|
--- |
|
license: cc0-1.0 |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- accuracy |
|
- precision |
|
- recall |
|
- f1 |
|
model-index: |
|
- name: CancerTextV2 |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# CancerTextV2 |
|
|
|
This model is a fine-tuned version of [bionlp/bluebert_pubmed_uncased_L-12_H-768_A-12](https://huggingface.co/bionlp/bluebert_pubmed_uncased_L-12_H-768_A-12) on an unknown dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.5913 |
|
- Accuracy: 0.8692 |
|
- Precision: 0.8666 |
|
- Recall: 0.8738 |
|
- F1: 0.8701 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 1e-05 |
|
- train_batch_size: 16 |
|
- eval_batch_size: 16 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 10 |
|
- mixed_precision_training: Native AMP |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | |
|
|:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:| |
|
| 0.4717 | 1.0 | 600 | 0.3318 | 0.8617 | 0.8562 | 0.8704 | 0.8633 | |
|
| 0.3248 | 2.0 | 1200 | 0.3144 | 0.8658 | 0.8821 | 0.8455 | 0.8634 | |
|
| 0.2653 | 3.0 | 1800 | 0.3519 | 0.8625 | 0.8507 | 0.8804 | 0.8653 | |
|
| 0.2164 | 4.0 | 2400 | 0.4090 | 0.8658 | 0.9002 | 0.8239 | 0.8604 | |
|
| 0.1884 | 5.0 | 3000 | 0.4413 | 0.8667 | 0.8850 | 0.8439 | 0.8639 | |
|
| 0.1582 | 6.0 | 3600 | 0.4415 | 0.865 | 0.8971 | 0.8256 | 0.8599 | |
|
| 0.1377 | 7.0 | 4200 | 0.5165 | 0.8708 | 0.8694 | 0.8738 | 0.8716 | |
|
| 0.1192 | 8.0 | 4800 | 0.5699 | 0.8675 | 0.8826 | 0.8488 | 0.8654 | |
|
| 0.1081 | 9.0 | 5400 | 0.5837 | 0.8692 | 0.8666 | 0.8738 | 0.8701 | |
|
| 0.1018 | 10.0 | 6000 | 0.5913 | 0.8692 | 0.8666 | 0.8738 | 0.8701 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.21.2 |
|
- Pytorch 1.12.1+cu113 |
|
- Datasets 2.4.0 |
|
- Tokenizers 0.12.1 |
|
|