DhruvParth commited on
Commit
8a5eb14
1 Parent(s): 9042417

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +97 -171
README.md CHANGED
@@ -1,199 +1,125 @@
1
  ---
2
  library_name: transformers
3
- tags: []
 
 
 
 
4
  ---
5
 
6
- # Model Card for Model ID
7
-
8
- <!-- Provide a quick summary of what the model is/does. -->
9
-
10
 
 
11
 
12
  ## Model Details
13
 
14
  ### Model Description
15
 
16
- <!-- Provide a longer summary of what this model is. -->
17
-
18
- This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
19
-
20
- - **Developed by:** [More Information Needed]
21
- - **Funded by [optional]:** [More Information Needed]
22
- - **Shared by [optional]:** [More Information Needed]
23
- - **Model type:** [More Information Needed]
24
- - **Language(s) (NLP):** [More Information Needed]
25
- - **License:** [More Information Needed]
26
- - **Finetuned from model [optional]:** [More Information Needed]
27
-
28
- ### Model Sources [optional]
29
 
30
- <!-- Provide the basic links for the model. -->
31
 
32
- - **Repository:** [More Information Needed]
33
- - **Paper [optional]:** [More Information Needed]
34
- - **Demo [optional]:** [More Information Needed]
35
 
36
  ## Uses
37
 
38
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
-
40
- ### Direct Use
41
-
42
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
-
44
- [More Information Needed]
45
-
46
- ### Downstream Use [optional]
47
-
48
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
-
50
- [More Information Needed]
51
-
52
- ### Out-of-Scope Use
53
-
54
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
-
56
- [More Information Needed]
57
-
58
- ## Bias, Risks, and Limitations
59
-
60
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
-
62
- [More Information Needed]
63
-
64
- ### Recommendations
65
-
66
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
-
68
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
-
70
- ## How to Get Started with the Model
71
-
72
- Use the code below to get started with the model.
73
-
74
- [More Information Needed]
75
 
76
  ## Training Details
77
 
78
- ### Training Data
79
-
80
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
-
82
- [More Information Needed]
83
-
84
- ### Training Procedure
85
-
86
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
-
88
- #### Preprocessing [optional]
89
-
90
- [More Information Needed]
91
-
92
-
93
- #### Training Hyperparameters
94
-
95
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
-
97
- #### Speeds, Sizes, Times [optional]
98
-
99
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
-
101
- [More Information Needed]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
102
 
103
  ## Evaluation
104
 
105
- <!-- This section describes the evaluation protocols and provides the results. -->
106
-
107
- ### Testing Data, Factors & Metrics
108
-
109
- #### Testing Data
110
-
111
- <!-- This should link to a Dataset Card if possible. -->
112
 
113
- [More Information Needed]
114
 
115
- #### Factors
116
-
117
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
-
119
- [More Information Needed]
120
-
121
- #### Metrics
122
-
123
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
-
125
- [More Information Needed]
126
-
127
- ### Results
128
-
129
- [More Information Needed]
130
-
131
- #### Summary
132
-
133
-
134
-
135
- ## Model Examination [optional]
136
-
137
- <!-- Relevant interpretability work for the model goes here -->
138
-
139
- [More Information Needed]
140
-
141
- ## Environmental Impact
142
-
143
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
-
145
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
-
147
- - **Hardware Type:** [More Information Needed]
148
- - **Hours used:** [More Information Needed]
149
- - **Cloud Provider:** [More Information Needed]
150
- - **Compute Region:** [More Information Needed]
151
- - **Carbon Emitted:** [More Information Needed]
152
-
153
- ## Technical Specifications [optional]
154
-
155
- ### Model Architecture and Objective
156
-
157
- [More Information Needed]
158
-
159
- ### Compute Infrastructure
160
-
161
- [More Information Needed]
162
-
163
- #### Hardware
164
-
165
- [More Information Needed]
166
-
167
- #### Software
168
-
169
- [More Information Needed]
170
-
171
- ## Citation [optional]
172
-
173
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
 
175
  **BibTeX:**
176
-
177
- [More Information Needed]
 
 
 
 
 
 
 
 
178
 
179
  **APA:**
 
180
 
181
- [More Information Needed]
182
-
183
- ## Glossary [optional]
184
-
185
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
-
187
- [More Information Needed]
188
-
189
- ## More Information [optional]
190
-
191
- [More Information Needed]
192
-
193
- ## Model Card Authors [optional]
194
-
195
- [More Information Needed]
196
-
197
- ## Model Card Contact
198
-
199
- [More Information Needed]
 
1
  ---
2
  library_name: transformers
3
+ license: mit
4
+ datasets:
5
+ - DhruvParth/Mistral-7B-Instruct-v2.0-PairRM-DPO-Dataset
6
+ language:
7
+ - en
8
  ---
9
 
10
+ # Model Card for DhruvParth/Mistral-7B-Instruct-v2.0-PairRM-DPO
 
 
 
11
 
12
+ This model is a fine-tuned version of the Mistral-7B model, utilizing Direct Preference Optimization (DPO) to better align the model's responses with human preferences, specifically in a causal language modeling context.
13
 
14
  ## Model Details
15
 
16
  ### Model Description
17
 
18
+ - Developed by: Dhruv Parthasarathy
19
+ - Model type: Fine-tuned language model
20
+ - Language(s) (NLP): English
21
+ - License: MIT
22
+ - Finetuned from model: Mistral-7B-Instruct-v2.0
 
 
 
 
 
 
 
 
23
 
24
+ ### Model Sources
25
 
26
+ - **Repository:** https://huggingface.co/DhruvParth
27
+ - **Paper:** Direct Preference Optimization (https://arxiv.org/abs/2305.18290)
28
+ - **Demo:** (Will soon be made available)
29
 
30
  ## Uses
31
 
32
+ This model is tailored for scenarios requiring alignment with human preferences in automated responses, suitable for applications in personalized chatbots, customer support, and other interactive services.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
33
 
34
  ## Training Details
35
 
36
+ ### Notebook
37
+
38
+ The fine-tuning process and the experiments were documented in a Jupyter Notebook, available [here](https://github.com/parthasarathydNU/gen-ai-coursework/blob/main/advanced-llms/direct-preference-optimization/dpomistralfinetuning.ipynb).
39
+
40
+ ### Training Configuration
41
+
42
+ #### LoRA Configuration
43
+ ```python
44
+ LoraConfig(
45
+ r=8,
46
+ lora_alpha=8,
47
+ lora_dropout=0.05,
48
+ bias="none",
49
+ task_type="CAUSAL_LM",
50
+ target_modules=['k_proj', 'v_proj', 'q_proj', 'dense']
51
+ )
52
+ ```
53
+
54
+ #### BitsAndBytes Configuration
55
+ ```python
56
+ BitsAndBytesConfig(
57
+ load_in_4bit=True,
58
+ llm_int8_threshold=6.0,
59
+ llm_int8_has_fp16_weight=False,
60
+ bnb_4bit_compute_dtype=torch.bfloat16,
61
+ bnb_4bit_use_double_quant=True,
62
+ bnb_4bit_quant_type="nf4",
63
+ )
64
+ ```
65
+
66
+ #### Training Device Setup
67
+ ```python
68
+ device_map = {"": 0}
69
+ ```
70
+
71
+ #### Training Arguments
72
+ ```python
73
+ DPOConfig(
74
+ per_device_train_batch_size=2,
75
+ gradient_accumulation_steps=4,
76
+ gradient_checkpointing=True,
77
+ learning_rate=5e-5,
78
+ lr_scheduler_type="cosine",
79
+ max_steps=50,
80
+ save_strategy="no",
81
+ logging_steps=1,
82
+ output_dir=new_model,
83
+ optim="paged_adamw_32bit",
84
+ warmup_steps=5,
85
+ )
86
+ ```
87
+
88
+ ### DPO Trainer Setup
89
+ ```python
90
+ DPOTrainer(
91
+ model,
92
+ args=training_args,
93
+ train_dataset=updated_train_dataset,
94
+ tokenizer=tokenizer,
95
+ peft_config=peft_config,
96
+ beta=0.1,
97
+ max_prompt_length=512,
98
+ max_length=1024,
99
+ )
100
+ ```
101
 
102
  ## Evaluation
103
 
104
+ Details on the model's performance, evaluation protocols, and results will be provided as they become available.
 
 
 
 
 
 
105
 
106
+ ## Citation
107
 
108
+ If you use this model or dataset, please cite it as follows:
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
109
 
110
  **BibTeX:**
111
+ ```bibtex
112
+ @misc{dhruvparth_mistral7b_dpo_2024,
113
+ author = {Dhruv Parthasarathy},
114
+ title = {Fine-tuning LLMs with Direct Preference Optimization},
115
+ year = {2024},
116
+ publisher = {GitHub},
117
+ journal = {GitHub repository},
118
+ url = {https://huggingface.co/DhruvParth/Mistral-7B-Instruct-v2.0-PairRM-DPO}
119
+ }
120
+ ```
121
 
122
  **APA:**
123
+ Dhruv Parthasarathy. (2024). Fine-tuning LLMs with Direct Preference Optimization. GitHub repository, https://huggingface.co/DhruvParth/Mistral-7B-Instruct-v2.0-PairRM-DPO
124
 
125
+ For any queries or discussions regarding the project, please open an issue in the GitHub repository, post your comment in the community section, reach out to me via LinkedIn (https://www.linkedin.com/in/parthadhruv/) or contact me directly at [email protected].