DhruvParth
commited on
Commit
•
8a5eb14
1
Parent(s):
9042417
Update README.md
Browse files
README.md
CHANGED
@@ -1,199 +1,125 @@
|
|
1 |
---
|
2 |
library_name: transformers
|
3 |
-
|
|
|
|
|
|
|
|
|
4 |
---
|
5 |
|
6 |
-
# Model Card for
|
7 |
-
|
8 |
-
<!-- Provide a quick summary of what the model is/does. -->
|
9 |
-
|
10 |
|
|
|
11 |
|
12 |
## Model Details
|
13 |
|
14 |
### Model Description
|
15 |
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
-
|
21 |
-
- **Funded by [optional]:** [More Information Needed]
|
22 |
-
- **Shared by [optional]:** [More Information Needed]
|
23 |
-
- **Model type:** [More Information Needed]
|
24 |
-
- **Language(s) (NLP):** [More Information Needed]
|
25 |
-
- **License:** [More Information Needed]
|
26 |
-
- **Finetuned from model [optional]:** [More Information Needed]
|
27 |
-
|
28 |
-
### Model Sources [optional]
|
29 |
|
30 |
-
|
31 |
|
32 |
-
- **Repository:**
|
33 |
-
- **Paper
|
34 |
-
- **Demo
|
35 |
|
36 |
## Uses
|
37 |
|
38 |
-
|
39 |
-
|
40 |
-
### Direct Use
|
41 |
-
|
42 |
-
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
|
43 |
-
|
44 |
-
[More Information Needed]
|
45 |
-
|
46 |
-
### Downstream Use [optional]
|
47 |
-
|
48 |
-
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
|
49 |
-
|
50 |
-
[More Information Needed]
|
51 |
-
|
52 |
-
### Out-of-Scope Use
|
53 |
-
|
54 |
-
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
|
55 |
-
|
56 |
-
[More Information Needed]
|
57 |
-
|
58 |
-
## Bias, Risks, and Limitations
|
59 |
-
|
60 |
-
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
|
61 |
-
|
62 |
-
[More Information Needed]
|
63 |
-
|
64 |
-
### Recommendations
|
65 |
-
|
66 |
-
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
|
67 |
-
|
68 |
-
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
|
69 |
-
|
70 |
-
## How to Get Started with the Model
|
71 |
-
|
72 |
-
Use the code below to get started with the model.
|
73 |
-
|
74 |
-
[More Information Needed]
|
75 |
|
76 |
## Training Details
|
77 |
|
78 |
-
###
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
102 |
|
103 |
## Evaluation
|
104 |
|
105 |
-
|
106 |
-
|
107 |
-
### Testing Data, Factors & Metrics
|
108 |
-
|
109 |
-
#### Testing Data
|
110 |
-
|
111 |
-
<!-- This should link to a Dataset Card if possible. -->
|
112 |
|
113 |
-
|
114 |
|
115 |
-
|
116 |
-
|
117 |
-
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
118 |
-
|
119 |
-
[More Information Needed]
|
120 |
-
|
121 |
-
#### Metrics
|
122 |
-
|
123 |
-
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
124 |
-
|
125 |
-
[More Information Needed]
|
126 |
-
|
127 |
-
### Results
|
128 |
-
|
129 |
-
[More Information Needed]
|
130 |
-
|
131 |
-
#### Summary
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
## Model Examination [optional]
|
136 |
-
|
137 |
-
<!-- Relevant interpretability work for the model goes here -->
|
138 |
-
|
139 |
-
[More Information Needed]
|
140 |
-
|
141 |
-
## Environmental Impact
|
142 |
-
|
143 |
-
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
144 |
-
|
145 |
-
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
146 |
-
|
147 |
-
- **Hardware Type:** [More Information Needed]
|
148 |
-
- **Hours used:** [More Information Needed]
|
149 |
-
- **Cloud Provider:** [More Information Needed]
|
150 |
-
- **Compute Region:** [More Information Needed]
|
151 |
-
- **Carbon Emitted:** [More Information Needed]
|
152 |
-
|
153 |
-
## Technical Specifications [optional]
|
154 |
-
|
155 |
-
### Model Architecture and Objective
|
156 |
-
|
157 |
-
[More Information Needed]
|
158 |
-
|
159 |
-
### Compute Infrastructure
|
160 |
-
|
161 |
-
[More Information Needed]
|
162 |
-
|
163 |
-
#### Hardware
|
164 |
-
|
165 |
-
[More Information Needed]
|
166 |
-
|
167 |
-
#### Software
|
168 |
-
|
169 |
-
[More Information Needed]
|
170 |
-
|
171 |
-
## Citation [optional]
|
172 |
-
|
173 |
-
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
174 |
|
175 |
**BibTeX:**
|
176 |
-
|
177 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
178 |
|
179 |
**APA:**
|
|
|
180 |
|
181 |
-
|
182 |
-
|
183 |
-
## Glossary [optional]
|
184 |
-
|
185 |
-
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
186 |
-
|
187 |
-
[More Information Needed]
|
188 |
-
|
189 |
-
## More Information [optional]
|
190 |
-
|
191 |
-
[More Information Needed]
|
192 |
-
|
193 |
-
## Model Card Authors [optional]
|
194 |
-
|
195 |
-
[More Information Needed]
|
196 |
-
|
197 |
-
## Model Card Contact
|
198 |
-
|
199 |
-
[More Information Needed]
|
|
|
1 |
---
|
2 |
library_name: transformers
|
3 |
+
license: mit
|
4 |
+
datasets:
|
5 |
+
- DhruvParth/Mistral-7B-Instruct-v2.0-PairRM-DPO-Dataset
|
6 |
+
language:
|
7 |
+
- en
|
8 |
---
|
9 |
|
10 |
+
# Model Card for DhruvParth/Mistral-7B-Instruct-v2.0-PairRM-DPO
|
|
|
|
|
|
|
11 |
|
12 |
+
This model is a fine-tuned version of the Mistral-7B model, utilizing Direct Preference Optimization (DPO) to better align the model's responses with human preferences, specifically in a causal language modeling context.
|
13 |
|
14 |
## Model Details
|
15 |
|
16 |
### Model Description
|
17 |
|
18 |
+
- Developed by: Dhruv Parthasarathy
|
19 |
+
- Model type: Fine-tuned language model
|
20 |
+
- Language(s) (NLP): English
|
21 |
+
- License: MIT
|
22 |
+
- Finetuned from model: Mistral-7B-Instruct-v2.0
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
23 |
|
24 |
+
### Model Sources
|
25 |
|
26 |
+
- **Repository:** https://huggingface.co/DhruvParth
|
27 |
+
- **Paper:** Direct Preference Optimization (https://arxiv.org/abs/2305.18290)
|
28 |
+
- **Demo:** (Will soon be made available)
|
29 |
|
30 |
## Uses
|
31 |
|
32 |
+
This model is tailored for scenarios requiring alignment with human preferences in automated responses, suitable for applications in personalized chatbots, customer support, and other interactive services.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
33 |
|
34 |
## Training Details
|
35 |
|
36 |
+
### Notebook
|
37 |
+
|
38 |
+
The fine-tuning process and the experiments were documented in a Jupyter Notebook, available [here](https://github.com/parthasarathydNU/gen-ai-coursework/blob/main/advanced-llms/direct-preference-optimization/dpomistralfinetuning.ipynb).
|
39 |
+
|
40 |
+
### Training Configuration
|
41 |
+
|
42 |
+
#### LoRA Configuration
|
43 |
+
```python
|
44 |
+
LoraConfig(
|
45 |
+
r=8,
|
46 |
+
lora_alpha=8,
|
47 |
+
lora_dropout=0.05,
|
48 |
+
bias="none",
|
49 |
+
task_type="CAUSAL_LM",
|
50 |
+
target_modules=['k_proj', 'v_proj', 'q_proj', 'dense']
|
51 |
+
)
|
52 |
+
```
|
53 |
+
|
54 |
+
#### BitsAndBytes Configuration
|
55 |
+
```python
|
56 |
+
BitsAndBytesConfig(
|
57 |
+
load_in_4bit=True,
|
58 |
+
llm_int8_threshold=6.0,
|
59 |
+
llm_int8_has_fp16_weight=False,
|
60 |
+
bnb_4bit_compute_dtype=torch.bfloat16,
|
61 |
+
bnb_4bit_use_double_quant=True,
|
62 |
+
bnb_4bit_quant_type="nf4",
|
63 |
+
)
|
64 |
+
```
|
65 |
+
|
66 |
+
#### Training Device Setup
|
67 |
+
```python
|
68 |
+
device_map = {"": 0}
|
69 |
+
```
|
70 |
+
|
71 |
+
#### Training Arguments
|
72 |
+
```python
|
73 |
+
DPOConfig(
|
74 |
+
per_device_train_batch_size=2,
|
75 |
+
gradient_accumulation_steps=4,
|
76 |
+
gradient_checkpointing=True,
|
77 |
+
learning_rate=5e-5,
|
78 |
+
lr_scheduler_type="cosine",
|
79 |
+
max_steps=50,
|
80 |
+
save_strategy="no",
|
81 |
+
logging_steps=1,
|
82 |
+
output_dir=new_model,
|
83 |
+
optim="paged_adamw_32bit",
|
84 |
+
warmup_steps=5,
|
85 |
+
)
|
86 |
+
```
|
87 |
+
|
88 |
+
### DPO Trainer Setup
|
89 |
+
```python
|
90 |
+
DPOTrainer(
|
91 |
+
model,
|
92 |
+
args=training_args,
|
93 |
+
train_dataset=updated_train_dataset,
|
94 |
+
tokenizer=tokenizer,
|
95 |
+
peft_config=peft_config,
|
96 |
+
beta=0.1,
|
97 |
+
max_prompt_length=512,
|
98 |
+
max_length=1024,
|
99 |
+
)
|
100 |
+
```
|
101 |
|
102 |
## Evaluation
|
103 |
|
104 |
+
Details on the model's performance, evaluation protocols, and results will be provided as they become available.
|
|
|
|
|
|
|
|
|
|
|
|
|
105 |
|
106 |
+
## Citation
|
107 |
|
108 |
+
If you use this model or dataset, please cite it as follows:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
109 |
|
110 |
**BibTeX:**
|
111 |
+
```bibtex
|
112 |
+
@misc{dhruvparth_mistral7b_dpo_2024,
|
113 |
+
author = {Dhruv Parthasarathy},
|
114 |
+
title = {Fine-tuning LLMs with Direct Preference Optimization},
|
115 |
+
year = {2024},
|
116 |
+
publisher = {GitHub},
|
117 |
+
journal = {GitHub repository},
|
118 |
+
url = {https://huggingface.co/DhruvParth/Mistral-7B-Instruct-v2.0-PairRM-DPO}
|
119 |
+
}
|
120 |
+
```
|
121 |
|
122 |
**APA:**
|
123 |
+
Dhruv Parthasarathy. (2024). Fine-tuning LLMs with Direct Preference Optimization. GitHub repository, https://huggingface.co/DhruvParth/Mistral-7B-Instruct-v2.0-PairRM-DPO
|
124 |
|
125 |
+
For any queries or discussions regarding the project, please open an issue in the GitHub repository, post your comment in the community section, reach out to me via LinkedIn (https://www.linkedin.com/in/parthadhruv/) or contact me directly at [email protected].
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|