Initial commit
Browse files- .gitattributes +1 -0
- README.md +37 -0
- a2c-AntBulletEnv-v0.zip +3 -0
- a2c-AntBulletEnv-v0/_stable_baselines3_version +1 -0
- a2c-AntBulletEnv-v0/data +106 -0
- a2c-AntBulletEnv-v0/policy.optimizer.pth +3 -0
- a2c-AntBulletEnv-v0/policy.pth +3 -0
- a2c-AntBulletEnv-v0/pytorch_variables.pth +3 -0
- a2c-AntBulletEnv-v0/system_info.txt +7 -0
- config.json +1 -0
- replay.mp4 +3 -0
- results.json +1 -0
- vec_normalize.pkl +3 -0
.gitattributes
CHANGED
@@ -32,3 +32,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
32 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
33 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
34 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
32 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
33 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
34 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
35 |
+
replay.mp4 filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- AntBulletEnv-v0
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: A2C
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: AntBulletEnv-v0
|
16 |
+
type: AntBulletEnv-v0
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 2368.62 +/- 205.43
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **A2C** Agent playing **AntBulletEnv-v0**
|
25 |
+
This is a trained model of a **A2C** agent playing **AntBulletEnv-v0**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
a2c-AntBulletEnv-v0.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ac1eeefa9c606e6e33bacab968d8dd1997ae0763b34ffce7f05bde7459dd92b3
|
3 |
+
size 129260
|
a2c-AntBulletEnv-v0/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.7.0
|
a2c-AntBulletEnv-v0/data
ADDED
@@ -0,0 +1,106 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f5b54f2e4c0>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f5b54f2e550>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f5b54f2e5e0>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f5b54f2e670>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f5b54f2e700>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f5b54f2e790>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7f5b54f2e820>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f5b54f2e8b0>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f5b54f2e940>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f5b54f2e9d0>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f5b54f2ea60>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f5b54f2eaf0>",
|
19 |
+
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc_data object at 0x7f5b54f2f0c0>"
|
21 |
+
},
|
22 |
+
"verbose": 1,
|
23 |
+
"policy_kwargs": {
|
24 |
+
":type:": "<class 'dict'>",
|
25 |
+
":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu",
|
26 |
+
"log_std_init": -2,
|
27 |
+
"ortho_init": false,
|
28 |
+
"optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
|
29 |
+
"optimizer_kwargs": {
|
30 |
+
"alpha": 0.99,
|
31 |
+
"eps": 1e-05,
|
32 |
+
"weight_decay": 0
|
33 |
+
}
|
34 |
+
},
|
35 |
+
"observation_space": {
|
36 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
37 |
+
":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=",
|
38 |
+
"dtype": "float32",
|
39 |
+
"_shape": [
|
40 |
+
28
|
41 |
+
],
|
42 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]",
|
43 |
+
"high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]",
|
44 |
+
"bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
|
45 |
+
"bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
|
46 |
+
"_np_random": null
|
47 |
+
},
|
48 |
+
"action_space": {
|
49 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
50 |
+
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
51 |
+
"dtype": "float32",
|
52 |
+
"_shape": [
|
53 |
+
8
|
54 |
+
],
|
55 |
+
"low": "[-1. -1. -1. -1. -1. -1. -1. -1.]",
|
56 |
+
"high": "[1. 1. 1. 1. 1. 1. 1. 1.]",
|
57 |
+
"bounded_below": "[ True True True True True True True True]",
|
58 |
+
"bounded_above": "[ True True True True True True True True]",
|
59 |
+
"_np_random": null
|
60 |
+
},
|
61 |
+
"n_envs": 4,
|
62 |
+
"num_timesteps": 2000000,
|
63 |
+
"_total_timesteps": 2000000,
|
64 |
+
"_num_timesteps_at_start": 0,
|
65 |
+
"seed": null,
|
66 |
+
"action_noise": null,
|
67 |
+
"start_time": 1674032379617996489,
|
68 |
+
"learning_rate": 0.0005,
|
69 |
+
"tensorboard_log": null,
|
70 |
+
"lr_schedule": {
|
71 |
+
":type:": "<class 'function'>",
|
72 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/QGJN0vGp/IWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
73 |
+
},
|
74 |
+
"_last_obs": {
|
75 |
+
":type:": "<class 'numpy.ndarray'>",
|
76 |
+
":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAL7zmz8aRwk/C+sJP6YEJkDlepq/cfOtv1U1U79S0L+/wMqOPwmGoL+WWnc/TJ+hPwqXiL+SvsE7lyoCP8HtPj5XOX2/6ZHjPp0inj4pk/E+a5SoPEn8Rj/7AQ+/OG4CPxSb178A6w3A/ujjPmdHuL+CVY4/u3pPPu9KED8F0hhAjyD+v14WB0Bbkj+/lZJev/8VWL8OxrU/HnkQv8n07T+LSay+KgFqPyAGGj8n/CU7ZixVP0CIC8DrxJ6/CfqyPUwr+jzv7gs/oWGfP9JV2r8Um9e/2eTmPv7o4z5nR7i/a4lyPqip97x33Qc/yBz7P8HUtMDZ3og/pLkLv9sIPr88May/xDxmPy26rL2rbIO/St6Av0j8qT+hkhk/8qLoP906qT96Yrq+9DzzvnU8wL8YgWa/j6Qjvw23fD8cJ6o/FJvXv9nk5j6mxg/AQtExP7DpcD8IFQo/G8EJP+ecCkBwu8e/zujwP9i3f79xQE6+j970viQbKj83fW8+sOaFP4XCkT74OJO+Yq4ZP3ATcjxGn+i+Z0ENwKdHjr/qK9A/OWmDvIM0Cj/GVKY/TMDdvyj7Fz/Z5OY+/ujjPmdHuL+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
|
77 |
+
},
|
78 |
+
"_last_episode_starts": {
|
79 |
+
":type:": "<class 'numpy.ndarray'>",
|
80 |
+
":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
|
81 |
+
},
|
82 |
+
"_last_original_obs": {
|
83 |
+
":type:": "<class 'numpy.ndarray'>",
|
84 |
+
":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAAAaDsg2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAAYDzvQAAAAAha+O/AAAAAPvHuzwAAAAAFvj3PwAAAADEjhc9AAAAALxd3j8AAAAA95K4vQAAAACT1tm/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAASmjNgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgKqVCL0AAAAAIG7yvwAAAACE5Lo8AAAAAMqr7T8AAAAAkR71PQAAAADUn9k/AAAAAG+zTr0AAAAAYiXvvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEWG97YAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIClt7s9AAAAAEGL578AAAAAZC/RvQAAAAA3aPU/AAAAAM9F6b0AAAAAFRr2PwAAAACS3tk8AAAAAIae6r8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA5r+G2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAyFEDPgAAAABiPfq/AAAAADCbUL0AAAAA67T4PwAAAABCN5q9AAAAAFeZ+j8AAAAAw0RYPQAAAABT9PG/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
|
85 |
+
},
|
86 |
+
"_episode_num": 0,
|
87 |
+
"use_sde": true,
|
88 |
+
"sde_sample_freq": -1,
|
89 |
+
"_current_progress_remaining": 0.0,
|
90 |
+
"ep_info_buffer": {
|
91 |
+
":type:": "<class 'collections.deque'>",
|
92 |
+
":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQKI9qT5ftyCMAWyUTegDjAF0lEdAuVl1+iJwbXV9lChoBkdAoQaC5Gz8g2gHTegDaAhHQLla4ItDlYF1fZQoaAZHQKD/R6rvLHNoB03oA2gIR0C5W7XpKSPmdX2UKGgGR0ChGZUcOskqaAdN6ANoCEdAuVv+LEUCaXV9lChoBkdAoh6mTC+De2gHTegDaAhHQLlfZYB/7SB1fZQoaAZHQKB6BqesgdRoB03oA2gIR0C5YNj6zmfXdX2UKGgGR0ChSvhgeA/caAdN6ANoCEdAuWGykJrtV3V9lChoBkdAnQ0nTNMXamgHTegDaAhHQLlh9NFz+3p1fZQoaAZHQKJIAvEjxCpoB03oA2gIR0C5ZVgFcIJJdX2UKGgGR0CiBcuez2OAaAdN6ANoCEdAuWbJ3V09yXV9lChoBkdAocS5TS9dvGgHTegDaAhHQLlnoswtapx1fZQoaAZHQKJFKsEq2BtoB03oA2gIR0C5Z+Qa3qiXdX2UKGgGR0ChMd8A7xNJaAdN6ANoCEdAuWs7wPRRdnV9lChoBkdAoTEiPp6hQGgHTegDaAhHQLlsq1FYuCh1fZQoaAZHQKIm5MX7+DRoB03oA2gIR0C5bX0iMYMwdX2UKGgGR0CiKM3r2QGOaAdN6ANoCEdAuW3CPvKEFnV9lChoBkdAoWDv4Kx9omgHTegDaAhHQLlxHoZhrnF1fZQoaAZHQKGqcBreqJdoB03oA2gIR0C5cpXb212JdX2UKGgGR0ChADeb/ffoaAdN6ANoCEdAuXNm8f3evnV9lChoBkdAoVBHZbpu/GgHTegDaAhHQLlzqJAMUh51fZQoaAZHQKFdwmzjWCpoB03oA2gIR0C5dwHVTaTPdX2UKGgGR0CgTh37+DODaAdN6ANoCEdAuXh0STQmeHV9lChoBkdAoRuxzHS4OWgHTegDaAhHQLl5WIN3GGV1fZQoaAZHQKJHda/RE4NoB03oA2gIR0C5eZvJFLFodX2UKGgGR0CZo9hew9q2aAdN6ANoCEdAuX0Kj59E1HV9lChoBkdAotau4y44ImgHTegDaAhHQLl+buP3i711fZQoaAZHQKJsP3u/k/9oB03oA2gIR0C5fz8g+yJLdX2UKGgGR0Ci7OMMqjJuaAdN6ANoCEdAuX+AIyCWeHV9lChoBkdAot/1lwtJ4GgHTegDaAhHQLmC2nxaxHJ1fZQoaAZHQKIEPIIWxhVoB03oA2gIR0C5hFEHUtqYdX2UKGgGR0CivCLxqfvnaAdN6ANoCEdAuYUmOuJUHnV9lChoBkdAocU96X0GvGgHTegDaAhHQLmFahUR3/x1fZQoaAZHQKHhUQf6oEVoB03oA2gIR0C5iM5+MIeHdX2UKGgGR0ChQP1Aqur7aAdN6ANoCEdAuYpCjCYTkHV9lChoBkdAoc8IIMSbpmgHTegDaAhHQLmLE2qDK5l1fZQoaAZHQKKw0kSmIj5oB03oA2gIR0C5i1lanrIHdX2UKGgGR0CgnX7DVH4HaAdN6ANoCEdAuY7BN+LFXXV9lChoBkdAotfIDklu32gHTegDaAhHQLmQMzqrzXl1fZQoaAZHQKL9lFQVKwpoB03oA2gIR0C5kQJmmLtNdX2UKGgGR0CiZq4G2TgVaAdN6ANoCEdAuZFEU5+6RXV9lChoBkdAohw9gnc+JWgHTegDaAhHQLmUoVi4J/p1fZQoaAZHQKIhzta6jFhoB03oA2gIR0C5lgs7yQPqdX2UKGgGR0CiTXg3tKI0aAdN6ANoCEdAuZbZe0G/vnV9lChoBkdAonmxoRIz32gHTegDaAhHQLmXG1EE1VJ1fZQoaAZHQKKviWDYh+xoB03oA2gIR0C5mo/zvqkedX2UKGgGR0ChwCCuEEkjaAdN6ANoCEdAuZvySW7e23V9lChoBkdAok5fq3VkMGgHTegDaAhHQLmcwSqU/wB1fZQoaAZHQKN1eV3Ux21oB03oA2gIR0C5nQB8x9G7dX2UKGgGR0CiHmyKWLP2aAdN6ANoCEdAuaBRNh3JP3V9lChoBkdAop6lATqSo2gHTegDaAhHQLmhvBcRlH11fZQoaAZHQKM7XgRbr1NoB03oA2gIR0C5opYkiUxEdX2UKGgGR0CiikWPT5O8aAdN6ANoCEdAuaLb7tReknV9lChoBkdAog6Qf8uSOmgHTegDaAhHQLmmQXkYGdJ1fZQoaAZHQKJ/FRLsa89oB03oA2gIR0C5p6t4qwyJdX2UKGgGR0CiQGAkcCHRaAdN6ANoCEdAuah7ww0wanV9lChoBkdAoX1l6mfoR2gHTegDaAhHQLmowzCUHIJ1fZQoaAZHQKHhZSEUTL5oB03oA2gIR0C5rCNVR1oydX2UKGgGR0CiHUtucc2jaAdN6ANoCEdAua2TEvTPSnV9lChoBkdAoiTkqJ/G2mgHTegDaAhHQLmuZOUMXrN1fZQoaAZHQKIHRZf2K2toB03oA2gIR0C5rqeDzyz5dX2UKGgGR0Ch+SKQ7tAtaAdN6ANoCEdAubICJO32EnV9lChoBkdAoVV+5QP7N2gHTegDaAhHQLmzaPC2tuF1fZQoaAZHQKIB7W4mTkhoB03oA2gIR0C5tDntrsSkdX2UKGgGR0Cg9yRK6FufaAdN6ANoCEdAubR7hVENOXV9lChoBkdAobzKr1dxAGgHTegDaAhHQLm323uuzQh1fZQoaAZHQKDP85+YtxxoB03oA2gIR0C5uc4V/MGHdX2UKGgGR0CiVUPzFuNxaAdN6ANoCEdAubsFrvb48HV9lChoBkdAopC8/dIoVmgHTegDaAhHQLm7blUIcBF1fZQoaAZHQJ5u9RqGlANoB03oA2gIR0C5vzZ9Vmz0dX2UKGgGR0CiTAOVHFxXaAdN6ANoCEdAucClxIatLnV9lChoBkdAom1TNOdoWmgHTegDaAhHQLnBd+7UXpJ1fZQoaAZHQKJPSBp5/spoB03oA2gIR0C5wblhgE2YdX2UKGgGR0Cid4LeANG3aAdN6ANoCEdAucUiu7pV0nV9lChoBkdAoqdwYxcmjWgHTegDaAhHQLnGjinHead1fZQoaAZHQKIhDb8m8dxoB03oA2gIR0C5x1+LrHENdX2UKGgGR0CizNW5QP7OaAdN6ANoCEdAucelEw35vnV9lChoBkdAohCAtBfKIWgHTegDaAhHQLnLF1stTUB1fZQoaAZHQKMkaeBg/khoB03oA2gIR0C5zIK11GLDdX2UKGgGR0Cisk0XgtOEaAdN6ANoCEdAuc1QRdyDI3V9lChoBkdAoyEig7HQyGgHTegDaAhHQLnNmOxSpBJ1fZQoaAZHQKMnzOJLuhNoB03oA2gIR0C50QNlVcUudX2UKGgGR0CivX0mdAgQaAdN6ANoCEdAudJl9tuUEHV9lChoBkdAoqPQEfT1CmgHTegDaAhHQLnTP37UG3Z1fZQoaAZHQKKnQ7voePtoB03oA2gIR0C504FhPTG6dX2UKGgGR0ChSoHJtBOYaAdN6ANoCEdAudbtFTefqXV9lChoBkdAoi+kV8CxNmgHTegDaAhHQLnYWsmv4dp1fZQoaAZHQKIndRZU1htoB03oA2gIR0C52SvoA4n4dX2UKGgGR0CgGvFnIyTIaAdN6ANoCEdAudlucXm/33V9lChoBkdAoZ2RRKpT/GgHTegDaAhHQLncxdvsJIF1fZQoaAZHQKJQO45tFa1oB03oA2gIR0C53jweFL39dX2UKGgGR0Cie3Mj3VTaaAdN6ANoCEdAud8LB7/n4nV9lChoBkdAobCPNcGC7WgHTegDaAhHQLnfTxZuAI91fZQoaAZHQKES9Gff4ypoB03oA2gIR0C54v1NYbKidX2UKGgGR0CiySRnnMdMaAdN6ANoCEdAueUka4tpVXV9lChoBkdAolb7jaPCEmgHTegDaAhHQLnmXvl2eQN1fZQoaAZHQKKb3Qj2SMdoB03oA2gIR0C55r01Q66rdX2UKGgGR0CibutEofCAaAdN6ANoCEdAueoUscyWRnV9lChoBkdAohIoR7JGOWgHTegDaAhHQLnrgDSPU8V1fZQoaAZHQKFaJDhtLthoB03oA2gIR0C57FSaVlf7dX2UKGgGR0CimCBnzxwyaAdN6ANoCEdAueyXMFEApHVlLg=="
|
93 |
+
},
|
94 |
+
"ep_success_buffer": {
|
95 |
+
":type:": "<class 'collections.deque'>",
|
96 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
97 |
+
},
|
98 |
+
"_n_updates": 50000,
|
99 |
+
"n_steps": 10,
|
100 |
+
"gamma": 0.99,
|
101 |
+
"gae_lambda": 0.9,
|
102 |
+
"ent_coef": 0.0,
|
103 |
+
"vf_coef": 0.4,
|
104 |
+
"max_grad_norm": 0.5,
|
105 |
+
"normalize_advantage": false
|
106 |
+
}
|
a2c-AntBulletEnv-v0/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:525191bad4c2db8a6c98f7e121e016e03f019b4b264c15c821dd0db766975279
|
3 |
+
size 56190
|
a2c-AntBulletEnv-v0/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:19fc3da1e2f81ec1b37bc439cf4735190dc2335cbebeaad959591a72e628d652
|
3 |
+
size 56958
|
a2c-AntBulletEnv-v0/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
a2c-AntBulletEnv-v0/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
|
2 |
+
- Python: 3.8.10
|
3 |
+
- Stable-Baselines3: 1.7.0
|
4 |
+
- PyTorch: 1.13.1+cu116
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.21.6
|
7 |
+
- Gym: 0.21.0
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f5b54f2e4c0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f5b54f2e550>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f5b54f2e5e0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f5b54f2e670>", "_build": "<function ActorCriticPolicy._build at 0x7f5b54f2e700>", "forward": "<function ActorCriticPolicy.forward at 0x7f5b54f2e790>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f5b54f2e820>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f5b54f2e8b0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f5b54f2e940>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f5b54f2e9d0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f5b54f2ea60>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f5b54f2eaf0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f5b54f2f0c0>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1674032379617996489, "learning_rate": 0.0005, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/QGJN0vGp/IWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAL7zmz8aRwk/C+sJP6YEJkDlepq/cfOtv1U1U79S0L+/wMqOPwmGoL+WWnc/TJ+hPwqXiL+SvsE7lyoCP8HtPj5XOX2/6ZHjPp0inj4pk/E+a5SoPEn8Rj/7AQ+/OG4CPxSb178A6w3A/ujjPmdHuL+CVY4/u3pPPu9KED8F0hhAjyD+v14WB0Bbkj+/lZJev/8VWL8OxrU/HnkQv8n07T+LSay+KgFqPyAGGj8n/CU7ZixVP0CIC8DrxJ6/CfqyPUwr+jzv7gs/oWGfP9JV2r8Um9e/2eTmPv7o4z5nR7i/a4lyPqip97x33Qc/yBz7P8HUtMDZ3og/pLkLv9sIPr88May/xDxmPy26rL2rbIO/St6Av0j8qT+hkhk/8qLoP906qT96Yrq+9DzzvnU8wL8YgWa/j6Qjvw23fD8cJ6o/FJvXv9nk5j6mxg/AQtExP7DpcD8IFQo/G8EJP+ecCkBwu8e/zujwP9i3f79xQE6+j970viQbKj83fW8+sOaFP4XCkT74OJO+Yq4ZP3ATcjxGn+i+Z0ENwKdHjr/qK9A/OWmDvIM0Cj/GVKY/TMDdvyj7Fz/Z5OY+/ujjPmdHuL+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAAAaDsg2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAAYDzvQAAAAAha+O/AAAAAPvHuzwAAAAAFvj3PwAAAADEjhc9AAAAALxd3j8AAAAA95K4vQAAAACT1tm/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAASmjNgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgKqVCL0AAAAAIG7yvwAAAACE5Lo8AAAAAMqr7T8AAAAAkR71PQAAAADUn9k/AAAAAG+zTr0AAAAAYiXvvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEWG97YAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIClt7s9AAAAAEGL578AAAAAZC/RvQAAAAA3aPU/AAAAAM9F6b0AAAAAFRr2PwAAAACS3tk8AAAAAIae6r8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA5r+G2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAyFEDPgAAAABiPfq/AAAAADCbUL0AAAAA67T4PwAAAABCN5q9AAAAAFeZ+j8AAAAAw0RYPQAAAABT9PG/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQKI9qT5ftyCMAWyUTegDjAF0lEdAuVl1+iJwbXV9lChoBkdAoQaC5Gz8g2gHTegDaAhHQLla4ItDlYF1fZQoaAZHQKD/R6rvLHNoB03oA2gIR0C5W7XpKSPmdX2UKGgGR0ChGZUcOskqaAdN6ANoCEdAuVv+LEUCaXV9lChoBkdAoh6mTC+De2gHTegDaAhHQLlfZYB/7SB1fZQoaAZHQKB6BqesgdRoB03oA2gIR0C5YNj6zmfXdX2UKGgGR0ChSvhgeA/caAdN6ANoCEdAuWGykJrtV3V9lChoBkdAnQ0nTNMXamgHTegDaAhHQLlh9NFz+3p1fZQoaAZHQKJIAvEjxCpoB03oA2gIR0C5ZVgFcIJJdX2UKGgGR0CiBcuez2OAaAdN6ANoCEdAuWbJ3V09yXV9lChoBkdAocS5TS9dvGgHTegDaAhHQLlnoswtapx1fZQoaAZHQKJFKsEq2BtoB03oA2gIR0C5Z+Qa3qiXdX2UKGgGR0ChMd8A7xNJaAdN6ANoCEdAuWs7wPRRdnV9lChoBkdAoTEiPp6hQGgHTegDaAhHQLlsq1FYuCh1fZQoaAZHQKIm5MX7+DRoB03oA2gIR0C5bX0iMYMwdX2UKGgGR0CiKM3r2QGOaAdN6ANoCEdAuW3CPvKEFnV9lChoBkdAoWDv4Kx9omgHTegDaAhHQLlxHoZhrnF1fZQoaAZHQKGqcBreqJdoB03oA2gIR0C5cpXb212JdX2UKGgGR0ChADeb/ffoaAdN6ANoCEdAuXNm8f3evnV9lChoBkdAoVBHZbpu/GgHTegDaAhHQLlzqJAMUh51fZQoaAZHQKFdwmzjWCpoB03oA2gIR0C5dwHVTaTPdX2UKGgGR0CgTh37+DODaAdN6ANoCEdAuXh0STQmeHV9lChoBkdAoRuxzHS4OWgHTegDaAhHQLl5WIN3GGV1fZQoaAZHQKJHda/RE4NoB03oA2gIR0C5eZvJFLFodX2UKGgGR0CZo9hew9q2aAdN6ANoCEdAuX0Kj59E1HV9lChoBkdAotau4y44ImgHTegDaAhHQLl+buP3i711fZQoaAZHQKJsP3u/k/9oB03oA2gIR0C5fz8g+yJLdX2UKGgGR0Ci7OMMqjJuaAdN6ANoCEdAuX+AIyCWeHV9lChoBkdAot/1lwtJ4GgHTegDaAhHQLmC2nxaxHJ1fZQoaAZHQKIEPIIWxhVoB03oA2gIR0C5hFEHUtqYdX2UKGgGR0CivCLxqfvnaAdN6ANoCEdAuYUmOuJUHnV9lChoBkdAocU96X0GvGgHTegDaAhHQLmFahUR3/x1fZQoaAZHQKHhUQf6oEVoB03oA2gIR0C5iM5+MIeHdX2UKGgGR0ChQP1Aqur7aAdN6ANoCEdAuYpCjCYTkHV9lChoBkdAoc8IIMSbpmgHTegDaAhHQLmLE2qDK5l1fZQoaAZHQKKw0kSmIj5oB03oA2gIR0C5i1lanrIHdX2UKGgGR0CgnX7DVH4HaAdN6ANoCEdAuY7BN+LFXXV9lChoBkdAotfIDklu32gHTegDaAhHQLmQMzqrzXl1fZQoaAZHQKL9lFQVKwpoB03oA2gIR0C5kQJmmLtNdX2UKGgGR0CiZq4G2TgVaAdN6ANoCEdAuZFEU5+6RXV9lChoBkdAohw9gnc+JWgHTegDaAhHQLmUoVi4J/p1fZQoaAZHQKIhzta6jFhoB03oA2gIR0C5lgs7yQPqdX2UKGgGR0CiTXg3tKI0aAdN6ANoCEdAuZbZe0G/vnV9lChoBkdAonmxoRIz32gHTegDaAhHQLmXG1EE1VJ1fZQoaAZHQKKviWDYh+xoB03oA2gIR0C5mo/zvqkedX2UKGgGR0ChwCCuEEkjaAdN6ANoCEdAuZvySW7e23V9lChoBkdAok5fq3VkMGgHTegDaAhHQLmcwSqU/wB1fZQoaAZHQKN1eV3Ux21oB03oA2gIR0C5nQB8x9G7dX2UKGgGR0CiHmyKWLP2aAdN6ANoCEdAuaBRNh3JP3V9lChoBkdAop6lATqSo2gHTegDaAhHQLmhvBcRlH11fZQoaAZHQKM7XgRbr1NoB03oA2gIR0C5opYkiUxEdX2UKGgGR0CiikWPT5O8aAdN6ANoCEdAuaLb7tReknV9lChoBkdAog6Qf8uSOmgHTegDaAhHQLmmQXkYGdJ1fZQoaAZHQKJ/FRLsa89oB03oA2gIR0C5p6t4qwyJdX2UKGgGR0CiQGAkcCHRaAdN6ANoCEdAuah7ww0wanV9lChoBkdAoX1l6mfoR2gHTegDaAhHQLmowzCUHIJ1fZQoaAZHQKHhZSEUTL5oB03oA2gIR0C5rCNVR1oydX2UKGgGR0CiHUtucc2jaAdN6ANoCEdAua2TEvTPSnV9lChoBkdAoiTkqJ/G2mgHTegDaAhHQLmuZOUMXrN1fZQoaAZHQKIHRZf2K2toB03oA2gIR0C5rqeDzyz5dX2UKGgGR0Ch+SKQ7tAtaAdN6ANoCEdAubICJO32EnV9lChoBkdAoVV+5QP7N2gHTegDaAhHQLmzaPC2tuF1fZQoaAZHQKIB7W4mTkhoB03oA2gIR0C5tDntrsSkdX2UKGgGR0Cg9yRK6FufaAdN6ANoCEdAubR7hVENOXV9lChoBkdAobzKr1dxAGgHTegDaAhHQLm323uuzQh1fZQoaAZHQKDP85+YtxxoB03oA2gIR0C5uc4V/MGHdX2UKGgGR0CiVUPzFuNxaAdN6ANoCEdAubsFrvb48HV9lChoBkdAopC8/dIoVmgHTegDaAhHQLm7blUIcBF1fZQoaAZHQJ5u9RqGlANoB03oA2gIR0C5vzZ9Vmz0dX2UKGgGR0CiTAOVHFxXaAdN6ANoCEdAucClxIatLnV9lChoBkdAom1TNOdoWmgHTegDaAhHQLnBd+7UXpJ1fZQoaAZHQKJPSBp5/spoB03oA2gIR0C5wblhgE2YdX2UKGgGR0Cid4LeANG3aAdN6ANoCEdAucUiu7pV0nV9lChoBkdAoqdwYxcmjWgHTegDaAhHQLnGjinHead1fZQoaAZHQKIhDb8m8dxoB03oA2gIR0C5x1+LrHENdX2UKGgGR0CizNW5QP7OaAdN6ANoCEdAucelEw35vnV9lChoBkdAohCAtBfKIWgHTegDaAhHQLnLF1stTUB1fZQoaAZHQKMkaeBg/khoB03oA2gIR0C5zIK11GLDdX2UKGgGR0Cisk0XgtOEaAdN6ANoCEdAuc1QRdyDI3V9lChoBkdAoyEig7HQyGgHTegDaAhHQLnNmOxSpBJ1fZQoaAZHQKMnzOJLuhNoB03oA2gIR0C50QNlVcUudX2UKGgGR0CivX0mdAgQaAdN6ANoCEdAudJl9tuUEHV9lChoBkdAoqPQEfT1CmgHTegDaAhHQLnTP37UG3Z1fZQoaAZHQKKnQ7voePtoB03oA2gIR0C504FhPTG6dX2UKGgGR0ChSoHJtBOYaAdN6ANoCEdAudbtFTefqXV9lChoBkdAoi+kV8CxNmgHTegDaAhHQLnYWsmv4dp1fZQoaAZHQKIndRZU1htoB03oA2gIR0C52SvoA4n4dX2UKGgGR0CgGvFnIyTIaAdN6ANoCEdAudlucXm/33V9lChoBkdAoZ2RRKpT/GgHTegDaAhHQLncxdvsJIF1fZQoaAZHQKJQO45tFa1oB03oA2gIR0C53jweFL39dX2UKGgGR0Cie3Mj3VTaaAdN6ANoCEdAud8LB7/n4nV9lChoBkdAobCPNcGC7WgHTegDaAhHQLnfTxZuAI91fZQoaAZHQKES9Gff4ypoB03oA2gIR0C54v1NYbKidX2UKGgGR0CiySRnnMdMaAdN6ANoCEdAueUka4tpVXV9lChoBkdAolb7jaPCEmgHTegDaAhHQLnmXvl2eQN1fZQoaAZHQKKb3Qj2SMdoB03oA2gIR0C55r01Q66rdX2UKGgGR0CibutEofCAaAdN6ANoCEdAueoUscyWRnV9lChoBkdAohIoR7JGOWgHTegDaAhHQLnrgDSPU8V1fZQoaAZHQKFaJDhtLthoB03oA2gIR0C57FSaVlf7dX2UKGgGR0CimCBnzxwyaAdN6ANoCEdAueyXMFEApHVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 50000, "n_steps": 10, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
replay.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9e112320d3221d34f8160298451ef02b31e9e97debabf4ac3ce1faabc95ffbbe
|
3 |
+
size 1214224
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 2368.623092733743, "std_reward": 205.43048274521746, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-01-18T09:52:03.925439"}
|
vec_normalize.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:553d8c63491476d55d087d1b0e448ac05cf44b27205acf931ae0eedfd4ac6d49
|
3 |
+
size 2521
|