DouglasPontes commited on
Commit
2c0c953
·
verified ·
1 Parent(s): 566c6e8

Model save

Browse files
Files changed (2) hide show
  1. README.md +356 -0
  2. pytorch_model.bin +1 -1
README.md ADDED
@@ -0,0 +1,356 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: mit
3
+ base_model: cardiffnlp/twitter-roberta-base-2019-90m
4
+ tags:
5
+ - generated_from_trainer
6
+ model-index:
7
+ - name: 2020-Q3-full_tweets
8
+ results: []
9
+ ---
10
+
11
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
12
+ should probably proofread and complete it, then remove this comment. -->
13
+
14
+ # 2020-Q3-full_tweets
15
+
16
+ This model is a fine-tuned version of [cardiffnlp/twitter-roberta-base-2019-90m](https://huggingface.co/cardiffnlp/twitter-roberta-base-2019-90m) on an unknown dataset.
17
+ It achieves the following results on the evaluation set:
18
+ - Loss: 1.9142
19
+
20
+ ## Model description
21
+
22
+ More information needed
23
+
24
+ ## Intended uses & limitations
25
+
26
+ More information needed
27
+
28
+ ## Training and evaluation data
29
+
30
+ More information needed
31
+
32
+ ## Training procedure
33
+
34
+ ### Training hyperparameters
35
+
36
+ The following hyperparameters were used during training:
37
+ - learning_rate: 4.1e-07
38
+ - train_batch_size: 32
39
+ - eval_batch_size: 16
40
+ - seed: 42
41
+ - optimizer: Adam with betas=(0.9,0.98) and epsilon=1e-08
42
+ - lr_scheduler_type: linear
43
+ - training_steps: 2400000
44
+
45
+ ### Training results
46
+
47
+ | Training Loss | Epoch | Step | Validation Loss |
48
+ |:-------------:|:-----:|:-------:|:---------------:|
49
+ | No log | 0.03 | 8000 | 2.2197 |
50
+ | 2.3934 | 0.07 | 16000 | 2.1429 |
51
+ | 2.3934 | 0.1 | 24000 | 2.1001 |
52
+ | 2.2294 | 0.13 | 32000 | 2.0762 |
53
+ | 2.2294 | 0.17 | 40000 | 2.0515 |
54
+ | 2.1835 | 0.2 | 48000 | 2.0435 |
55
+ | 2.1835 | 0.24 | 56000 | 2.0346 |
56
+ | 2.1517 | 0.27 | 64000 | 2.0254 |
57
+ | 2.1517 | 0.3 | 72000 | 2.0175 |
58
+ | 2.1381 | 0.34 | 80000 | 2.0077 |
59
+ | 2.1381 | 0.37 | 88000 | 2.0029 |
60
+ | 2.1244 | 0.4 | 96000 | 2.0011 |
61
+ | 2.1244 | 0.44 | 104000 | 1.9980 |
62
+ | 2.1116 | 0.47 | 112000 | 1.9901 |
63
+ | 2.1116 | 0.51 | 120000 | 1.9840 |
64
+ | 2.1104 | 0.54 | 128000 | 1.9885 |
65
+ | 2.1104 | 0.57 | 136000 | 1.9855 |
66
+ | 2.1031 | 0.61 | 144000 | 1.9829 |
67
+ | 2.1031 | 0.64 | 152000 | 1.9813 |
68
+ | 2.0971 | 0.67 | 160000 | 1.9812 |
69
+ | 2.0971 | 0.71 | 168000 | 1.9795 |
70
+ | 2.1044 | 0.74 | 176000 | 1.9738 |
71
+ | 2.1044 | 0.77 | 184000 | 1.9768 |
72
+ | 2.0928 | 0.81 | 192000 | 1.9786 |
73
+ | 2.0928 | 0.84 | 200000 | 1.9699 |
74
+ | 2.0949 | 0.88 | 208000 | 1.9700 |
75
+ | 2.0949 | 0.91 | 216000 | 1.9653 |
76
+ | 2.0892 | 0.94 | 224000 | 1.9681 |
77
+ | 2.0892 | 0.98 | 232000 | 1.9650 |
78
+ | 2.0841 | 1.01 | 240000 | 1.9638 |
79
+ | 2.0841 | 1.04 | 248000 | 1.9682 |
80
+ | 2.0887 | 1.08 | 256000 | 1.9605 |
81
+ | 2.0887 | 1.11 | 264000 | 1.9614 |
82
+ | 2.0842 | 1.15 | 272000 | 1.9624 |
83
+ | 2.0842 | 1.18 | 280000 | 1.9605 |
84
+ | 2.0773 | 1.21 | 288000 | 1.9554 |
85
+ | 2.0773 | 1.25 | 296000 | 1.9578 |
86
+ | 2.0795 | 1.28 | 304000 | 1.9572 |
87
+ | 2.0795 | 1.31 | 312000 | 1.9521 |
88
+ | 2.0794 | 1.35 | 320000 | 1.9551 |
89
+ | 2.0794 | 1.38 | 328000 | 1.9569 |
90
+ | 2.0788 | 1.41 | 336000 | 1.9571 |
91
+ | 2.0788 | 1.45 | 344000 | 1.9502 |
92
+ | 2.0778 | 1.48 | 352000 | 1.9544 |
93
+ | 2.0778 | 1.52 | 360000 | 1.9470 |
94
+ | 2.0694 | 1.55 | 368000 | 1.9545 |
95
+ | 2.0694 | 1.58 | 376000 | 1.9472 |
96
+ | 2.0718 | 1.62 | 384000 | 1.9477 |
97
+ | 2.0718 | 1.65 | 392000 | 1.9496 |
98
+ | 2.0787 | 1.68 | 400000 | 1.9440 |
99
+ | 2.0787 | 1.72 | 408000 | 1.9484 |
100
+ | 2.0764 | 1.75 | 416000 | 1.9475 |
101
+ | 2.0764 | 1.79 | 424000 | 1.9469 |
102
+ | 2.0795 | 1.82 | 432000 | 1.9474 |
103
+ | 2.0795 | 1.85 | 440000 | 1.9492 |
104
+ | 2.07 | 1.89 | 448000 | 1.9480 |
105
+ | 2.07 | 1.92 | 456000 | 1.9482 |
106
+ | 2.0712 | 1.95 | 464000 | 1.9498 |
107
+ | 2.0712 | 1.99 | 472000 | 1.9429 |
108
+ | 2.0739 | 2.02 | 480000 | 1.9456 |
109
+ | 2.0739 | 2.05 | 488000 | 1.9469 |
110
+ | 2.0688 | 2.09 | 496000 | 1.9467 |
111
+ | 2.0688 | 2.12 | 504000 | 1.9454 |
112
+ | 2.0706 | 2.16 | 512000 | 1.9440 |
113
+ | 2.0706 | 2.19 | 520000 | 1.9401 |
114
+ | 2.0694 | 2.22 | 528000 | 1.9397 |
115
+ | 2.0694 | 2.26 | 536000 | 1.9429 |
116
+ | 2.0698 | 2.29 | 544000 | 1.9484 |
117
+ | 2.0698 | 2.32 | 552000 | 1.9375 |
118
+ | 2.0681 | 2.36 | 560000 | 1.9411 |
119
+ | 2.0681 | 2.39 | 568000 | 1.9419 |
120
+ | 2.0676 | 2.43 | 576000 | 1.9373 |
121
+ | 2.0676 | 2.46 | 584000 | 1.9366 |
122
+ | 2.0641 | 2.49 | 592000 | 1.9422 |
123
+ | 2.0641 | 2.53 | 600000 | 1.9365 |
124
+ | 2.0692 | 2.56 | 608000 | 1.9417 |
125
+ | 2.0692 | 2.59 | 616000 | 1.9385 |
126
+ | 2.0676 | 2.63 | 624000 | 1.9362 |
127
+ | 2.0676 | 2.66 | 632000 | 1.9414 |
128
+ | 2.0657 | 2.69 | 640000 | 1.9437 |
129
+ | 2.0657 | 2.73 | 648000 | 1.9356 |
130
+ | 2.0638 | 2.76 | 656000 | 1.9353 |
131
+ | 2.0638 | 2.8 | 664000 | 1.9385 |
132
+ | 2.0673 | 2.83 | 672000 | 1.9359 |
133
+ | 2.0673 | 2.86 | 680000 | 1.9314 |
134
+ | 2.0634 | 2.9 | 688000 | 1.9294 |
135
+ | 2.0634 | 2.93 | 696000 | 1.9346 |
136
+ | 2.0643 | 2.96 | 704000 | 1.9335 |
137
+ | 2.0643 | 3.0 | 712000 | 1.9316 |
138
+ | 2.0596 | 3.03 | 720000 | 1.9356 |
139
+ | 2.0596 | 3.07 | 728000 | 1.9390 |
140
+ | 2.0637 | 3.1 | 736000 | 1.9397 |
141
+ | 2.0637 | 3.13 | 744000 | 1.9375 |
142
+ | 2.0637 | 3.17 | 752000 | 1.9352 |
143
+ | 2.0637 | 3.2 | 760000 | 1.9310 |
144
+ | 2.0681 | 3.23 | 768000 | 1.9316 |
145
+ | 2.0681 | 3.27 | 776000 | 1.9269 |
146
+ | 2.0663 | 3.3 | 784000 | 1.9301 |
147
+ | 2.0663 | 3.33 | 792000 | 1.9354 |
148
+ | 2.0653 | 3.37 | 800000 | 1.9373 |
149
+ | 2.0653 | 3.4 | 808000 | 1.9354 |
150
+ | 2.0606 | 3.44 | 816000 | 1.9286 |
151
+ | 2.0606 | 3.47 | 824000 | 1.9318 |
152
+ | 2.0601 | 3.5 | 832000 | 1.9287 |
153
+ | 2.0601 | 3.54 | 840000 | 1.9280 |
154
+ | 2.0555 | 3.57 | 848000 | 1.9279 |
155
+ | 2.0555 | 3.6 | 856000 | 1.9297 |
156
+ | 2.0561 | 3.64 | 864000 | 1.9290 |
157
+ | 2.0561 | 3.67 | 872000 | 1.9252 |
158
+ | 2.066 | 3.71 | 880000 | 1.9274 |
159
+ | 2.066 | 3.74 | 888000 | 1.9257 |
160
+ | 2.0634 | 3.77 | 896000 | 1.9290 |
161
+ | 2.0634 | 3.81 | 904000 | 1.9267 |
162
+ | 2.0613 | 3.84 | 912000 | 1.9295 |
163
+ | 2.0613 | 3.87 | 920000 | 1.9300 |
164
+ | 2.0599 | 3.91 | 928000 | 1.9326 |
165
+ | 2.0599 | 3.94 | 936000 | 1.9313 |
166
+ | 2.0592 | 3.97 | 944000 | 1.9237 |
167
+ | 2.0592 | 4.01 | 952000 | 1.9272 |
168
+ | 2.0602 | 4.04 | 960000 | 1.9261 |
169
+ | 2.0602 | 4.08 | 968000 | 1.9283 |
170
+ | 2.0575 | 4.11 | 976000 | 1.9294 |
171
+ | 2.0575 | 4.14 | 984000 | 1.9284 |
172
+ | 2.0585 | 4.18 | 992000 | 1.9263 |
173
+ | 2.0585 | 4.21 | 1000000 | 1.9227 |
174
+ | 2.0535 | 4.24 | 1008000 | 1.9251 |
175
+ | 2.0535 | 4.28 | 1016000 | 1.9273 |
176
+ | 2.062 | 4.31 | 1024000 | 1.9242 |
177
+ | 2.062 | 4.35 | 1032000 | 1.9242 |
178
+ | 2.0606 | 4.38 | 1040000 | 1.9255 |
179
+ | 2.0606 | 4.41 | 1048000 | 1.9233 |
180
+ | 2.0565 | 4.45 | 1056000 | 1.9243 |
181
+ | 2.0565 | 4.48 | 1064000 | 1.9272 |
182
+ | 2.0538 | 4.51 | 1072000 | 1.9308 |
183
+ | 2.0538 | 4.55 | 1080000 | 1.9236 |
184
+ | 2.0573 | 4.58 | 1088000 | 1.9246 |
185
+ | 2.0573 | 4.61 | 1096000 | 1.9237 |
186
+ | 2.0562 | 4.65 | 1104000 | 1.9199 |
187
+ | 2.0562 | 4.68 | 1112000 | 1.9235 |
188
+ | 2.0534 | 4.72 | 1120000 | 1.9209 |
189
+ | 2.0534 | 4.75 | 1128000 | 1.9215 |
190
+ | 2.0567 | 4.78 | 1136000 | 1.9242 |
191
+ | 2.0567 | 4.82 | 1144000 | 1.9272 |
192
+ | 2.0592 | 4.85 | 1152000 | 1.9257 |
193
+ | 2.0592 | 4.88 | 1160000 | 1.9228 |
194
+ | 2.0599 | 4.92 | 1168000 | 1.9205 |
195
+ | 2.0599 | 4.95 | 1176000 | 1.9190 |
196
+ | 2.0504 | 4.99 | 1184000 | 1.9241 |
197
+ | 2.0504 | 5.02 | 1192000 | 1.9214 |
198
+ | 2.0541 | 5.05 | 1200000 | 1.9265 |
199
+ | 2.0541 | 5.09 | 1208000 | 1.9250 |
200
+ | 2.0581 | 5.12 | 1216000 | 1.9174 |
201
+ | 2.0581 | 5.15 | 1224000 | 1.9232 |
202
+ | 2.057 | 5.19 | 1232000 | 1.9242 |
203
+ | 2.057 | 5.22 | 1240000 | 1.9201 |
204
+ | 2.0541 | 5.25 | 1248000 | 1.9187 |
205
+ | 2.0541 | 5.29 | 1256000 | 1.9205 |
206
+ | 2.0542 | 5.32 | 1264000 | 1.9178 |
207
+ | 2.0542 | 5.36 | 1272000 | 1.9239 |
208
+ | 2.0526 | 5.39 | 1280000 | 1.9185 |
209
+ | 2.0526 | 5.42 | 1288000 | 1.9227 |
210
+ | 2.0503 | 5.46 | 1296000 | 1.9223 |
211
+ | 2.0503 | 5.49 | 1304000 | 1.9230 |
212
+ | 2.0579 | 5.52 | 1312000 | 1.9143 |
213
+ | 2.0579 | 5.56 | 1320000 | 1.9188 |
214
+ | 2.0523 | 5.59 | 1328000 | 1.9170 |
215
+ | 2.0523 | 5.63 | 1336000 | 1.9252 |
216
+ | 2.056 | 5.66 | 1344000 | 1.9183 |
217
+ | 2.056 | 5.69 | 1352000 | 1.9237 |
218
+ | 2.0545 | 5.73 | 1360000 | 1.9198 |
219
+ | 2.0545 | 5.76 | 1368000 | 1.9225 |
220
+ | 2.0552 | 5.79 | 1376000 | 1.9172 |
221
+ | 2.0552 | 5.83 | 1384000 | 1.9179 |
222
+ | 2.0571 | 5.86 | 1392000 | 1.9238 |
223
+ | 2.0571 | 5.89 | 1400000 | 1.9189 |
224
+ | 2.0637 | 5.93 | 1408000 | 1.9217 |
225
+ | 2.0637 | 5.96 | 1416000 | 1.9190 |
226
+ | 2.0554 | 6.0 | 1424000 | 1.9259 |
227
+ | 2.0554 | 6.03 | 1432000 | 1.9184 |
228
+ | 2.0545 | 6.06 | 1440000 | 1.9244 |
229
+ | 2.0545 | 6.1 | 1448000 | 1.9201 |
230
+ | 2.0538 | 6.13 | 1456000 | 1.9251 |
231
+ | 2.0538 | 6.16 | 1464000 | 1.9216 |
232
+ | 2.058 | 6.2 | 1472000 | 1.9221 |
233
+ | 2.058 | 6.23 | 1480000 | 1.9247 |
234
+ | 2.0482 | 6.27 | 1488000 | 1.9209 |
235
+ | 2.0482 | 6.3 | 1496000 | 1.9207 |
236
+ | 2.0528 | 6.33 | 1504000 | 1.9177 |
237
+ | 2.0528 | 6.37 | 1512000 | 1.9141 |
238
+ | 2.0529 | 6.4 | 1520000 | 1.9213 |
239
+ | 2.0529 | 6.43 | 1528000 | 1.9170 |
240
+ | 2.059 | 6.47 | 1536000 | 1.9161 |
241
+ | 2.059 | 6.5 | 1544000 | 1.9164 |
242
+ | 2.056 | 6.53 | 1552000 | 1.9177 |
243
+ | 2.056 | 6.57 | 1560000 | 1.9189 |
244
+ | 2.058 | 6.6 | 1568000 | 1.9181 |
245
+ | 2.058 | 6.64 | 1576000 | 1.9214 |
246
+ | 2.0543 | 6.67 | 1584000 | 1.9137 |
247
+ | 2.0543 | 6.7 | 1592000 | 1.9181 |
248
+ | 2.0513 | 6.74 | 1600000 | 1.9187 |
249
+ | 2.0513 | 6.77 | 1608000 | 1.9176 |
250
+ | 2.0587 | 6.8 | 1616000 | 1.9145 |
251
+ | 2.0587 | 6.84 | 1624000 | 1.9192 |
252
+ | 2.053 | 6.87 | 1632000 | 1.9202 |
253
+ | 2.053 | 6.91 | 1640000 | 1.9183 |
254
+ | 2.0543 | 6.94 | 1648000 | 1.9163 |
255
+ | 2.0543 | 6.97 | 1656000 | 1.9171 |
256
+ | 2.0492 | 7.01 | 1664000 | 1.9183 |
257
+ | 2.0492 | 7.04 | 1672000 | 1.9172 |
258
+ | 2.0505 | 7.07 | 1680000 | 1.9190 |
259
+ | 2.0505 | 7.11 | 1688000 | 1.9181 |
260
+ | 2.0548 | 7.14 | 1696000 | 1.9160 |
261
+ | 2.0548 | 7.17 | 1704000 | 1.9168 |
262
+ | 2.0524 | 7.21 | 1712000 | 1.9155 |
263
+ | 2.0524 | 7.24 | 1720000 | 1.9161 |
264
+ | 2.0539 | 7.28 | 1728000 | 1.9189 |
265
+ | 2.0539 | 7.31 | 1736000 | 1.9169 |
266
+ | 2.0542 | 7.34 | 1744000 | 1.9177 |
267
+ | 2.0542 | 7.38 | 1752000 | 1.9140 |
268
+ | 2.0509 | 7.41 | 1760000 | 1.9152 |
269
+ | 2.0509 | 7.44 | 1768000 | 1.9160 |
270
+ | 2.0507 | 7.48 | 1776000 | 1.9156 |
271
+ | 2.0507 | 7.51 | 1784000 | 1.9139 |
272
+ | 2.057 | 7.55 | 1792000 | 1.9140 |
273
+ | 2.057 | 7.58 | 1800000 | 1.9248 |
274
+ | 2.0515 | 7.61 | 1808000 | 1.9143 |
275
+ | 2.0515 | 7.65 | 1816000 | 1.9188 |
276
+ | 2.0503 | 7.68 | 1824000 | 1.9127 |
277
+ | 2.0503 | 7.71 | 1832000 | 1.9132 |
278
+ | 2.0534 | 7.75 | 1840000 | 1.9129 |
279
+ | 2.0534 | 7.78 | 1848000 | 1.9195 |
280
+ | 2.0553 | 7.81 | 1856000 | 1.9157 |
281
+ | 2.0553 | 7.85 | 1864000 | 1.9177 |
282
+ | 2.0496 | 7.88 | 1872000 | 1.9148 |
283
+ | 2.0496 | 7.92 | 1880000 | 1.9132 |
284
+ | 2.0537 | 7.95 | 1888000 | 1.9184 |
285
+ | 2.0537 | 7.98 | 1896000 | 1.9160 |
286
+ | 2.0505 | 8.02 | 1904000 | 1.9151 |
287
+ | 2.0505 | 8.05 | 1912000 | 1.9210 |
288
+ | 2.0536 | 8.08 | 1920000 | 1.9173 |
289
+ | 2.0536 | 8.12 | 1928000 | 1.9139 |
290
+ | 2.0493 | 8.15 | 1936000 | 1.9209 |
291
+ | 2.0493 | 8.19 | 1944000 | 1.9151 |
292
+ | 2.052 | 8.22 | 1952000 | 1.9174 |
293
+ | 2.052 | 8.25 | 1960000 | 1.9146 |
294
+ | 2.0575 | 8.29 | 1968000 | 1.9169 |
295
+ | 2.0575 | 8.32 | 1976000 | 1.9173 |
296
+ | 2.0499 | 8.35 | 1984000 | 1.9175 |
297
+ | 2.0499 | 8.39 | 1992000 | 1.9136 |
298
+ | 2.0573 | 8.42 | 2000000 | 1.9159 |
299
+ | 2.0573 | 8.45 | 2008000 | 1.9148 |
300
+ | 2.0556 | 8.49 | 2016000 | 1.9174 |
301
+ | 2.0556 | 8.52 | 2024000 | 1.9146 |
302
+ | 2.0558 | 8.56 | 2032000 | 1.9152 |
303
+ | 2.0558 | 8.59 | 2040000 | 1.9125 |
304
+ | 2.0493 | 8.62 | 2048000 | 1.9156 |
305
+ | 2.0493 | 8.66 | 2056000 | 1.9121 |
306
+ | 2.0492 | 8.69 | 2064000 | 1.9227 |
307
+ | 2.0492 | 8.72 | 2072000 | 1.9136 |
308
+ | 2.0576 | 8.76 | 2080000 | 1.9147 |
309
+ | 2.0576 | 8.79 | 2088000 | 1.9159 |
310
+ | 2.0512 | 8.83 | 2096000 | 1.9116 |
311
+ | 2.0512 | 8.86 | 2104000 | 1.9159 |
312
+ | 2.05 | 8.89 | 2112000 | 1.9130 |
313
+ | 2.05 | 8.93 | 2120000 | 1.9152 |
314
+ | 2.0437 | 8.96 | 2128000 | 1.9176 |
315
+ | 2.0437 | 8.99 | 2136000 | 1.9193 |
316
+ | 2.053 | 9.03 | 2144000 | 1.9124 |
317
+ | 2.053 | 9.06 | 2152000 | 1.9139 |
318
+ | 2.0496 | 9.09 | 2160000 | 1.9128 |
319
+ | 2.0496 | 9.13 | 2168000 | 1.9162 |
320
+ | 2.0495 | 9.16 | 2176000 | 1.9065 |
321
+ | 2.0495 | 9.2 | 2184000 | 1.9211 |
322
+ | 2.0468 | 9.23 | 2192000 | 1.9095 |
323
+ | 2.0468 | 9.26 | 2200000 | 1.9163 |
324
+ | 2.0507 | 9.3 | 2208000 | 1.9106 |
325
+ | 2.0507 | 9.33 | 2216000 | 1.9165 |
326
+ | 2.0526 | 9.36 | 2224000 | 1.9179 |
327
+ | 2.0526 | 9.4 | 2232000 | 1.9178 |
328
+ | 2.0537 | 9.43 | 2240000 | 1.9163 |
329
+ | 2.0537 | 9.47 | 2248000 | 1.9159 |
330
+ | 2.0502 | 9.5 | 2256000 | 1.9146 |
331
+ | 2.0502 | 9.53 | 2264000 | 1.9169 |
332
+ | 2.0492 | 9.57 | 2272000 | 1.9164 |
333
+ | 2.0492 | 9.6 | 2280000 | 1.9154 |
334
+ | 2.0505 | 9.63 | 2288000 | 1.9066 |
335
+ | 2.0505 | 9.67 | 2296000 | 1.9140 |
336
+ | 2.0516 | 9.7 | 2304000 | 1.9125 |
337
+ | 2.0516 | 9.73 | 2312000 | 1.9184 |
338
+ | 2.0559 | 9.77 | 2320000 | 1.9178 |
339
+ | 2.0559 | 9.8 | 2328000 | 1.9164 |
340
+ | 2.0528 | 9.84 | 2336000 | 1.9087 |
341
+ | 2.0528 | 9.87 | 2344000 | 1.9165 |
342
+ | 2.0559 | 9.9 | 2352000 | 1.9113 |
343
+ | 2.0559 | 9.94 | 2360000 | 1.9146 |
344
+ | 2.058 | 9.97 | 2368000 | 1.9156 |
345
+ | 2.058 | 10.0 | 2376000 | 1.9137 |
346
+ | 2.053 | 10.04 | 2384000 | 1.9081 |
347
+ | 2.053 | 10.07 | 2392000 | 1.9148 |
348
+ | 2.0566 | 10.11 | 2400000 | 1.9142 |
349
+
350
+
351
+ ### Framework versions
352
+
353
+ - Transformers 4.35.0.dev0
354
+ - Pytorch 2.0.1+cu117
355
+ - Datasets 2.14.5
356
+ - Tokenizers 0.14.0
pytorch_model.bin CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:252a0611eca4ba7c20cf134495564c69f6237b64e1e7c233f17d2d8aec938875
3
  size 498859189
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:af14e294461d7a82f5731ca1486fac3e145530ed7e617af23f1e50a6e419f781
3
  size 498859189