File size: 7,192 Bytes
5e65594
 
 
 
fab1de9
 
 
 
 
5e65594
 
 
 
 
 
 
 
 
 
 
 
fab1de9
 
 
 
 
5e65594
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fab1de9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5e65594
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
---
base_model: ai-forever/sbert_large_nlu_ru
tags:
- generated_from_trainer
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: sbert_large_nlu_ru_neg
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# sbert_large_nlu_ru_neg

This model is a fine-tuned version of [ai-forever/sbert_large_nlu_ru](https://huggingface.co/ai-forever/sbert_large_nlu_ru) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.7106
- Precision: 0.5205
- Recall: 0.57
- F1: 0.5442
- Accuracy: 0.8956

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 4
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 100

### Training results

| Training Loss | Epoch   | Step | Validation Loss | Precision | Recall | F1     | Accuracy |
|:-------------:|:-------:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| No log        | 1.0870  | 50   | 0.6440          | 0.0       | 0.0    | 0.0    | 0.7571   |
| No log        | 2.1739  | 100  | 0.5237          | 0.0317    | 0.0579 | 0.0410 | 0.8069   |
| No log        | 3.2609  | 150  | 0.3775          | 0.1163    | 0.1544 | 0.1327 | 0.8514   |
| No log        | 4.3478  | 200  | 0.3368          | 0.2292    | 0.3031 | 0.2610 | 0.8769   |
| No log        | 5.4348  | 250  | 0.3055          | 0.3066    | 0.3475 | 0.3258 | 0.8929   |
| No log        | 6.5217  | 300  | 0.2919          | 0.3814    | 0.5463 | 0.4492 | 0.8989   |
| No log        | 7.6087  | 350  | 0.2798          | 0.4372    | 0.5039 | 0.4682 | 0.9055   |
| No log        | 8.6957  | 400  | 0.2730          | 0.3934    | 0.5560 | 0.4608 | 0.9071   |
| No log        | 9.7826  | 450  | 0.3021          | 0.4666    | 0.5656 | 0.5113 | 0.9101   |
| 0.3321        | 10.8696 | 500  | 0.3249          | 0.4664    | 0.6023 | 0.5257 | 0.9110   |
| 0.3321        | 11.9565 | 550  | 0.3317          | 0.5316    | 0.5849 | 0.5570 | 0.9113   |
| 0.3321        | 13.0435 | 600  | 0.3352          | 0.4984    | 0.5946 | 0.5423 | 0.9127   |
| 0.3321        | 14.1304 | 650  | 0.3651          | 0.5079    | 0.5579 | 0.5317 | 0.9157   |
| 0.3321        | 15.2174 | 700  | 0.3856          | 0.4670    | 0.6004 | 0.5253 | 0.9083   |
| 0.3321        | 16.3043 | 750  | 0.4087          | 0.4905    | 0.5985 | 0.5391 | 0.9139   |
| 0.3321        | 17.3913 | 800  | 0.4108          | 0.5058    | 0.5869 | 0.5433 | 0.9113   |
| 0.3321        | 18.4783 | 850  | 0.3900          | 0.5597    | 0.6429 | 0.5984 | 0.9172   |
| 0.3321        | 19.5652 | 900  | 0.4572          | 0.5567    | 0.6158 | 0.5848 | 0.9168   |
| 0.3321        | 20.6522 | 950  | 0.4945          | 0.5952    | 0.5734 | 0.5841 | 0.9121   |
| 0.0516        | 21.7391 | 1000 | 0.5660          | 0.5835    | 0.5463 | 0.5643 | 0.9066   |
| 0.0516        | 22.8261 | 1050 | 0.4464          | 0.5307    | 0.6178 | 0.5709 | 0.9160   |
| 0.0516        | 23.9130 | 1100 | 0.5044          | 0.5696    | 0.6081 | 0.5882 | 0.9130   |
| 0.0516        | 25.0    | 1150 | 0.4807          | 0.5682    | 0.6274 | 0.5963 | 0.9151   |
| 0.0516        | 26.0870 | 1200 | 0.5006          | 0.5615    | 0.6525 | 0.6036 | 0.9157   |
| 0.0516        | 27.1739 | 1250 | 0.5228          | 0.6008    | 0.5985 | 0.5996 | 0.9127   |
| 0.0516        | 28.2609 | 1300 | 0.5091          | 0.5193    | 0.5965 | 0.5553 | 0.9117   |
| 0.0516        | 29.3478 | 1350 | 0.5135          | 0.6036    | 0.6409 | 0.6217 | 0.9177   |
| 0.0516        | 30.4348 | 1400 | 0.5183          | 0.5742    | 0.6351 | 0.6031 | 0.9157   |
| 0.0516        | 31.5217 | 1450 | 0.5202          | 0.5722    | 0.6506 | 0.6089 | 0.9106   |
| 0.0256        | 32.6087 | 1500 | 0.5170          | 0.5836    | 0.6602 | 0.6196 | 0.9174   |
| 0.0256        | 33.6957 | 1550 | 0.4348          | 0.6067    | 0.6313 | 0.6187 | 0.9215   |
| 0.0256        | 34.7826 | 1600 | 0.5070          | 0.6143    | 0.6120 | 0.6132 | 0.9156   |
| 0.0256        | 35.8696 | 1650 | 0.5840          | 0.6525    | 0.5907 | 0.6201 | 0.9121   |
| 0.0256        | 36.9565 | 1700 | 0.5587          | 0.5941    | 0.6274 | 0.6103 | 0.9124   |
| 0.0256        | 38.0435 | 1750 | 0.4073          | 0.5159    | 0.6564 | 0.5777 | 0.9117   |
| 0.0256        | 39.1304 | 1800 | 0.4428          | 0.6180    | 0.6371 | 0.6274 | 0.9166   |
| 0.0256        | 40.2174 | 1850 | 0.4775          | 0.5797    | 0.6390 | 0.6079 | 0.9199   |
| 0.0256        | 41.3043 | 1900 | 0.4121          | 0.5920    | 0.6274 | 0.6092 | 0.9171   |
| 0.0256        | 42.3913 | 1950 | 0.4683          | 0.6136    | 0.6467 | 0.6297 | 0.9179   |
| 0.0231        | 43.4783 | 2000 | 0.4961          | 0.6390    | 0.5946 | 0.6160 | 0.9137   |
| 0.0231        | 44.5652 | 2050 | 0.6040          | 0.6242    | 0.5483 | 0.5838 | 0.9031   |
| 0.0231        | 45.6522 | 2100 | 0.5498          | 0.6458    | 0.5985 | 0.6212 | 0.9121   |
| 0.0231        | 46.7391 | 2150 | 0.4636          | 0.6049    | 0.6236 | 0.6141 | 0.9212   |
| 0.0231        | 47.8261 | 2200 | 0.4797          | 0.634     | 0.6120 | 0.6228 | 0.9142   |
| 0.0231        | 48.9130 | 2250 | 0.5335          | 0.5134    | 0.6680 | 0.5805 | 0.9061   |
| 0.0231        | 50.0    | 2300 | 0.5348          | 0.6167    | 0.6120 | 0.6143 | 0.9075   |
| 0.0231        | 51.0870 | 2350 | 0.4871          | 0.6144    | 0.6429 | 0.6283 | 0.9085   |
| 0.0231        | 52.1739 | 2400 | 0.4767          | 0.5335    | 0.6757 | 0.5963 | 0.9082   |
| 0.0231        | 53.2609 | 2450 | 0.4494          | 0.5895    | 0.6486 | 0.6176 | 0.9109   |
| 0.0225        | 54.3478 | 2500 | 0.5282          | 0.5310    | 0.6448 | 0.5824 | 0.9088   |
| 0.0225        | 55.4348 | 2550 | 0.4321          | 0.5714    | 0.6332 | 0.6007 | 0.9148   |
| 0.0225        | 56.5217 | 2600 | 0.4822          | 0.6179    | 0.6274 | 0.6226 | 0.9105   |
| 0.0225        | 57.6087 | 2650 | 0.4360          | 0.5578    | 0.6429 | 0.5973 | 0.9150   |
| 0.0225        | 58.6957 | 2700 | 0.5101          | 0.6215    | 0.5927 | 0.6067 | 0.9083   |
| 0.0225        | 59.7826 | 2750 | 0.4751          | 0.5327    | 0.6602 | 0.5897 | 0.9069   |
| 0.0225        | 60.8696 | 2800 | 0.4942          | 0.6471    | 0.5946 | 0.6197 | 0.9065   |
| 0.0225        | 61.9565 | 2850 | 0.3628          | 0.4646    | 0.6332 | 0.5359 | 0.8957   |
| 0.0225        | 63.0435 | 2900 | 0.4447          | 0.6152    | 0.6236 | 0.6194 | 0.9098   |
| 0.0225        | 64.1304 | 2950 | 0.4965          | 0.5624    | 0.6525 | 0.6041 | 0.9130   |
| 0.0285        | 65.2174 | 3000 | 0.5616          | 0.5649    | 0.6216 | 0.5919 | 0.9082   |
| 0.0285        | 66.3043 | 3050 | 0.7228          | 0.65      | 0.5019 | 0.5664 | 0.8881   |


### Framework versions

- Transformers 4.40.1
- Pytorch 2.2.1+cu121
- Datasets 2.19.1
- Tokenizers 0.19.1