.co/CohereForAI/c4ai-command-r-plus) (104B) | 95.6 | 95.2 | 94.2 | 92 | 84.3 | 63.1 | 87.4 |
|
38 |
+
| [GLM4](https://huggingface.co/THUDM/glm-4-9b-chat-1m) (9B) | 94.7 | 92.8 | 92.1 | 89.9 | 86.7 | 83.1 | 89.9 |
|
39 |
+
[Llama3.1](https://huggingface.co/meta-llama/Meta-Llama-3.1-8B-Instruct) (8B)|95.5|93.8|91.6|87.4|84.7|77.0|88.3|
|
40 |
+
| [Command-R](https://huggingface.co/CohereForAI/c4ai-command-r-v01) (35B) | 93.8 | 93.3 | 92.4 | 89.5 | 84.9 | 76 | 88.3 |
|
41 |
+
| [GradientAI/Llama3](https://huggingface.co/gradientai/Llama-3-70B-Instruct-Gradient-1048k) (70B) | 95.1 | 94.4 | 90.8 | 85.4 | 82.9 | 72.1 | 86.5 |
|
42 |
+
| [Mixtral-8x22B](https://huggingface.co/mistralai/Mixtral-8x22B-instruct-v0.1) (39B/141B) | 95.6 | 94.9 | 93.4 | 90.9 | 84.7 | 31.7 | 81.9 |
|
43 |
+
| [Yi](https://huggingface.co/01-ai/Yi-34B-200K) (34B) | 93.3 | 92.2 | 91.3 | 87.5 | 83.2 | 77.3 | 87.5 |
|
44 |
+
| [Phi3-medium](https://huggingface.co/microsoft/Phi-3-medium-128K-instruct) (14B) | 93.3 | 93.2 | 91.1 | 86.8 | 78.6 | 46.1 | 81.5 |
|
45 |
+
| [Mixtral-8x7B](https://huggingface.co/mistralai/Mixtral-8x7B-instruct-v0.1) (12.9B/46.7B) | 94.9 | 92.1 | 92.5 | 85.9 | 72.4 | 44.5 | 80.4 |
|
46 |
+
| [GradientAI/Llama3](https://huggingface.co/gradientai/Llama-3-8B-Instruct-Gradient-1048k) (8B) | 92.8 | 90.3 | 85.7 | 79.9 | 76.3 | 69.5 | 82.4 |
|
47 |
+
| [FILM-7B](https://huggingface.co/In2Training/FILM-7B) (7B) | 92.8 | 88.2 | 88.1 | 86.9 | 70.1 | 27.1 | 75.5 |
|
48 |
+
| [Mistral-7B-instruct-v0.2](https://huggingface.co/mistralai/Mistral-7B-instruct-v0.2) (7B) | 93.6 | 91.2 | 87.2 | 75.4 | 49 | 13.8 | 68.4 |
|
49 |
+
[Mistral-Nemo](https://huggingface.co/mistralai/Mistral-Nemo-Instruct-2407)|87.8|87.2|87.7|69.0|46.8|19.0|66.2|
|
50 |
+
| [GLM3](https://huggingface.co/THUDM/chatglm3-6b-128K) (6B) | 87.8 | 83.4 | 78.6 | 69.9 | 56 | 42 | 69.6 |
|
51 |
+
| [LWM](https://huggingface.co/LargeWorldModel/LWM-Text-Chat-1M) (7B) | 82.3 | 78.4 | 73.7 | 69.1 | 68.1 | 65 | 72.8 |
|
52 |
+
|
53 |
+
<!-- | Phi3-mini (3.8B) | 86.7 | 78.1 | 75.6 | 70.3 | 58.9 | 43.3 | 68.8 |
|
54 |
+
| DBRX (36B/132B) | 95.1 | 93.8 | 83.6 | 63.1 | 2.4 | 0 | 56.3 |
|
55 |
+
| Qwen-1.5 (72B) | 94.9 | 93.8 | 78 | 67.8 | 0 | 0 | 55.7 |
|
56 |
+
| Together (7B) | 88.2 | 81.1 | 69.4 | 63 | 0 | 0 | 50.3 |
|
57 |
+
| LongChat (7B) | 84.7 | 79.9 | 70.8 | 59.3 | 0 | 0 | 49.1 |
|
58 |
+
| LongAlpaca (13B) | 60.6 | 57 | 56.6 | 43.6 | 0 | 0 | 36.3 | -->
|
59 |
+
|
60 |
+
<br>
|
61 |
+
This table shows how `MegaBeam-Mistral-7B-512k` performed on 13 RULER tasks with increasing context lengths.
|
62 |
+
|
63 |
+
| Task | Category | 4096 | 8192 | 16384 | 32768 | 65536 | 131072 |
|
64 |
+
|------------------|--------------------|------|-------|-------|-------|-------|--------|
|
65 |
+
| niah_single_1 | Retrieval | 100 | 100 | 100 | 100 | 100 | 100 |
|
66 |
+
| niah_single_2 | Retrieval | 98.6 | 97.8 | 98.8 | 98.2 | 99.4 | 99.6 |
|
67 |
+
| niah_single_3 | Retrieval | 100 | 100 | 100 | 99.8 | 100 | 99.8 |
|
68 |
+
| niah_multikey_1 | Retrieval | 98.8 | 99.6 | 99.2 | 99 | 99.6 | 99.6 |
|
69 |
+
| niah_multikey_2 | Retrieval | 100 | 100 | 100 | 99.8 | 99.4 | 98.6 |
|
70 |
+
| niah_multikey_3 | Retrieval | 99.8 | 99.4 | 99.8 | 100 | 98.6 | 97.8 |
|
71 |
+
| niah_multivalue | Retrieval | 97.1 | 93.8 | 91.85 | 83.5 | 80.3 | 71.45 |
|
72 |
+
| niah_multiquery | Retrieval | 99.95| 99.9 | 99.85 | 99.3 | 99.55 | 99.3 |
|
73 |
+
| vt | Multi-hop Tracing | 99.2 | 97.88 | 96.44 | 96.12 | 91.6 | 89.08 |
|
74 |
+
| cwe | Aggregation | 98.2 | 90.62 | 75.6 | 52.72 | 5.9 | 0.94 |
|
75 |
+
| fwe | Aggregation | 81.47| 80.07 | 95.87 | 96.33 | 83.73 | 96.87 |
|
76 |
+
| qa_1 | Q & A | 85.6 | 82 | 80.6 | 83 | 80.6 | 77.4 |
|
77 |
+
| qa_2 | Q & A | 53.8 | 52 | 51.6 | 48.4 | 49.2 | 45.8 |
|
78 |
+
| average | ALL | 93.3 | 91.8 | 91.5 | 88.9 | 83.7 | 82.8 |
|
79 |
+
| Total Average | 88.7 | | | | | | |
|
80 |
+
|
81 |
+
**[3. InfiniteBench: Extending Long Context Evaluation Beyond 100K Tokens](https://github.com/OpenBMB/InfiniteBench)**
|
82 |
+
|
83 |
+
[InfiniteBench](https://github.com/OpenBMB/InfiniteBench) developed 12 tasks to evaluate an LLM's capability to process, comprehend, and reason with extended contexts, specifically those with over 100,000 tokens.
|
84 |
+
|
85 |
+
We combine the InfiniteBench project's evaluation results for SOTA LLMs with `MegaBeam-Mistral-7B-512k`'s result in this table.
|
86 |
+
|
87 |
+
| Task Name | MegaBeam-Mistral<br>-7B-512k | GPT-4-1106<br>-preview | YaRN-Mistral<br>-7B | Kimi-Chat | Claude 2 | Yi-34B<br>-200K |
|
88 |
+
|----------------|--------------------------|--------------------|-----------------|-----------|-----------|-------------|
|
89 |
+
| PassKey | 100% | 100% | 92.71% | 98.14% | 97.80% | 100.00% |
|
90 |
+
| Retrv.Num | 99.49% | 100% | 56.61% | 95.42% | 98.14% | 100.00% |
|
91 |
+
| Retrv.KV | 24.20% | 89.00% | < 5% | 53.60% | 65.40% | < 5% |
|
92 |
+
| En.Sum | 34.66% | 14.73% | 9.09% | 17.93% | 14.45% | < 5% |
|
93 |
+
| En.QA | 20.32% | 22.22% | 9.55% | 16.52% | 11.97% | 12.17% |
|
94 |
+
| En.MC | 61.57% | 67.25% | 27.95% | 72.49% | 62.88% | 38.43% |
|
95 |
+
| En.Dia | 10.50% | 8.50% | 7.50% | 11.50% | 46.50% | < 5% |
|
96 |
+
| Zh.QA | 19.54% | 25.96% | 14.43% | 17.93% | 9.64% | 13.61% |
|
97 |
+
| Code.Debug | 26.14% | 39.59% | < 5% | 18.02% | < 5% | < 5% |
|
98 |
+
| Code.Run | 2% | 23.25% | < 5% | < 5% | < 5% | < 5% |
|
99 |
+
| Math.Calc | 0% | < 5% | < 5% | < 5% | < 5% | < 5% |
|
100 |
+
| Math.Find | 20% | 60.00% | 17.14% | 12.57% | 32.29% | 25.71% |
|
101 |
+
| Average | 34.87% | 46.08% | 20.41% | 34.93% | 37.21% | 25.41% |
|
102 |
+
|
103 |
+
|
104 |
+
## Example use case
|
105 |
+
This example demonstrates `MegaBeam-Mistral-7B-512k`'s long context capability by processing a large file that includes hundreds of files from a single [Git repository](https://github.com/awslabs/amazon-accessible-rl-sdk). This can be useful for onboarding new developers.
|
106 |
+
|
107 |
+
|
108 |
+
![demo](megabeam_git_demo.gif)
|
109 |
+
|
110 |
+
## Serve MegaBeam-Mistral-7B-512k on EC2 instances ##
|
111 |
+
On an AWS `g5.48xlarge` instance, install vLLM as per [vLLM docs](https://vllm.readthedocs.io/en/latest/).
|
112 |
+
```shell
|
113 |
+
pip install vllm==0.5.1
|
114 |
+
```
|
115 |
+
|
116 |
+
### Start the server
|
117 |
+
```shell
|
118 |
+
VLLM_ENGINE_ITERATION_TIMEOUT_S=3600 python3 -m vllm.entrypoints.openai.api_server \
|
119 |
+
--model aws-prototyping/MegaBeam-Mistral-7B-512k \
|
120 |
+
--tensor-parallel-size 8 \
|
121 |
+
--revision g5-48x
|
122 |
+
```
|
123 |
+
**Important Note** - In the repo revision `g5-48x`, `config.json` has been updated to set `max_position_embeddings` to 288,800, fitting the model's KV cache on a single `g5.48xlarge` instance with 8 A10 GPUs (24GB RAM per GPU).
|
124 |
+
|
125 |
+
On an instance with larger GPU RAM (e.g. `p4d.24xlarge`), simply remove the `revision` argument in order to support the full sequence length of 524,288 tokens:
|
126 |
+
```shell
|
127 |
+
VLLM_ENGINE_ITERATION_TIMEOUT_S=3600 python3 -m vllm.entrypoints.openai.api_server \
|
128 |
+
--model aws-prototyping/MegaBeam-Mistral-7B-512k \
|
129 |
+
--tensor-parallel-size 8 \
|
130 |
+
```
|
131 |
+
|
132 |
+
### Run the client
|
133 |
+
```python
|
134 |
+
from openai import OpenAI
|
135 |
+
|
136 |
+
# Modify OpenAI's API key and API base to use vLLM's API server.
|
137 |
+
openai_api_key = "EMPTY"
|
138 |
+
openai_api_base = "http://localhost:8000/v1"
|
139 |
+
|
140 |
+
client = OpenAI(
|
141 |
+
# defaults to os.environ.get("OPENAI_API_KEY")
|
142 |
+
api_key=openai_api_key,
|
143 |
+
base_url=openai_api_base,
|
144 |
+
)
|
145 |
+
|
146 |
+
models = client.models.list()
|
147 |
+
model = models.data[0].id
|
148 |
+
|
149 |
+
chat_completion = client.chat.completions.create(
|
150 |
+
messages = [
|
151 |
+
{"role": "user", "content": "What is your favourite condiment?"}, # insert your long context here
|
152 |
+
{"role": "assistant", "content": "Well, I'm quite partial to a good squeeze of fresh lemon juice. It adds just the right amount of zesty flavour to whatever I'm cooking up in the kitchen!"},
|
153 |
+
{"role": "user", "content": "Do you have mayonnaise recipes?"} # insert your long context here
|
154 |
+
],
|
155 |
+
model=model,
|
156 |
+
)
|
157 |
+
|
158 |
+
print("Chat completion results:")
|
159 |
+
print(chat_completion)
|
160 |
+
```
|
161 |
+
|
162 |
+
### Deploy the model on a SageMaker Endpoint ###
|
163 |
+
To deploy MegaBeam-Mistral-7B-512k on a SageMaker endpoint, please follow this [SageMaker DJL deployment guide](https://docs.djl.ai/docs/demos/aws/sagemaker/large-model-inference/sample-llm/vllm_deploy_mistral_7b.html).
|
164 |
+
|
165 |
+
Run the following Python code in a SageMaker notebook (with each block running in a separate cell)
|
166 |
+
|
167 |
+
```python
|
168 |
+
import sagemaker
|
169 |
+
from sagemaker import Model, image_uris, serializers, deserializers
|
170 |
+
|
171 |
+
sagemaker_session = sagemaker.Session()
|
172 |
+
region = sagemaker_session.boto_region_name
|
173 |
+
role = sagemaker.get_execution_role()
|
174 |
+
|
175 |
+
%%writefile serving.properties
|
176 |
+
engine=Python
|
177 |
+
option.model_id=aws-prototyping/MegaBeam-Mistral-7B-512k
|
178 |
+
option.revision=g5-48x
|
179 |
+
option.dtype=bf16
|
180 |
+
option.task=text-generation
|
181 |
+
option.rolling_batch=vllm
|
182 |
+
option.tensor_parallel_degree=8
|
183 |
+
option.device_map=auto
|
184 |
+
|
185 |
+
%%sh
|
186 |
+
mkdir mymodel
|
187 |
+
mv serving.properties mymodel/
|
188 |
+
tar czvf mymodel.tar.gz mymodel/
|
189 |
+
rm -rf mymodel
|
190 |
+
|
191 |
+
image_uri = image_uris.retrieve(
|
192 |
+
framework="djl-deepspeed",
|
193 |
+
region=region,
|
194 |
+
version="0.27.0"
|
195 |
+
)
|
196 |
+
|
197 |
+
s3_code_prefix = "megaBeam-mistral-7b-512k/code"
|
198 |
+
bucket = sagemaker_session.default_bucket() # bucket to house artifacts
|
199 |
+
code_artifact = sagemaker_session.upload_data("mymodel.tar.gz", bucket, s3_code_prefix)
|
200 |
+
print(f"S3 Code or Model tar ball uploaded to --- > {code_artifact}")
|
201 |
+
model = Model(image_uri=image_uri, model_data=code_artifact, role=role)
|
202 |
+
|
203 |
+
instance_type = "ml.g5.48xlarge"
|
204 |
+
endpoint_name = sagemaker.utils.name_from_base("megaBeam-mistral-7b-512k")
|
205 |
+
model.deploy(initial_instance_count=1,
|
206 |
+
instance_type=instance_type,
|
207 |
+
endpoint_name=endpoint_name
|
208 |
+
)
|
209 |
+
|
210 |
+
# our requests and responses will be in json format so we specify the serializer and the deserializer
|
211 |
+
predictor = sagemaker.Predictor(
|
212 |
+
endpoint_name=endpoint_name,
|
213 |
+
sagemaker_session=sagemaker_session,
|
214 |
+
serializer=serializers.JSONSerializer(),
|
215 |
+
)
|
216 |
+
|
217 |
+
# test the endpoint
|
218 |
+
input_str = """<s>[INST] What is your favourite condiment? [/INST]
|
219 |
+
Well, I'm quite partial to a good squeeze of fresh lemon juice. It adds just the right amount of zesty flavour to whatever I'm cooking up in the kitchen!</s> "
|
220 |
+
[INST] Do you have mayonnaise recipes? [/INST]"""
|
221 |
+
predictor.predict(
|
222 |
+
{"inputs": input_str, "parameters": {"max_new_tokens": 75}}
|
223 |
+
)
|
224 |
+
|
225 |
+
```
|
226 |
+
|
227 |
+
### Invoke the model on a SageMaker Endpoint ###
|
228 |
+
To use MegaBeam-Mistral-7B-512k on a SageMaker endpoint, please try following this example:
|
229 |
+
|
230 |
+
```python
|
231 |
+
import boto3
|
232 |
+
import json
|
233 |
+
|
234 |
+
def call_endpoint(text:str, endpoint_name:str):
|
235 |
+
client = boto3.client("sagemaker-runtime")
|
236 |
+
|
237 |
+
parameters = {
|
238 |
+
"max_new_tokens": 450,
|
239 |
+
"do_sample": True,
|
240 |
+
"temperature": 0.7,
|
241 |
+
}
|
242 |
+
|
243 |
+
payload = {"inputs": text, "parameters": parameters}
|
244 |
+
|
245 |
+
response = client.invoke_endpoint(
|
246 |
+
EndpointName=endpoint_name, Body=json.dumps(payload), ContentType="application/json"
|
247 |
+
)
|
248 |
+
|
249 |
+
output = json.loads(response["Body"].read().decode())
|
250 |
+
|
251 |
+
result = output["generated_text"]
|
252 |
+
return result
|
253 |
+
|
254 |
+
# please insert your long prompt/document content here
|
255 |
+
prompt = """<s>[INST] What are the main challenges to support long contexts for a Large Language Model? [/INST]"""
|
256 |
+
|
257 |
+
#print(prompt)
|
258 |
+
endpoint_name = "megaBeam-mistral-7b-512k-2024-05-13-14-23-41-219" # please use a valid endpoint name
|
259 |
+
result = call_endpoint(prompt, endpoint_name)
|
260 |
+
print(result)
|
261 |
+
```
|
262 |
+
|
263 |
+
|
264 |
+
## Limitations ##
|
265 |
+
Before using the MegaBeam-Mistral-7B-512k model, it is important to perform your own independent assessment, and take measures to ensure that your use would comply with your own specific quality control practices and standards, and that your use would comply with the local rules, laws, regulations, licenses and terms that apply to you, and your content.
|
266 |
+
|
267 |
+
## The AWS Contributors ##
|
268 |
+
Chen Wu, Yin Song, Eden Duthie
|
config.json
ADDED
@@ -0,0 +1,38 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "aws-prototyping/MegaBeam-Mistral-7B-512k",
|
3 |
+
"architectures": [
|
4 |
+
"MistralForCausalLM"
|
5 |
+
],
|
6 |
+
"attention_dropout": 0.0,
|
7 |
+
"bos_token_id": 1,
|
8 |
+
"eos_token_id": 2,
|
9 |
+
"head_dim": 128,
|
10 |
+
"hidden_act": "silu",
|
11 |
+
"hidden_size": 4096,
|
12 |
+
"initializer_range": 0.02,
|
13 |
+
"intermediate_size": 14336,
|
14 |
+
"max_position_embeddings": 524288,
|
15 |
+
"model_type": "mistral",
|
16 |
+
"num_attention_heads": 32,
|
17 |
+
"num_hidden_layers": 32,
|
18 |
+
"num_key_value_heads": 8,
|
19 |
+
"rms_norm_eps": 1e-05,
|
20 |
+
"rope_theta": 75000000.0,
|
21 |
+
"sliding_window": null,
|
22 |
+
"tie_word_embeddings": false,
|
23 |
+
"torch_dtype": "bfloat16",
|
24 |
+
"transformers_version": "4.43.3",
|
25 |
+
"use_cache": true,
|
26 |
+
"vocab_size": 32000,
|
27 |
+
"quantization_config": {
|
28 |
+
"quant_method": "exl2",
|
29 |
+
"version": "0.1.8",
|
30 |
+
"bits": 8.0,
|
31 |
+
"head_bits": 8,
|
32 |
+
"calibration": {
|
33 |
+
"rows": 115,
|
34 |
+
"length": 2048,
|
35 |
+
"dataset": "(default)"
|
36 |
+
}
|
37 |
+
}
|
38 |
+
}
|
generation_config.json
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_from_model_config": true,
|
3 |
+
"bos_token_id": 1,
|
4 |
+
"eos_token_id": 2,
|
5 |
+
"transformers_version": "4.43.3"
|
6 |
+
}
|
megabeam_git_demo.gif
ADDED
Git LFS Details
|
model.safetensors.index.json
ADDED
@@ -0,0 +1,298 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"metadata": {
|
3 |
+
"total_size": 14483464192
|
4 |
+
},
|
5 |
+
"weight_map": {
|
6 |
+
"lm_head.weight": "model-00003-of-00003.safetensors",
|
7 |
+
"model.embed_tokens.weight": "model-00001-of-00003.safetensors",
|
8 |
+
"model.layers.0.input_layernorm.weight": "model-00001-of-00003.safetensors",
|
9 |
+
"model.layers.0.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
|
10 |
+
"model.layers.0.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
|
11 |
+
"model.layers.0.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
|
12 |
+
"model.layers.0.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
|
13 |
+
"model.layers.0.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
|
14 |
+
"model.layers.0.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
|
15 |
+
"model.layers.0.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
|
16 |
+
"model.layers.0.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
|
17 |
+
"model.layers.1.input_layernorm.weight": "model-00001-of-00003.safetensors",
|
18 |
+
"model.layers.1.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
|
19 |
+
"model.layers.1.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
|
20 |
+
"model.layers.1.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
|
21 |
+
"model.layers.1.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
|
22 |
+
"model.layers.1.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
|
23 |
+
"model.layers.1.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
|
24 |
+
"model.layers.1.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
|
25 |
+
"model.layers.1.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
|
26 |
+
"model.layers.10.input_layernorm.weight": "model-00002-of-00003.safetensors",
|
27 |
+
"model.layers.10.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
|
28 |
+
"model.layers.10.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
|
29 |
+
"model.layers.10.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
|
30 |
+
"model.layers.10.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
|
31 |
+
"model.layers.10.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
|
32 |
+
"model.layers.10.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
|
33 |
+
"model.layers.10.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
|
34 |
+
"model.layers.10.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
|
35 |
+
"model.layers.11.input_layernorm.weight": "model-00002-of-00003.safetensors",
|
36 |
+
"model.layers.11.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
|
37 |
+
"model.layers.11.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
|
38 |
+
"model.layers.11.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
|
39 |
+
"model.layers.11.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
|
40 |
+
"model.layers.11.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
|
41 |
+
"model.layers.11.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
|
42 |
+
"model.layers.11.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
|
43 |
+
"model.layers.11.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
|
44 |
+
"model.layers.12.input_layernorm.weight": "model-00002-of-00003.safetensors",
|
45 |
+
"model.layers.12.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
|
46 |
+
"model.layers.12.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
|
47 |
+
"model.layers.12.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
|
48 |
+
"model.layers.12.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
|
49 |
+
"model.layers.12.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
|
50 |
+
"model.layers.12.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
|
51 |
+
"model.layers.12.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
|
52 |
+
"model.layers.12.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
|
53 |
+
"model.layers.13.input_layernorm.weight": "model-00002-of-00003.safetensors",
|
54 |
+
"model.layers.13.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
|
55 |
+
"model.layers.13.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
|
56 |
+
"model.layers.13.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
|
57 |
+
"model.layers.13.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
|
58 |
+
"model.layers.13.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
|
59 |
+
"model.layers.13.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
|
60 |
+
"model.layers.13.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
|
61 |
+
"model.layers.13.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
|
62 |
+
"model.layers.14.input_layernorm.weight": "model-00002-of-00003.safetensors",
|
63 |
+
"model.layers.14.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
|
64 |
+
"model.layers.14.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
|
65 |
+
"model.layers.14.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
|
66 |
+
"model.layers.14.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
|
67 |
+
"model.layers.14.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
|
68 |
+
"model.layers.14.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
|
69 |
+
"model.layers.14.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
|
70 |
+
"model.layers.14.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
|
71 |
+
"model.layers.15.input_layernorm.weight": "model-00002-of-00003.safetensors",
|
72 |
+
"model.layers.15.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
|
73 |
+
"model.layers.15.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
|
74 |
+
"model.layers.15.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
|
75 |
+
"model.layers.15.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
|
76 |
+
"model.layers.15.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
|
77 |
+
"model.layers.15.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
|
78 |
+
"model.layers.15.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
|
79 |
+
"model.layers.15.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
|
80 |
+
"model.layers.16.input_layernorm.weight": "model-00002-of-00003.safetensors",
|
81 |
+
"model.layers.16.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
|
82 |
+
"model.layers.16.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
|
83 |
+
"model.layers.16.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
|
84 |
+
"model.layers.16.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
|
85 |
+
"model.layers.16.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
|
86 |
+
"model.layers.16.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
|
87 |
+
"model.layers.16.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
|
88 |
+
"model.layers.16.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
|
89 |
+
"model.layers.17.input_layernorm.weight": "model-00002-of-00003.safetensors",
|
90 |
+
"model.layers.17.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
|
91 |
+
"model.layers.17.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
|
92 |
+
"model.layers.17.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
|
93 |
+
"model.layers.17.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
|
94 |
+
"model.layers.17.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
|
95 |
+
"model.layers.17.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
|
96 |
+
"model.layers.17.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
|
97 |
+
"model.layers.17.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
|
98 |
+
"model.layers.18.input_layernorm.weight": "model-00002-of-00003.safetensors",
|
99 |
+
"model.layers.18.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
|
100 |
+
"model.layers.18.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
|
101 |
+
"model.layers.18.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
|
102 |
+
"model.layers.18.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
|
103 |
+
"model.layers.18.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
|
104 |
+
"model.layers.18.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
|
105 |
+
"model.layers.18.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
|
106 |
+
"model.layers.18.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
|
107 |
+
"model.layers.19.input_layernorm.weight": "model-00002-of-00003.safetensors",
|
108 |
+
"model.layers.19.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
|
109 |
+
"model.layers.19.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
|
110 |
+
"model.layers.19.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
|
111 |
+
"model.layers.19.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
|
112 |
+
"model.layers.19.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
|
113 |
+
"model.layers.19.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
|
114 |
+
"model.layers.19.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
|
115 |
+
"model.layers.19.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
|
116 |
+
"model.layers.2.input_layernorm.weight": "model-00001-of-00003.safetensors",
|
117 |
+
"model.layers.2.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
|
118 |
+
"model.layers.2.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
|
119 |
+
"model.layers.2.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
|
120 |
+
"model.layers.2.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
|
121 |
+
"model.layers.2.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
|
122 |
+
"model.layers.2.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
|
123 |
+
"model.layers.2.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
|
124 |
+
"model.layers.2.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
|
125 |
+
"model.layers.20.input_layernorm.weight": "model-00002-of-00003.safetensors",
|
126 |
+
"model.layers.20.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
|
127 |
+
"model.layers.20.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
|
128 |
+
"model.layers.20.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
|
129 |
+
"model.layers.20.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
|
130 |
+
"model.layers.20.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
|
131 |
+
"model.layers.20.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
|
132 |
+
"model.layers.20.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
|
133 |
+
"model.layers.20.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
|
134 |
+
"model.layers.21.input_layernorm.weight": "model-00002-of-00003.safetensors",
|
135 |
+
"model.layers.21.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
|
136 |
+
"model.layers.21.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
|
137 |
+
"model.layers.21.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
|
138 |
+
"model.layers.21.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
|
139 |
+
"model.layers.21.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
|
140 |
+
"model.layers.21.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
|
141 |
+
"model.layers.21.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
|
142 |
+
"model.layers.21.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
|
143 |
+
"model.layers.22.input_layernorm.weight": "model-00003-of-00003.safetensors",
|
144 |
+
"model.layers.22.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
|
145 |
+
"model.layers.22.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
|
146 |
+
"model.layers.22.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
|
147 |
+
"model.layers.22.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
|
148 |
+
"model.layers.22.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
|
149 |
+
"model.layers.22.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
|
150 |
+
"model.layers.22.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
|
151 |
+
"model.layers.22.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
|
152 |
+
"model.layers.23.input_layernorm.weight": "model-00003-of-00003.safetensors",
|
153 |
+
"model.layers.23.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
|
154 |
+
"model.layers.23.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
|
155 |
+
"model.layers.23.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
|
156 |
+
"model.layers.23.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
|
157 |
+
"model.layers.23.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
|
158 |
+
"model.layers.23.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
|
159 |
+
"model.layers.23.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
|
160 |
+
"model.layers.23.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
|
161 |
+
"model.layers.24.input_layernorm.weight": "model-00003-of-00003.safetensors",
|
162 |
+
"model.layers.24.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
|
163 |
+
"model.layers.24.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
|
164 |
+
"model.layers.24.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
|
165 |
+
"model.layers.24.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
|
166 |
+
"model.layers.24.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
|
167 |
+
"model.layers.24.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
|
168 |
+
"model.layers.24.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
|
169 |
+
"model.layers.24.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
|
170 |
+
"model.layers.25.input_layernorm.weight": "model-00003-of-00003.safetensors",
|
171 |
+
"model.layers.25.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
|
172 |
+
"model.layers.25.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
|
173 |
+
"model.layers.25.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
|
174 |
+
"model.layers.25.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
|
175 |
+
"model.layers.25.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
|
176 |
+
"model.layers.25.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
|
177 |
+
"model.layers.25.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
|
178 |
+
"model.layers.25.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
|
179 |
+
"model.layers.26.input_layernorm.weight": "model-00003-of-00003.safetensors",
|
180 |
+
"model.layers.26.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
|
181 |
+
"model.layers.26.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
|
182 |
+
"model.layers.26.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
|
183 |
+
"model.layers.26.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
|
184 |
+
"model.layers.26.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
|
185 |
+
"model.layers.26.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
|
186 |
+
"model.layers.26.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
|
187 |
+
"model.layers.26.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
|
188 |
+
"model.layers.27.input_layernorm.weight": "model-00003-of-00003.safetensors",
|
189 |
+
"model.layers.27.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
|
190 |
+
"model.layers.27.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
|
191 |
+
"model.layers.27.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
|
192 |
+
"model.layers.27.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
|
193 |
+
"model.layers.27.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
|
194 |
+
"model.layers.27.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
|
195 |
+
"model.layers.27.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
|
196 |
+
"model.layers.27.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
|
197 |
+
"model.layers.28.input_layernorm.weight": "model-00003-of-00003.safetensors",
|
198 |
+
"model.layers.28.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
|
199 |
+
"model.layers.28.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
|
200 |
+
"model.layers.28.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
|
201 |
+
"model.layers.28.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
|
202 |
+
"model.layers.28.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
|
203 |
+
"model.layers.28.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
|
204 |
+
"model.layers.28.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
|
205 |
+
"model.layers.28.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
|
206 |
+
"model.layers.29.input_layernorm.weight": "model-00003-of-00003.safetensors",
|
207 |
+
"model.layers.29.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
|
208 |
+
"model.layers.29.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
|
209 |
+
"model.layers.29.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
|
210 |
+
"model.layers.29.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
|
211 |
+
"model.layers.29.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
|
212 |
+
"model.layers.29.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
|
213 |
+
"model.layers.29.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
|
214 |
+
"model.layers.29.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
|
215 |
+
"model.layers.3.input_layernorm.weight": "model-00001-of-00003.safetensors",
|
216 |
+
"model.layers.3.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
|
217 |
+
"model.layers.3.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
|
218 |
+
"model.layers.3.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
|
219 |
+
"model.layers.3.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
|
220 |
+
"model.layers.3.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
|
221 |
+
"model.layers.3.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
|
222 |
+
"model.layers.3.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
|
223 |
+
"model.layers.3.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
|
224 |
+
"model.layers.30.input_layernorm.weight": "model-00003-of-00003.safetensors",
|
225 |
+
"model.layers.30.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
|
226 |
+
"model.layers.30.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
|
227 |
+
"model.layers.30.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
|
228 |
+
"model.layers.30.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
|
229 |
+
"model.layers.30.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
|
230 |
+
"model.layers.30.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
|
231 |
+
"model.layers.30.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
|
232 |
+
"model.layers.30.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
|
233 |
+
"model.layers.31.input_layernorm.weight": "model-00003-of-00003.safetensors",
|
234 |
+
"model.layers.31.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
|
235 |
+
"model.layers.31.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
|
236 |
+
"model.layers.31.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
|
237 |
+
"model.layers.31.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
|
238 |
+
"model.layers.31.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
|
239 |
+
"model.layers.31.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
|
240 |
+
"model.layers.31.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
|
241 |
+
"model.layers.31.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
|
242 |
+
"model.layers.4.input_layernorm.weight": "model-00001-of-00003.safetensors",
|
243 |
+
"model.layers.4.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
|
244 |
+
"model.layers.4.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
|
245 |
+
"model.layers.4.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
|
246 |
+
"model.layers.4.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
|
247 |
+
"model.layers.4.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
|
248 |
+
"model.layers.4.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
|
249 |
+
"model.layers.4.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
|
250 |
+
"model.layers.4.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
|
251 |
+
"model.layers.5.input_layernorm.weight": "model-00001-of-00003.safetensors",
|
252 |
+
"model.layers.5.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
|
253 |
+
"model.layers.5.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
|
254 |
+
"model.layers.5.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
|
255 |
+
"model.layers.5.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
|
256 |
+
"model.layers.5.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
|
257 |
+
"model.layers.5.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
|
258 |
+
"model.layers.5.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
|
259 |
+
"model.layers.5.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
|
260 |
+
"model.layers.6.input_layernorm.weight": "model-00001-of-00003.safetensors",
|
261 |
+
"model.layers.6.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
|
262 |
+
"model.layers.6.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
|
263 |
+
"model.layers.6.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
|
264 |
+
"model.layers.6.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
|
265 |
+
"model.layers.6.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
|
266 |
+
"model.layers.6.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
|
267 |
+
"model.layers.6.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
|
268 |
+
"model.layers.6.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
|
269 |
+
"model.layers.7.input_layernorm.weight": "model-00001-of-00003.safetensors",
|
270 |
+
"model.layers.7.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
|
271 |
+
"model.layers.7.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
|
272 |
+
"model.layers.7.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
|
273 |
+
"model.layers.7.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
|
274 |
+
"model.layers.7.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
|
275 |
+
"model.layers.7.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
|
276 |
+
"model.layers.7.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
|
277 |
+
"model.layers.7.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
|
278 |
+
"model.layers.8.input_layernorm.weight": "model-00001-of-00003.safetensors",
|
279 |
+
"model.layers.8.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
|
280 |
+
"model.layers.8.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
|
281 |
+
"model.layers.8.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
|
282 |
+
"model.layers.8.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
|
283 |
+
"model.layers.8.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
|
284 |
+
"model.layers.8.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
|
285 |
+
"model.layers.8.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
|
286 |
+
"model.layers.8.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
|
287 |
+
"model.layers.9.input_layernorm.weight": "model-00001-of-00003.safetensors",
|
288 |
+
"model.layers.9.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
|
289 |
+
"model.layers.9.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
|
290 |
+
"model.layers.9.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
|
291 |
+
"model.layers.9.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
|
292 |
+
"model.layers.9.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
|
293 |
+
"model.layers.9.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
|
294 |
+
"model.layers.9.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
|
295 |
+
"model.layers.9.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
|
296 |
+
"model.norm.weight": "model-00003-of-00003.safetensors"
|
297 |
+
}
|
298 |
+
}
|
niah_megabeam-mistral-7b-512k.png
ADDED
output.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b94c65742ae58e27c5cc25e098a5ab32793745a23f6a7737e50a5fe56a7b1daa
|
3 |
+
size 6938439236
|
special_tokens_map.json
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token": "<s>",
|
3 |
+
"eos_token": "</s>",
|
4 |
+
"unk_token": "<unk>"
|
5 |
+
}
|
tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer.model
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:dadfd56d766715c61d2ef780a525ab43b8e6da4de6865bda3d95fdef5e134055
|
3 |
+
size 493443
|
tokenizer_config.json
ADDED
@@ -0,0 +1,43 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"add_bos_token": true,
|
3 |
+
"add_eos_token": false,
|
4 |
+
"added_tokens_decoder": {
|
5 |
+
"0": {
|
6 |
+
"content": "<unk>",
|
7 |
+
"lstrip": false,
|
8 |
+
"normalized": false,
|
9 |
+
"rstrip": false,
|
10 |
+
"single_word": false,
|
11 |
+
"special": true
|
12 |
+
},
|
13 |
+
"1": {
|
14 |
+
"content": "<s>",
|
15 |
+
"lstrip": false,
|
16 |
+
"normalized": false,
|
17 |
+
"rstrip": false,
|
18 |
+
"single_word": false,
|
19 |
+
"special": true
|
20 |
+
},
|
21 |
+
"2": {
|
22 |
+
"content": "</s>",
|
23 |
+
"lstrip": false,
|
24 |
+
"normalized": false,
|
25 |
+
"rstrip": false,
|
26 |
+
"single_word": false,
|
27 |
+
"special": true
|
28 |
+
}
|
29 |
+
},
|
30 |
+
"additional_special_tokens": [],
|
31 |
+
"bos_token": "<s>",
|
32 |
+
"clean_up_tokenization_spaces": false,
|
33 |
+
"eos_token": "</s>",
|
34 |
+
"legacy": true,
|
35 |
+
"model_max_length": 1000000000000000019884624838656,
|
36 |
+
"pad_token": null,
|
37 |
+
"sp_model_kwargs": {},
|
38 |
+
"spaces_between_special_tokens": false,
|
39 |
+
"tokenizer_class": "LlamaTokenizer",
|
40 |
+
"unk_token": "<unk>",
|
41 |
+
"use_default_system_prompt": false,
|
42 |
+
"chat_template": "{{ bos_token }}{% for message in messages %}{% if (message['role'] == 'user') != (loop.index0 % 2 == 0) %}{{ raise_exception('Conversation roles must alternate user/assistant/user/assistant/...') }}{% endif %}{% if message['role'] == 'user' %}{{ '[INST] ' + message['content'] + ' [/INST]' }}{% elif message['role'] == 'assistant' %}{{ message['content'] + eos_token}}{% else %}{{ raise_exception('Only user and assistant roles are supported!') }}{% endif %}{% endfor %}"
|
43 |
+
}
|