Dharkelf commited on
Commit
4038d59
1 Parent(s): c72f5cb

Initial commit

Browse files
.gitattributes CHANGED
@@ -32,3 +32,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
32
  *.zip filter=lfs diff=lfs merge=lfs -text
33
  *.zst filter=lfs diff=lfs merge=lfs -text
34
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
32
  *.zip filter=lfs diff=lfs merge=lfs -text
33
  *.zst filter=lfs diff=lfs merge=lfs -text
34
  *tfevents* filter=lfs diff=lfs merge=lfs -text
35
+ replay.mp4 filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - AntBulletEnv-v0
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: A2C
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: AntBulletEnv-v0
16
+ type: AntBulletEnv-v0
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 2368.62 +/- 205.43
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **A2C** Agent playing **AntBulletEnv-v0**
25
+ This is a trained model of a **A2C** agent playing **AntBulletEnv-v0**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
a2c-AntBulletEnv-v0.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ac1eeefa9c606e6e33bacab968d8dd1997ae0763b34ffce7f05bde7459dd92b3
3
+ size 129260
a2c-AntBulletEnv-v0/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.7.0
a2c-AntBulletEnv-v0/data ADDED
@@ -0,0 +1,106 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f5b54f2e4c0>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f5b54f2e550>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f5b54f2e5e0>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f5b54f2e670>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f5b54f2e700>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f5b54f2e790>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f5b54f2e820>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f5b54f2e8b0>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f5b54f2e940>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f5b54f2e9d0>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f5b54f2ea60>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f5b54f2eaf0>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc_data object at 0x7f5b54f2f0c0>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {
24
+ ":type:": "<class 'dict'>",
25
+ ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu",
26
+ "log_std_init": -2,
27
+ "ortho_init": false,
28
+ "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
29
+ "optimizer_kwargs": {
30
+ "alpha": 0.99,
31
+ "eps": 1e-05,
32
+ "weight_decay": 0
33
+ }
34
+ },
35
+ "observation_space": {
36
+ ":type:": "<class 'gym.spaces.box.Box'>",
37
+ ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=",
38
+ "dtype": "float32",
39
+ "_shape": [
40
+ 28
41
+ ],
42
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]",
43
+ "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]",
44
+ "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
45
+ "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
46
+ "_np_random": null
47
+ },
48
+ "action_space": {
49
+ ":type:": "<class 'gym.spaces.box.Box'>",
50
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
51
+ "dtype": "float32",
52
+ "_shape": [
53
+ 8
54
+ ],
55
+ "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]",
56
+ "high": "[1. 1. 1. 1. 1. 1. 1. 1.]",
57
+ "bounded_below": "[ True True True True True True True True]",
58
+ "bounded_above": "[ True True True True True True True True]",
59
+ "_np_random": null
60
+ },
61
+ "n_envs": 4,
62
+ "num_timesteps": 2000000,
63
+ "_total_timesteps": 2000000,
64
+ "_num_timesteps_at_start": 0,
65
+ "seed": null,
66
+ "action_noise": null,
67
+ "start_time": 1674032379617996489,
68
+ "learning_rate": 0.0005,
69
+ "tensorboard_log": null,
70
+ "lr_schedule": {
71
+ ":type:": "<class 'function'>",
72
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/QGJN0vGp/IWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
73
+ },
74
+ "_last_obs": {
75
+ ":type:": "<class 'numpy.ndarray'>",
76
+ ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAL7zmz8aRwk/C+sJP6YEJkDlepq/cfOtv1U1U79S0L+/wMqOPwmGoL+WWnc/TJ+hPwqXiL+SvsE7lyoCP8HtPj5XOX2/6ZHjPp0inj4pk/E+a5SoPEn8Rj/7AQ+/OG4CPxSb178A6w3A/ujjPmdHuL+CVY4/u3pPPu9KED8F0hhAjyD+v14WB0Bbkj+/lZJev/8VWL8OxrU/HnkQv8n07T+LSay+KgFqPyAGGj8n/CU7ZixVP0CIC8DrxJ6/CfqyPUwr+jzv7gs/oWGfP9JV2r8Um9e/2eTmPv7o4z5nR7i/a4lyPqip97x33Qc/yBz7P8HUtMDZ3og/pLkLv9sIPr88May/xDxmPy26rL2rbIO/St6Av0j8qT+hkhk/8qLoP906qT96Yrq+9DzzvnU8wL8YgWa/j6Qjvw23fD8cJ6o/FJvXv9nk5j6mxg/AQtExP7DpcD8IFQo/G8EJP+ecCkBwu8e/zujwP9i3f79xQE6+j970viQbKj83fW8+sOaFP4XCkT74OJO+Yq4ZP3ATcjxGn+i+Z0ENwKdHjr/qK9A/OWmDvIM0Cj/GVKY/TMDdvyj7Fz/Z5OY+/ujjPmdHuL+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
77
+ },
78
+ "_last_episode_starts": {
79
+ ":type:": "<class 'numpy.ndarray'>",
80
+ ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
81
+ },
82
+ "_last_original_obs": {
83
+ ":type:": "<class 'numpy.ndarray'>",
84
+ ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAAAaDsg2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAAYDzvQAAAAAha+O/AAAAAPvHuzwAAAAAFvj3PwAAAADEjhc9AAAAALxd3j8AAAAA95K4vQAAAACT1tm/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAASmjNgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgKqVCL0AAAAAIG7yvwAAAACE5Lo8AAAAAMqr7T8AAAAAkR71PQAAAADUn9k/AAAAAG+zTr0AAAAAYiXvvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEWG97YAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIClt7s9AAAAAEGL578AAAAAZC/RvQAAAAA3aPU/AAAAAM9F6b0AAAAAFRr2PwAAAACS3tk8AAAAAIae6r8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA5r+G2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAyFEDPgAAAABiPfq/AAAAADCbUL0AAAAA67T4PwAAAABCN5q9AAAAAFeZ+j8AAAAAw0RYPQAAAABT9PG/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
85
+ },
86
+ "_episode_num": 0,
87
+ "use_sde": true,
88
+ "sde_sample_freq": -1,
89
+ "_current_progress_remaining": 0.0,
90
+ "ep_info_buffer": {
91
+ ":type:": "<class 'collections.deque'>",
92
+ ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQKI9qT5ftyCMAWyUTegDjAF0lEdAuVl1+iJwbXV9lChoBkdAoQaC5Gz8g2gHTegDaAhHQLla4ItDlYF1fZQoaAZHQKD/R6rvLHNoB03oA2gIR0C5W7XpKSPmdX2UKGgGR0ChGZUcOskqaAdN6ANoCEdAuVv+LEUCaXV9lChoBkdAoh6mTC+De2gHTegDaAhHQLlfZYB/7SB1fZQoaAZHQKB6BqesgdRoB03oA2gIR0C5YNj6zmfXdX2UKGgGR0ChSvhgeA/caAdN6ANoCEdAuWGykJrtV3V9lChoBkdAnQ0nTNMXamgHTegDaAhHQLlh9NFz+3p1fZQoaAZHQKJIAvEjxCpoB03oA2gIR0C5ZVgFcIJJdX2UKGgGR0CiBcuez2OAaAdN6ANoCEdAuWbJ3V09yXV9lChoBkdAocS5TS9dvGgHTegDaAhHQLlnoswtapx1fZQoaAZHQKJFKsEq2BtoB03oA2gIR0C5Z+Qa3qiXdX2UKGgGR0ChMd8A7xNJaAdN6ANoCEdAuWs7wPRRdnV9lChoBkdAoTEiPp6hQGgHTegDaAhHQLlsq1FYuCh1fZQoaAZHQKIm5MX7+DRoB03oA2gIR0C5bX0iMYMwdX2UKGgGR0CiKM3r2QGOaAdN6ANoCEdAuW3CPvKEFnV9lChoBkdAoWDv4Kx9omgHTegDaAhHQLlxHoZhrnF1fZQoaAZHQKGqcBreqJdoB03oA2gIR0C5cpXb212JdX2UKGgGR0ChADeb/ffoaAdN6ANoCEdAuXNm8f3evnV9lChoBkdAoVBHZbpu/GgHTegDaAhHQLlzqJAMUh51fZQoaAZHQKFdwmzjWCpoB03oA2gIR0C5dwHVTaTPdX2UKGgGR0CgTh37+DODaAdN6ANoCEdAuXh0STQmeHV9lChoBkdAoRuxzHS4OWgHTegDaAhHQLl5WIN3GGV1fZQoaAZHQKJHda/RE4NoB03oA2gIR0C5eZvJFLFodX2UKGgGR0CZo9hew9q2aAdN6ANoCEdAuX0Kj59E1HV9lChoBkdAotau4y44ImgHTegDaAhHQLl+buP3i711fZQoaAZHQKJsP3u/k/9oB03oA2gIR0C5fz8g+yJLdX2UKGgGR0Ci7OMMqjJuaAdN6ANoCEdAuX+AIyCWeHV9lChoBkdAot/1lwtJ4GgHTegDaAhHQLmC2nxaxHJ1fZQoaAZHQKIEPIIWxhVoB03oA2gIR0C5hFEHUtqYdX2UKGgGR0CivCLxqfvnaAdN6ANoCEdAuYUmOuJUHnV9lChoBkdAocU96X0GvGgHTegDaAhHQLmFahUR3/x1fZQoaAZHQKHhUQf6oEVoB03oA2gIR0C5iM5+MIeHdX2UKGgGR0ChQP1Aqur7aAdN6ANoCEdAuYpCjCYTkHV9lChoBkdAoc8IIMSbpmgHTegDaAhHQLmLE2qDK5l1fZQoaAZHQKKw0kSmIj5oB03oA2gIR0C5i1lanrIHdX2UKGgGR0CgnX7DVH4HaAdN6ANoCEdAuY7BN+LFXXV9lChoBkdAotfIDklu32gHTegDaAhHQLmQMzqrzXl1fZQoaAZHQKL9lFQVKwpoB03oA2gIR0C5kQJmmLtNdX2UKGgGR0CiZq4G2TgVaAdN6ANoCEdAuZFEU5+6RXV9lChoBkdAohw9gnc+JWgHTegDaAhHQLmUoVi4J/p1fZQoaAZHQKIhzta6jFhoB03oA2gIR0C5lgs7yQPqdX2UKGgGR0CiTXg3tKI0aAdN6ANoCEdAuZbZe0G/vnV9lChoBkdAonmxoRIz32gHTegDaAhHQLmXG1EE1VJ1fZQoaAZHQKKviWDYh+xoB03oA2gIR0C5mo/zvqkedX2UKGgGR0ChwCCuEEkjaAdN6ANoCEdAuZvySW7e23V9lChoBkdAok5fq3VkMGgHTegDaAhHQLmcwSqU/wB1fZQoaAZHQKN1eV3Ux21oB03oA2gIR0C5nQB8x9G7dX2UKGgGR0CiHmyKWLP2aAdN6ANoCEdAuaBRNh3JP3V9lChoBkdAop6lATqSo2gHTegDaAhHQLmhvBcRlH11fZQoaAZHQKM7XgRbr1NoB03oA2gIR0C5opYkiUxEdX2UKGgGR0CiikWPT5O8aAdN6ANoCEdAuaLb7tReknV9lChoBkdAog6Qf8uSOmgHTegDaAhHQLmmQXkYGdJ1fZQoaAZHQKJ/FRLsa89oB03oA2gIR0C5p6t4qwyJdX2UKGgGR0CiQGAkcCHRaAdN6ANoCEdAuah7ww0wanV9lChoBkdAoX1l6mfoR2gHTegDaAhHQLmowzCUHIJ1fZQoaAZHQKHhZSEUTL5oB03oA2gIR0C5rCNVR1oydX2UKGgGR0CiHUtucc2jaAdN6ANoCEdAua2TEvTPSnV9lChoBkdAoiTkqJ/G2mgHTegDaAhHQLmuZOUMXrN1fZQoaAZHQKIHRZf2K2toB03oA2gIR0C5rqeDzyz5dX2UKGgGR0Ch+SKQ7tAtaAdN6ANoCEdAubICJO32EnV9lChoBkdAoVV+5QP7N2gHTegDaAhHQLmzaPC2tuF1fZQoaAZHQKIB7W4mTkhoB03oA2gIR0C5tDntrsSkdX2UKGgGR0Cg9yRK6FufaAdN6ANoCEdAubR7hVENOXV9lChoBkdAobzKr1dxAGgHTegDaAhHQLm323uuzQh1fZQoaAZHQKDP85+YtxxoB03oA2gIR0C5uc4V/MGHdX2UKGgGR0CiVUPzFuNxaAdN6ANoCEdAubsFrvb48HV9lChoBkdAopC8/dIoVmgHTegDaAhHQLm7blUIcBF1fZQoaAZHQJ5u9RqGlANoB03oA2gIR0C5vzZ9Vmz0dX2UKGgGR0CiTAOVHFxXaAdN6ANoCEdAucClxIatLnV9lChoBkdAom1TNOdoWmgHTegDaAhHQLnBd+7UXpJ1fZQoaAZHQKJPSBp5/spoB03oA2gIR0C5wblhgE2YdX2UKGgGR0Cid4LeANG3aAdN6ANoCEdAucUiu7pV0nV9lChoBkdAoqdwYxcmjWgHTegDaAhHQLnGjinHead1fZQoaAZHQKIhDb8m8dxoB03oA2gIR0C5x1+LrHENdX2UKGgGR0CizNW5QP7OaAdN6ANoCEdAucelEw35vnV9lChoBkdAohCAtBfKIWgHTegDaAhHQLnLF1stTUB1fZQoaAZHQKMkaeBg/khoB03oA2gIR0C5zIK11GLDdX2UKGgGR0Cisk0XgtOEaAdN6ANoCEdAuc1QRdyDI3V9lChoBkdAoyEig7HQyGgHTegDaAhHQLnNmOxSpBJ1fZQoaAZHQKMnzOJLuhNoB03oA2gIR0C50QNlVcUudX2UKGgGR0CivX0mdAgQaAdN6ANoCEdAudJl9tuUEHV9lChoBkdAoqPQEfT1CmgHTegDaAhHQLnTP37UG3Z1fZQoaAZHQKKnQ7voePtoB03oA2gIR0C504FhPTG6dX2UKGgGR0ChSoHJtBOYaAdN6ANoCEdAudbtFTefqXV9lChoBkdAoi+kV8CxNmgHTegDaAhHQLnYWsmv4dp1fZQoaAZHQKIndRZU1htoB03oA2gIR0C52SvoA4n4dX2UKGgGR0CgGvFnIyTIaAdN6ANoCEdAudlucXm/33V9lChoBkdAoZ2RRKpT/GgHTegDaAhHQLncxdvsJIF1fZQoaAZHQKJQO45tFa1oB03oA2gIR0C53jweFL39dX2UKGgGR0Cie3Mj3VTaaAdN6ANoCEdAud8LB7/n4nV9lChoBkdAobCPNcGC7WgHTegDaAhHQLnfTxZuAI91fZQoaAZHQKES9Gff4ypoB03oA2gIR0C54v1NYbKidX2UKGgGR0CiySRnnMdMaAdN6ANoCEdAueUka4tpVXV9lChoBkdAolb7jaPCEmgHTegDaAhHQLnmXvl2eQN1fZQoaAZHQKKb3Qj2SMdoB03oA2gIR0C55r01Q66rdX2UKGgGR0CibutEofCAaAdN6ANoCEdAueoUscyWRnV9lChoBkdAohIoR7JGOWgHTegDaAhHQLnrgDSPU8V1fZQoaAZHQKFaJDhtLthoB03oA2gIR0C57FSaVlf7dX2UKGgGR0CimCBnzxwyaAdN6ANoCEdAueyXMFEApHVlLg=="
93
+ },
94
+ "ep_success_buffer": {
95
+ ":type:": "<class 'collections.deque'>",
96
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
97
+ },
98
+ "_n_updates": 50000,
99
+ "n_steps": 10,
100
+ "gamma": 0.99,
101
+ "gae_lambda": 0.9,
102
+ "ent_coef": 0.0,
103
+ "vf_coef": 0.4,
104
+ "max_grad_norm": 0.5,
105
+ "normalize_advantage": false
106
+ }
a2c-AntBulletEnv-v0/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:525191bad4c2db8a6c98f7e121e016e03f019b4b264c15c821dd0db766975279
3
+ size 56190
a2c-AntBulletEnv-v0/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:19fc3da1e2f81ec1b37bc439cf4735190dc2335cbebeaad959591a72e628d652
3
+ size 56958
a2c-AntBulletEnv-v0/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
a2c-AntBulletEnv-v0/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
2
+ - Python: 3.8.10
3
+ - Stable-Baselines3: 1.7.0
4
+ - PyTorch: 1.13.1+cu116
5
+ - GPU Enabled: True
6
+ - Numpy: 1.21.6
7
+ - Gym: 0.21.0
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f5b54f2e4c0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f5b54f2e550>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f5b54f2e5e0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f5b54f2e670>", "_build": "<function ActorCriticPolicy._build at 0x7f5b54f2e700>", "forward": "<function ActorCriticPolicy.forward at 0x7f5b54f2e790>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f5b54f2e820>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f5b54f2e8b0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f5b54f2e940>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f5b54f2e9d0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f5b54f2ea60>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f5b54f2eaf0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f5b54f2f0c0>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1674032379617996489, "learning_rate": 0.0005, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/QGJN0vGp/IWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAL7zmz8aRwk/C+sJP6YEJkDlepq/cfOtv1U1U79S0L+/wMqOPwmGoL+WWnc/TJ+hPwqXiL+SvsE7lyoCP8HtPj5XOX2/6ZHjPp0inj4pk/E+a5SoPEn8Rj/7AQ+/OG4CPxSb178A6w3A/ujjPmdHuL+CVY4/u3pPPu9KED8F0hhAjyD+v14WB0Bbkj+/lZJev/8VWL8OxrU/HnkQv8n07T+LSay+KgFqPyAGGj8n/CU7ZixVP0CIC8DrxJ6/CfqyPUwr+jzv7gs/oWGfP9JV2r8Um9e/2eTmPv7o4z5nR7i/a4lyPqip97x33Qc/yBz7P8HUtMDZ3og/pLkLv9sIPr88May/xDxmPy26rL2rbIO/St6Av0j8qT+hkhk/8qLoP906qT96Yrq+9DzzvnU8wL8YgWa/j6Qjvw23fD8cJ6o/FJvXv9nk5j6mxg/AQtExP7DpcD8IFQo/G8EJP+ecCkBwu8e/zujwP9i3f79xQE6+j970viQbKj83fW8+sOaFP4XCkT74OJO+Yq4ZP3ATcjxGn+i+Z0ENwKdHjr/qK9A/OWmDvIM0Cj/GVKY/TMDdvyj7Fz/Z5OY+/ujjPmdHuL+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAAAaDsg2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAAYDzvQAAAAAha+O/AAAAAPvHuzwAAAAAFvj3PwAAAADEjhc9AAAAALxd3j8AAAAA95K4vQAAAACT1tm/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAASmjNgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgKqVCL0AAAAAIG7yvwAAAACE5Lo8AAAAAMqr7T8AAAAAkR71PQAAAADUn9k/AAAAAG+zTr0AAAAAYiXvvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEWG97YAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIClt7s9AAAAAEGL578AAAAAZC/RvQAAAAA3aPU/AAAAAM9F6b0AAAAAFRr2PwAAAACS3tk8AAAAAIae6r8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA5r+G2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAyFEDPgAAAABiPfq/AAAAADCbUL0AAAAA67T4PwAAAABCN5q9AAAAAFeZ+j8AAAAAw0RYPQAAAABT9PG/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQKI9qT5ftyCMAWyUTegDjAF0lEdAuVl1+iJwbXV9lChoBkdAoQaC5Gz8g2gHTegDaAhHQLla4ItDlYF1fZQoaAZHQKD/R6rvLHNoB03oA2gIR0C5W7XpKSPmdX2UKGgGR0ChGZUcOskqaAdN6ANoCEdAuVv+LEUCaXV9lChoBkdAoh6mTC+De2gHTegDaAhHQLlfZYB/7SB1fZQoaAZHQKB6BqesgdRoB03oA2gIR0C5YNj6zmfXdX2UKGgGR0ChSvhgeA/caAdN6ANoCEdAuWGykJrtV3V9lChoBkdAnQ0nTNMXamgHTegDaAhHQLlh9NFz+3p1fZQoaAZHQKJIAvEjxCpoB03oA2gIR0C5ZVgFcIJJdX2UKGgGR0CiBcuez2OAaAdN6ANoCEdAuWbJ3V09yXV9lChoBkdAocS5TS9dvGgHTegDaAhHQLlnoswtapx1fZQoaAZHQKJFKsEq2BtoB03oA2gIR0C5Z+Qa3qiXdX2UKGgGR0ChMd8A7xNJaAdN6ANoCEdAuWs7wPRRdnV9lChoBkdAoTEiPp6hQGgHTegDaAhHQLlsq1FYuCh1fZQoaAZHQKIm5MX7+DRoB03oA2gIR0C5bX0iMYMwdX2UKGgGR0CiKM3r2QGOaAdN6ANoCEdAuW3CPvKEFnV9lChoBkdAoWDv4Kx9omgHTegDaAhHQLlxHoZhrnF1fZQoaAZHQKGqcBreqJdoB03oA2gIR0C5cpXb212JdX2UKGgGR0ChADeb/ffoaAdN6ANoCEdAuXNm8f3evnV9lChoBkdAoVBHZbpu/GgHTegDaAhHQLlzqJAMUh51fZQoaAZHQKFdwmzjWCpoB03oA2gIR0C5dwHVTaTPdX2UKGgGR0CgTh37+DODaAdN6ANoCEdAuXh0STQmeHV9lChoBkdAoRuxzHS4OWgHTegDaAhHQLl5WIN3GGV1fZQoaAZHQKJHda/RE4NoB03oA2gIR0C5eZvJFLFodX2UKGgGR0CZo9hew9q2aAdN6ANoCEdAuX0Kj59E1HV9lChoBkdAotau4y44ImgHTegDaAhHQLl+buP3i711fZQoaAZHQKJsP3u/k/9oB03oA2gIR0C5fz8g+yJLdX2UKGgGR0Ci7OMMqjJuaAdN6ANoCEdAuX+AIyCWeHV9lChoBkdAot/1lwtJ4GgHTegDaAhHQLmC2nxaxHJ1fZQoaAZHQKIEPIIWxhVoB03oA2gIR0C5hFEHUtqYdX2UKGgGR0CivCLxqfvnaAdN6ANoCEdAuYUmOuJUHnV9lChoBkdAocU96X0GvGgHTegDaAhHQLmFahUR3/x1fZQoaAZHQKHhUQf6oEVoB03oA2gIR0C5iM5+MIeHdX2UKGgGR0ChQP1Aqur7aAdN6ANoCEdAuYpCjCYTkHV9lChoBkdAoc8IIMSbpmgHTegDaAhHQLmLE2qDK5l1fZQoaAZHQKKw0kSmIj5oB03oA2gIR0C5i1lanrIHdX2UKGgGR0CgnX7DVH4HaAdN6ANoCEdAuY7BN+LFXXV9lChoBkdAotfIDklu32gHTegDaAhHQLmQMzqrzXl1fZQoaAZHQKL9lFQVKwpoB03oA2gIR0C5kQJmmLtNdX2UKGgGR0CiZq4G2TgVaAdN6ANoCEdAuZFEU5+6RXV9lChoBkdAohw9gnc+JWgHTegDaAhHQLmUoVi4J/p1fZQoaAZHQKIhzta6jFhoB03oA2gIR0C5lgs7yQPqdX2UKGgGR0CiTXg3tKI0aAdN6ANoCEdAuZbZe0G/vnV9lChoBkdAonmxoRIz32gHTegDaAhHQLmXG1EE1VJ1fZQoaAZHQKKviWDYh+xoB03oA2gIR0C5mo/zvqkedX2UKGgGR0ChwCCuEEkjaAdN6ANoCEdAuZvySW7e23V9lChoBkdAok5fq3VkMGgHTegDaAhHQLmcwSqU/wB1fZQoaAZHQKN1eV3Ux21oB03oA2gIR0C5nQB8x9G7dX2UKGgGR0CiHmyKWLP2aAdN6ANoCEdAuaBRNh3JP3V9lChoBkdAop6lATqSo2gHTegDaAhHQLmhvBcRlH11fZQoaAZHQKM7XgRbr1NoB03oA2gIR0C5opYkiUxEdX2UKGgGR0CiikWPT5O8aAdN6ANoCEdAuaLb7tReknV9lChoBkdAog6Qf8uSOmgHTegDaAhHQLmmQXkYGdJ1fZQoaAZHQKJ/FRLsa89oB03oA2gIR0C5p6t4qwyJdX2UKGgGR0CiQGAkcCHRaAdN6ANoCEdAuah7ww0wanV9lChoBkdAoX1l6mfoR2gHTegDaAhHQLmowzCUHIJ1fZQoaAZHQKHhZSEUTL5oB03oA2gIR0C5rCNVR1oydX2UKGgGR0CiHUtucc2jaAdN6ANoCEdAua2TEvTPSnV9lChoBkdAoiTkqJ/G2mgHTegDaAhHQLmuZOUMXrN1fZQoaAZHQKIHRZf2K2toB03oA2gIR0C5rqeDzyz5dX2UKGgGR0Ch+SKQ7tAtaAdN6ANoCEdAubICJO32EnV9lChoBkdAoVV+5QP7N2gHTegDaAhHQLmzaPC2tuF1fZQoaAZHQKIB7W4mTkhoB03oA2gIR0C5tDntrsSkdX2UKGgGR0Cg9yRK6FufaAdN6ANoCEdAubR7hVENOXV9lChoBkdAobzKr1dxAGgHTegDaAhHQLm323uuzQh1fZQoaAZHQKDP85+YtxxoB03oA2gIR0C5uc4V/MGHdX2UKGgGR0CiVUPzFuNxaAdN6ANoCEdAubsFrvb48HV9lChoBkdAopC8/dIoVmgHTegDaAhHQLm7blUIcBF1fZQoaAZHQJ5u9RqGlANoB03oA2gIR0C5vzZ9Vmz0dX2UKGgGR0CiTAOVHFxXaAdN6ANoCEdAucClxIatLnV9lChoBkdAom1TNOdoWmgHTegDaAhHQLnBd+7UXpJ1fZQoaAZHQKJPSBp5/spoB03oA2gIR0C5wblhgE2YdX2UKGgGR0Cid4LeANG3aAdN6ANoCEdAucUiu7pV0nV9lChoBkdAoqdwYxcmjWgHTegDaAhHQLnGjinHead1fZQoaAZHQKIhDb8m8dxoB03oA2gIR0C5x1+LrHENdX2UKGgGR0CizNW5QP7OaAdN6ANoCEdAucelEw35vnV9lChoBkdAohCAtBfKIWgHTegDaAhHQLnLF1stTUB1fZQoaAZHQKMkaeBg/khoB03oA2gIR0C5zIK11GLDdX2UKGgGR0Cisk0XgtOEaAdN6ANoCEdAuc1QRdyDI3V9lChoBkdAoyEig7HQyGgHTegDaAhHQLnNmOxSpBJ1fZQoaAZHQKMnzOJLuhNoB03oA2gIR0C50QNlVcUudX2UKGgGR0CivX0mdAgQaAdN6ANoCEdAudJl9tuUEHV9lChoBkdAoqPQEfT1CmgHTegDaAhHQLnTP37UG3Z1fZQoaAZHQKKnQ7voePtoB03oA2gIR0C504FhPTG6dX2UKGgGR0ChSoHJtBOYaAdN6ANoCEdAudbtFTefqXV9lChoBkdAoi+kV8CxNmgHTegDaAhHQLnYWsmv4dp1fZQoaAZHQKIndRZU1htoB03oA2gIR0C52SvoA4n4dX2UKGgGR0CgGvFnIyTIaAdN6ANoCEdAudlucXm/33V9lChoBkdAoZ2RRKpT/GgHTegDaAhHQLncxdvsJIF1fZQoaAZHQKJQO45tFa1oB03oA2gIR0C53jweFL39dX2UKGgGR0Cie3Mj3VTaaAdN6ANoCEdAud8LB7/n4nV9lChoBkdAobCPNcGC7WgHTegDaAhHQLnfTxZuAI91fZQoaAZHQKES9Gff4ypoB03oA2gIR0C54v1NYbKidX2UKGgGR0CiySRnnMdMaAdN6ANoCEdAueUka4tpVXV9lChoBkdAolb7jaPCEmgHTegDaAhHQLnmXvl2eQN1fZQoaAZHQKKb3Qj2SMdoB03oA2gIR0C55r01Q66rdX2UKGgGR0CibutEofCAaAdN6ANoCEdAueoUscyWRnV9lChoBkdAohIoR7JGOWgHTegDaAhHQLnrgDSPU8V1fZQoaAZHQKFaJDhtLthoB03oA2gIR0C57FSaVlf7dX2UKGgGR0CimCBnzxwyaAdN6ANoCEdAueyXMFEApHVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 50000, "n_steps": 10, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
replay.mp4 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9e112320d3221d34f8160298451ef02b31e9e97debabf4ac3ce1faabc95ffbbe
3
+ size 1214224
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 2368.623092733743, "std_reward": 205.43048274521746, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-01-18T09:52:03.925439"}
vec_normalize.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:553d8c63491476d55d087d1b0e448ac05cf44b27205acf931ae0eedfd4ac6d49
3
+ size 2521