DouglasPontes
commited on
Model save
Browse files- README.md +356 -0
- pytorch_model.bin +1 -1
README.md
ADDED
@@ -0,0 +1,356 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: mit
|
3 |
+
base_model: cardiffnlp/twitter-roberta-base-2019-90m
|
4 |
+
tags:
|
5 |
+
- generated_from_trainer
|
6 |
+
model-index:
|
7 |
+
- name: 2020-Q2-90p-filtered
|
8 |
+
results: []
|
9 |
+
---
|
10 |
+
|
11 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
12 |
+
should probably proofread and complete it, then remove this comment. -->
|
13 |
+
|
14 |
+
# 2020-Q2-90p-filtered
|
15 |
+
|
16 |
+
This model is a fine-tuned version of [cardiffnlp/twitter-roberta-base-2019-90m](https://huggingface.co/cardiffnlp/twitter-roberta-base-2019-90m) on an unknown dataset.
|
17 |
+
It achieves the following results on the evaluation set:
|
18 |
+
- Loss: 3.5386
|
19 |
+
|
20 |
+
## Model description
|
21 |
+
|
22 |
+
More information needed
|
23 |
+
|
24 |
+
## Intended uses & limitations
|
25 |
+
|
26 |
+
More information needed
|
27 |
+
|
28 |
+
## Training and evaluation data
|
29 |
+
|
30 |
+
More information needed
|
31 |
+
|
32 |
+
## Training procedure
|
33 |
+
|
34 |
+
### Training hyperparameters
|
35 |
+
|
36 |
+
The following hyperparameters were used during training:
|
37 |
+
- learning_rate: 4.1e-07
|
38 |
+
- train_batch_size: 16
|
39 |
+
- eval_batch_size: 16
|
40 |
+
- seed: 42
|
41 |
+
- optimizer: Adam with betas=(0.9,0.98) and epsilon=1e-08
|
42 |
+
- lr_scheduler_type: linear
|
43 |
+
- training_steps: 2400000
|
44 |
+
|
45 |
+
### Training results
|
46 |
+
|
47 |
+
| Training Loss | Epoch | Step | Validation Loss |
|
48 |
+
|:-------------:|:-----:|:-------:|:---------------:|
|
49 |
+
| No log | 0.17 | 8000 | 4.0640 |
|
50 |
+
| 4.2654 | 0.34 | 16000 | 3.9414 |
|
51 |
+
| 4.2654 | 0.51 | 24000 | 3.8956 |
|
52 |
+
| 4.0459 | 0.67 | 32000 | 3.8527 |
|
53 |
+
| 4.0459 | 0.84 | 40000 | 3.8232 |
|
54 |
+
| 3.9781 | 1.01 | 48000 | 3.7806 |
|
55 |
+
| 3.9781 | 1.18 | 56000 | 3.7861 |
|
56 |
+
| 3.9323 | 1.35 | 64000 | 3.7930 |
|
57 |
+
| 3.9323 | 1.52 | 72000 | 3.7814 |
|
58 |
+
| 3.9224 | 1.68 | 80000 | 3.7815 |
|
59 |
+
| 3.9224 | 1.85 | 88000 | 3.7403 |
|
60 |
+
| 3.8924 | 2.02 | 96000 | 3.7468 |
|
61 |
+
| 3.8924 | 2.19 | 104000 | 3.7400 |
|
62 |
+
| 3.879 | 2.36 | 112000 | 3.7283 |
|
63 |
+
| 3.879 | 2.53 | 120000 | 3.7381 |
|
64 |
+
| 3.8806 | 2.69 | 128000 | 3.7073 |
|
65 |
+
| 3.8806 | 2.86 | 136000 | 3.7083 |
|
66 |
+
| 3.8659 | 3.03 | 144000 | 3.6992 |
|
67 |
+
| 3.8659 | 3.2 | 152000 | 3.6956 |
|
68 |
+
| 3.8634 | 3.37 | 160000 | 3.6745 |
|
69 |
+
| 3.8634 | 3.54 | 168000 | 3.7017 |
|
70 |
+
| 3.8632 | 3.71 | 176000 | 3.6960 |
|
71 |
+
| 3.8632 | 3.87 | 184000 | 3.7202 |
|
72 |
+
| 3.8416 | 4.04 | 192000 | 3.7109 |
|
73 |
+
| 3.8416 | 4.21 | 200000 | 3.6942 |
|
74 |
+
| 3.8368 | 4.38 | 208000 | 3.6944 |
|
75 |
+
| 3.8368 | 4.55 | 216000 | 3.6751 |
|
76 |
+
| 3.8359 | 4.72 | 224000 | 3.6815 |
|
77 |
+
| 3.8359 | 4.88 | 232000 | 3.6915 |
|
78 |
+
| 3.8411 | 5.05 | 240000 | 3.6796 |
|
79 |
+
| 3.8411 | 5.22 | 248000 | 3.6847 |
|
80 |
+
| 3.8359 | 5.39 | 256000 | 3.6988 |
|
81 |
+
| 3.8359 | 5.56 | 264000 | 3.6799 |
|
82 |
+
| 3.8268 | 5.73 | 272000 | 3.6810 |
|
83 |
+
| 3.8268 | 5.89 | 280000 | 3.6639 |
|
84 |
+
| 3.8172 | 6.06 | 288000 | 3.6663 |
|
85 |
+
| 3.8172 | 6.23 | 296000 | 3.6838 |
|
86 |
+
| 3.8263 | 6.4 | 304000 | 3.6756 |
|
87 |
+
| 3.8263 | 6.57 | 312000 | 3.6507 |
|
88 |
+
| 3.8215 | 6.74 | 320000 | 3.6409 |
|
89 |
+
| 3.8215 | 6.91 | 328000 | 3.6790 |
|
90 |
+
| 3.8189 | 7.07 | 336000 | 3.6679 |
|
91 |
+
| 3.8189 | 7.24 | 344000 | 3.6443 |
|
92 |
+
| 3.8155 | 7.41 | 352000 | 3.6588 |
|
93 |
+
| 3.8155 | 7.58 | 360000 | 3.6448 |
|
94 |
+
| 3.8075 | 7.75 | 368000 | 3.6520 |
|
95 |
+
| 3.8075 | 7.92 | 376000 | 3.6541 |
|
96 |
+
| 3.8064 | 8.08 | 384000 | 3.6569 |
|
97 |
+
| 3.8064 | 8.25 | 392000 | 3.6586 |
|
98 |
+
| 3.8092 | 8.42 | 400000 | 3.6701 |
|
99 |
+
| 3.8092 | 8.59 | 408000 | 3.6544 |
|
100 |
+
| 3.8032 | 8.76 | 416000 | 3.6668 |
|
101 |
+
| 3.8032 | 8.93 | 424000 | 3.6631 |
|
102 |
+
| 3.8062 | 9.09 | 432000 | 3.6481 |
|
103 |
+
| 3.8062 | 9.26 | 440000 | 3.6392 |
|
104 |
+
| 3.7987 | 9.43 | 448000 | 3.6482 |
|
105 |
+
| 3.7987 | 9.6 | 456000 | 3.6357 |
|
106 |
+
| 3.7954 | 9.77 | 464000 | 3.6333 |
|
107 |
+
| 3.7954 | 9.94 | 472000 | 3.6653 |
|
108 |
+
| 3.7938 | 10.11 | 480000 | 3.6267 |
|
109 |
+
| 3.7938 | 10.27 | 488000 | 3.6490 |
|
110 |
+
| 3.7901 | 10.44 | 496000 | 3.6417 |
|
111 |
+
| 3.7901 | 10.61 | 504000 | 3.6263 |
|
112 |
+
| 3.7935 | 10.78 | 512000 | 3.6523 |
|
113 |
+
| 3.7935 | 10.95 | 520000 | 3.6444 |
|
114 |
+
| 3.7951 | 11.12 | 528000 | 3.6226 |
|
115 |
+
| 3.7951 | 11.28 | 536000 | 3.6347 |
|
116 |
+
| 3.7861 | 11.45 | 544000 | 3.6372 |
|
117 |
+
| 3.7861 | 11.62 | 552000 | 3.6163 |
|
118 |
+
| 3.7846 | 11.79 | 560000 | 3.6299 |
|
119 |
+
| 3.7846 | 11.96 | 568000 | 3.6330 |
|
120 |
+
| 3.7778 | 12.13 | 576000 | 3.6371 |
|
121 |
+
| 3.7778 | 12.29 | 584000 | 3.6343 |
|
122 |
+
| 3.777 | 12.46 | 592000 | 3.6242 |
|
123 |
+
| 3.777 | 12.63 | 600000 | 3.6119 |
|
124 |
+
| 3.778 | 12.8 | 608000 | 3.6167 |
|
125 |
+
| 3.778 | 12.97 | 616000 | 3.6191 |
|
126 |
+
| 3.7795 | 13.14 | 624000 | 3.6225 |
|
127 |
+
| 3.7795 | 13.3 | 632000 | 3.6056 |
|
128 |
+
| 3.7766 | 13.47 | 640000 | 3.6135 |
|
129 |
+
| 3.7766 | 13.64 | 648000 | 3.6169 |
|
130 |
+
| 3.7729 | 13.81 | 656000 | 3.6035 |
|
131 |
+
| 3.7729 | 13.98 | 664000 | 3.6109 |
|
132 |
+
| 3.7846 | 14.15 | 672000 | 3.6180 |
|
133 |
+
| 3.7846 | 14.32 | 680000 | 3.6171 |
|
134 |
+
| 3.7726 | 14.48 | 688000 | 3.6182 |
|
135 |
+
| 3.7726 | 14.65 | 696000 | 3.6086 |
|
136 |
+
| 3.7717 | 14.82 | 704000 | 3.5852 |
|
137 |
+
| 3.7717 | 14.99 | 712000 | 3.5883 |
|
138 |
+
| 3.7713 | 15.16 | 720000 | 3.6056 |
|
139 |
+
| 3.7713 | 15.33 | 728000 | 3.6004 |
|
140 |
+
| 3.7745 | 15.49 | 736000 | 3.6059 |
|
141 |
+
| 3.7745 | 15.66 | 744000 | 3.6156 |
|
142 |
+
| 3.7557 | 15.83 | 752000 | 3.6029 |
|
143 |
+
| 3.7557 | 16.0 | 760000 | 3.6099 |
|
144 |
+
| 3.7628 | 16.17 | 768000 | 3.6016 |
|
145 |
+
| 3.7628 | 16.34 | 776000 | 3.6008 |
|
146 |
+
| 3.7717 | 16.5 | 784000 | 3.5972 |
|
147 |
+
| 3.7717 | 16.67 | 792000 | 3.5838 |
|
148 |
+
| 3.7616 | 16.84 | 800000 | 3.5868 |
|
149 |
+
| 3.7616 | 17.01 | 808000 | 3.5834 |
|
150 |
+
| 3.7608 | 17.18 | 816000 | 3.6066 |
|
151 |
+
| 3.7608 | 17.35 | 824000 | 3.5911 |
|
152 |
+
| 3.7625 | 17.52 | 832000 | 3.5997 |
|
153 |
+
| 3.7625 | 17.68 | 840000 | 3.5855 |
|
154 |
+
| 3.7634 | 17.85 | 848000 | 3.5861 |
|
155 |
+
| 3.7634 | 18.02 | 856000 | 3.6021 |
|
156 |
+
| 3.75 | 18.19 | 864000 | 3.5966 |
|
157 |
+
| 3.75 | 18.36 | 872000 | 3.5761 |
|
158 |
+
| 3.7492 | 18.53 | 880000 | 3.5757 |
|
159 |
+
| 3.7492 | 18.69 | 888000 | 3.6123 |
|
160 |
+
| 3.7522 | 18.86 | 896000 | 3.5841 |
|
161 |
+
| 3.7522 | 19.03 | 904000 | 3.5831 |
|
162 |
+
| 3.7482 | 19.2 | 912000 | 3.5860 |
|
163 |
+
| 3.7482 | 19.37 | 920000 | 3.5804 |
|
164 |
+
| 3.75 | 19.54 | 928000 | 3.5730 |
|
165 |
+
| 3.75 | 19.7 | 936000 | 3.5955 |
|
166 |
+
| 3.755 | 19.87 | 944000 | 3.5868 |
|
167 |
+
| 3.755 | 20.04 | 952000 | 3.5992 |
|
168 |
+
| 3.7549 | 20.21 | 960000 | 3.5657 |
|
169 |
+
| 3.7549 | 20.38 | 968000 | 3.5780 |
|
170 |
+
| 3.743 | 20.55 | 976000 | 3.5828 |
|
171 |
+
| 3.743 | 20.72 | 984000 | 3.5676 |
|
172 |
+
| 3.75 | 20.88 | 992000 | 3.5724 |
|
173 |
+
| 3.75 | 21.05 | 1000000 | 3.5850 |
|
174 |
+
| 3.7483 | 21.22 | 1008000 | 3.5873 |
|
175 |
+
| 3.7483 | 21.39 | 1016000 | 3.5799 |
|
176 |
+
| 3.7523 | 21.56 | 1024000 | 3.5974 |
|
177 |
+
| 3.7523 | 21.73 | 1032000 | 3.5790 |
|
178 |
+
| 3.7458 | 21.89 | 1040000 | 3.5884 |
|
179 |
+
| 3.7458 | 22.06 | 1048000 | 3.5904 |
|
180 |
+
| 3.7498 | 22.23 | 1056000 | 3.5851 |
|
181 |
+
| 3.7498 | 22.4 | 1064000 | 3.5776 |
|
182 |
+
| 3.7496 | 22.57 | 1072000 | 3.5685 |
|
183 |
+
| 3.7496 | 22.74 | 1080000 | 3.5731 |
|
184 |
+
| 3.7395 | 22.9 | 1088000 | 3.5858 |
|
185 |
+
| 3.7395 | 23.07 | 1096000 | 3.5931 |
|
186 |
+
| 3.7466 | 23.24 | 1104000 | 3.5614 |
|
187 |
+
| 3.7466 | 23.41 | 1112000 | 3.5456 |
|
188 |
+
| 3.7503 | 23.58 | 1120000 | 3.5895 |
|
189 |
+
| 3.7503 | 23.75 | 1128000 | 3.5608 |
|
190 |
+
| 3.7484 | 23.92 | 1136000 | 3.5696 |
|
191 |
+
| 3.7484 | 24.08 | 1144000 | 3.5653 |
|
192 |
+
| 3.7435 | 24.25 | 1152000 | 3.5721 |
|
193 |
+
| 3.7435 | 24.42 | 1160000 | 3.5510 |
|
194 |
+
| 3.7348 | 24.59 | 1168000 | 3.5631 |
|
195 |
+
| 3.7348 | 24.76 | 1176000 | 3.5727 |
|
196 |
+
| 3.7341 | 24.93 | 1184000 | 3.5835 |
|
197 |
+
| 3.7341 | 25.09 | 1192000 | 3.5766 |
|
198 |
+
| 3.7435 | 25.26 | 1200000 | 3.5606 |
|
199 |
+
| 3.7435 | 25.43 | 1208000 | 3.5497 |
|
200 |
+
| 3.732 | 25.6 | 1216000 | 3.5433 |
|
201 |
+
| 3.732 | 25.77 | 1224000 | 3.5420 |
|
202 |
+
| 3.7343 | 25.94 | 1232000 | 3.5987 |
|
203 |
+
| 3.7343 | 26.1 | 1240000 | 3.5956 |
|
204 |
+
| 3.7336 | 26.27 | 1248000 | 3.5673 |
|
205 |
+
| 3.7336 | 26.44 | 1256000 | 3.5643 |
|
206 |
+
| 3.7444 | 26.61 | 1264000 | 3.5848 |
|
207 |
+
| 3.7444 | 26.78 | 1272000 | 3.5693 |
|
208 |
+
| 3.7395 | 26.95 | 1280000 | 3.5745 |
|
209 |
+
| 3.7395 | 27.12 | 1288000 | 3.5758 |
|
210 |
+
| 3.7389 | 27.28 | 1296000 | 3.5685 |
|
211 |
+
| 3.7389 | 27.45 | 1304000 | 3.5712 |
|
212 |
+
| 3.7416 | 27.62 | 1312000 | 3.5693 |
|
213 |
+
| 3.7416 | 27.79 | 1320000 | 3.5740 |
|
214 |
+
| 3.7305 | 27.96 | 1328000 | 3.5803 |
|
215 |
+
| 3.7305 | 28.13 | 1336000 | 3.5682 |
|
216 |
+
| 3.7268 | 28.29 | 1344000 | 3.5928 |
|
217 |
+
| 3.7268 | 28.46 | 1352000 | 3.5608 |
|
218 |
+
| 3.7363 | 28.63 | 1360000 | 3.5587 |
|
219 |
+
| 3.7363 | 28.8 | 1368000 | 3.5603 |
|
220 |
+
| 3.7325 | 28.97 | 1376000 | 3.5711 |
|
221 |
+
| 3.7325 | 29.14 | 1384000 | 3.5828 |
|
222 |
+
| 3.7337 | 29.3 | 1392000 | 3.5790 |
|
223 |
+
| 3.7337 | 29.47 | 1400000 | 3.5795 |
|
224 |
+
| 3.7367 | 29.64 | 1408000 | 3.5528 |
|
225 |
+
| 3.7367 | 29.81 | 1416000 | 3.5766 |
|
226 |
+
| 3.7313 | 29.98 | 1424000 | 3.5610 |
|
227 |
+
| 3.7313 | 30.15 | 1432000 | 3.5834 |
|
228 |
+
| 3.7277 | 30.32 | 1440000 | 3.5546 |
|
229 |
+
| 3.7277 | 30.48 | 1448000 | 3.5534 |
|
230 |
+
| 3.7296 | 30.65 | 1456000 | 3.5646 |
|
231 |
+
| 3.7296 | 30.82 | 1464000 | 3.5436 |
|
232 |
+
| 3.7411 | 30.99 | 1472000 | 3.5778 |
|
233 |
+
| 3.7411 | 31.16 | 1480000 | 3.5541 |
|
234 |
+
| 3.7233 | 31.33 | 1488000 | 3.5720 |
|
235 |
+
| 3.7233 | 31.49 | 1496000 | 3.5567 |
|
236 |
+
| 3.7291 | 31.66 | 1504000 | 3.5477 |
|
237 |
+
| 3.7291 | 31.83 | 1512000 | 3.5557 |
|
238 |
+
| 3.7265 | 32.0 | 1520000 | 3.5643 |
|
239 |
+
| 3.7265 | 32.17 | 1528000 | 3.5739 |
|
240 |
+
| 3.7352 | 32.34 | 1536000 | 3.5628 |
|
241 |
+
| 3.7352 | 32.5 | 1544000 | 3.5542 |
|
242 |
+
| 3.7353 | 32.67 | 1552000 | 3.5496 |
|
243 |
+
| 3.7353 | 32.84 | 1560000 | 3.5737 |
|
244 |
+
| 3.7243 | 33.01 | 1568000 | 3.5788 |
|
245 |
+
| 3.7243 | 33.18 | 1576000 | 3.5631 |
|
246 |
+
| 3.7192 | 33.35 | 1584000 | 3.5438 |
|
247 |
+
| 3.7192 | 33.52 | 1592000 | 3.5554 |
|
248 |
+
| 3.7266 | 33.68 | 1600000 | 3.5748 |
|
249 |
+
| 3.7266 | 33.85 | 1608000 | 3.5620 |
|
250 |
+
| 3.73 | 34.02 | 1616000 | 3.5464 |
|
251 |
+
| 3.73 | 34.19 | 1624000 | 3.5670 |
|
252 |
+
| 3.7264 | 34.36 | 1632000 | 3.5626 |
|
253 |
+
| 3.7264 | 34.53 | 1640000 | 3.5640 |
|
254 |
+
| 3.7317 | 34.69 | 1648000 | 3.5650 |
|
255 |
+
| 3.7317 | 34.86 | 1656000 | 3.5458 |
|
256 |
+
| 3.7332 | 35.03 | 1664000 | 3.5567 |
|
257 |
+
| 3.7332 | 35.2 | 1672000 | 3.5610 |
|
258 |
+
| 3.7248 | 35.37 | 1680000 | 3.5650 |
|
259 |
+
| 3.7248 | 35.54 | 1688000 | 3.5580 |
|
260 |
+
| 3.7232 | 35.7 | 1696000 | 3.5829 |
|
261 |
+
| 3.7232 | 35.87 | 1704000 | 3.5532 |
|
262 |
+
| 3.729 | 36.04 | 1712000 | 3.5723 |
|
263 |
+
| 3.729 | 36.21 | 1720000 | 3.5454 |
|
264 |
+
| 3.7273 | 36.38 | 1728000 | 3.5623 |
|
265 |
+
| 3.7273 | 36.55 | 1736000 | 3.5462 |
|
266 |
+
| 3.7261 | 36.72 | 1744000 | 3.5743 |
|
267 |
+
| 3.7261 | 36.88 | 1752000 | 3.5638 |
|
268 |
+
| 3.7208 | 37.05 | 1760000 | 3.5519 |
|
269 |
+
| 3.7208 | 37.22 | 1768000 | 3.5584 |
|
270 |
+
| 3.7183 | 37.39 | 1776000 | 3.5308 |
|
271 |
+
| 3.7183 | 37.56 | 1784000 | 3.5549 |
|
272 |
+
| 3.7193 | 37.73 | 1792000 | 3.5409 |
|
273 |
+
| 3.7193 | 37.89 | 1800000 | 3.5396 |
|
274 |
+
| 3.7271 | 38.06 | 1808000 | 3.5536 |
|
275 |
+
| 3.7271 | 38.23 | 1816000 | 3.5452 |
|
276 |
+
| 3.7284 | 38.4 | 1824000 | 3.5582 |
|
277 |
+
| 3.7284 | 38.57 | 1832000 | 3.5668 |
|
278 |
+
| 3.714 | 38.74 | 1840000 | 3.5673 |
|
279 |
+
| 3.714 | 38.9 | 1848000 | 3.5477 |
|
280 |
+
| 3.7105 | 39.07 | 1856000 | 3.5662 |
|
281 |
+
| 3.7105 | 39.24 | 1864000 | 3.5498 |
|
282 |
+
| 3.7189 | 39.41 | 1872000 | 3.5493 |
|
283 |
+
| 3.7189 | 39.58 | 1880000 | 3.5676 |
|
284 |
+
| 3.7203 | 39.75 | 1888000 | 3.5640 |
|
285 |
+
| 3.7203 | 39.91 | 1896000 | 3.5747 |
|
286 |
+
| 3.7271 | 40.08 | 1904000 | 3.5592 |
|
287 |
+
| 3.7271 | 40.25 | 1912000 | 3.5515 |
|
288 |
+
| 3.7237 | 40.42 | 1920000 | 3.5704 |
|
289 |
+
| 3.7237 | 40.59 | 1928000 | 3.5642 |
|
290 |
+
| 3.723 | 40.76 | 1936000 | 3.5300 |
|
291 |
+
| 3.723 | 40.93 | 1944000 | 3.5482 |
|
292 |
+
| 3.7224 | 41.09 | 1952000 | 3.5586 |
|
293 |
+
| 3.7224 | 41.26 | 1960000 | 3.5463 |
|
294 |
+
| 3.715 | 41.43 | 1968000 | 3.5323 |
|
295 |
+
| 3.715 | 41.6 | 1976000 | 3.5426 |
|
296 |
+
| 3.7209 | 41.77 | 1984000 | 3.5513 |
|
297 |
+
| 3.7209 | 41.94 | 1992000 | 3.5614 |
|
298 |
+
| 3.7183 | 42.1 | 2000000 | 3.5678 |
|
299 |
+
| 3.7183 | 42.27 | 2008000 | 3.5304 |
|
300 |
+
| 3.7161 | 42.44 | 2016000 | 3.5631 |
|
301 |
+
| 3.7161 | 42.61 | 2024000 | 3.5589 |
|
302 |
+
| 3.7215 | 42.78 | 2032000 | 3.5639 |
|
303 |
+
| 3.7215 | 42.95 | 2040000 | 3.5376 |
|
304 |
+
| 3.7205 | 43.11 | 2048000 | 3.5478 |
|
305 |
+
| 3.7205 | 43.28 | 2056000 | 3.5511 |
|
306 |
+
| 3.7178 | 43.45 | 2064000 | 3.5285 |
|
307 |
+
| 3.7178 | 43.62 | 2072000 | 3.5428 |
|
308 |
+
| 3.7232 | 43.79 | 2080000 | 3.5347 |
|
309 |
+
| 3.7232 | 43.96 | 2088000 | 3.5501 |
|
310 |
+
| 3.7167 | 44.13 | 2096000 | 3.5422 |
|
311 |
+
| 3.7167 | 44.29 | 2104000 | 3.5487 |
|
312 |
+
| 3.7253 | 44.46 | 2112000 | 3.5540 |
|
313 |
+
| 3.7253 | 44.63 | 2120000 | 3.5432 |
|
314 |
+
| 3.7139 | 44.8 | 2128000 | 3.5502 |
|
315 |
+
| 3.7139 | 44.97 | 2136000 | 3.5450 |
|
316 |
+
| 3.7194 | 45.14 | 2144000 | 3.5564 |
|
317 |
+
| 3.7194 | 45.3 | 2152000 | 3.5441 |
|
318 |
+
| 3.7167 | 45.47 | 2160000 | 3.5549 |
|
319 |
+
| 3.7167 | 45.64 | 2168000 | 3.5429 |
|
320 |
+
| 3.7202 | 45.81 | 2176000 | 3.5613 |
|
321 |
+
| 3.7202 | 45.98 | 2184000 | 3.5469 |
|
322 |
+
| 3.7193 | 46.15 | 2192000 | 3.5467 |
|
323 |
+
| 3.7193 | 46.31 | 2200000 | 3.5493 |
|
324 |
+
| 3.717 | 46.48 | 2208000 | 3.5652 |
|
325 |
+
| 3.717 | 46.65 | 2216000 | 3.5669 |
|
326 |
+
| 3.7164 | 46.82 | 2224000 | 3.5755 |
|
327 |
+
| 3.7164 | 46.99 | 2232000 | 3.5580 |
|
328 |
+
| 3.715 | 47.16 | 2240000 | 3.5403 |
|
329 |
+
| 3.715 | 47.33 | 2248000 | 3.5521 |
|
330 |
+
| 3.7091 | 47.49 | 2256000 | 3.5604 |
|
331 |
+
| 3.7091 | 47.66 | 2264000 | 3.5401 |
|
332 |
+
| 3.7199 | 47.83 | 2272000 | 3.5408 |
|
333 |
+
| 3.7199 | 48.0 | 2280000 | 3.5509 |
|
334 |
+
| 3.7238 | 48.17 | 2288000 | 3.5348 |
|
335 |
+
| 3.7238 | 48.34 | 2296000 | 3.5530 |
|
336 |
+
| 3.7193 | 48.5 | 2304000 | 3.5447 |
|
337 |
+
| 3.7193 | 48.67 | 2312000 | 3.5453 |
|
338 |
+
| 3.7195 | 48.84 | 2320000 | 3.5487 |
|
339 |
+
| 3.7195 | 49.01 | 2328000 | 3.5357 |
|
340 |
+
| 3.7187 | 49.18 | 2336000 | 3.5404 |
|
341 |
+
| 3.7187 | 49.35 | 2344000 | 3.5247 |
|
342 |
+
| 3.7157 | 49.51 | 2352000 | 3.5557 |
|
343 |
+
| 3.7157 | 49.68 | 2360000 | 3.5532 |
|
344 |
+
| 3.7144 | 49.85 | 2368000 | 3.5453 |
|
345 |
+
| 3.7144 | 50.02 | 2376000 | 3.5421 |
|
346 |
+
| 3.715 | 50.19 | 2384000 | 3.5183 |
|
347 |
+
| 3.715 | 50.36 | 2392000 | 3.5473 |
|
348 |
+
| 3.7208 | 50.53 | 2400000 | 3.5386 |
|
349 |
+
|
350 |
+
|
351 |
+
### Framework versions
|
352 |
+
|
353 |
+
- Transformers 4.35.0.dev0
|
354 |
+
- Pytorch 2.0.1+cu117
|
355 |
+
- Datasets 2.14.5
|
356 |
+
- Tokenizers 0.14.0
|
pytorch_model.bin
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 498859189
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9cd1962047cd3afca2f193fc6ec9130c28e8771bac6871118a810f8b5236b2c9
|
3 |
size 498859189
|