Dhanraj1503 commited on
Commit
0a9f351
·
verified ·
1 Parent(s): 5e5cd5e

Upload PPO LunarLander-v2 trained agent

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: LunarLander-v2
16
+ type: LunarLander-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 245.61 +/- 22.19
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **PPO** Agent playing **LunarLander-v2**
25
+ This is a trained model of a **PPO** agent playing **LunarLander-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f038d23c4c0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f038d23c550>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f038d23c5e0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f038d23c670>", "_build": "<function ActorCriticPolicy._build at 0x7f038d23c700>", "forward": "<function ActorCriticPolicy.forward at 0x7f038d23c790>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f038d23c820>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f038d23c8b0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f038d23c940>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f038d23c9d0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f038d23ca60>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f038d23caf0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f038d3e33c0>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1705301315155060306, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAGZyNT3sOeO5oiIcO1FvxDVi9ps6IsQ2ugAAgD8AAIA/ZoGSPCnwL7qfApI6K43UtAEMOTsm3Ky5AACAPwAAgD9N7Si9rmWxuiYdnznS7Ge2Xwv7OXNhYbUAAIA/AACAPzOir73Rnn0/SnCoOefUjr7BftG7DiIGugAAAAAAAAAAZuOwvUPGPz1X+CM9hoFsvo3cfbws8oM9AAAAAAAAAADmz489jw4CuusRfTkkg0Q0J1tUu62qkrgAAIA/AACAP2bWuLspHA26+PfvOo9UPjY73wc7zwULugAAgD8AAIA/zbS3u4Wz67mCnZe60AIOtkBatLommrI5AACAPwAAgD/zPCY++A+SP6KpBz0KsqC+9Cc9Ph1FV70AAAAAAAAAAE3Zwz17Lqi6o0/fOSSGUbZfJEE6zoX/uAAAgD8AAIA/AEBuusPVZboCWNY6HLHENQzzMjs+zvq5AACAPwAAgD9mWp69KchFuhadojv3j7M2Ajf2ORdZrzUAAIA/AACAPybmez7XF1o/hzkevucUk77QY4U9uPENvgAAAAAAAAAAc7KqPVz/abqKij45WVy/NKzWdTsDHFu4AACAPwAAgD9mnOS8WNqFPb3v0z0CkMu9xmtbPDZ2LD0AAAAAAAAAAJqKrTyPWky6CrHWOAcKODS7FQk7ktf0twAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVQQwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQGWeIK2KEWaMAWyUTegDjAF0lEdAl516oESuhnV9lChoBkdAZDdAnDziCWgHTegDaAhHQJehnuy/sVt1fZQoaAZHQGSb4vvjOs1oB03oA2gIR0CXpcJ2+wkgdX2UKGgGR0BnAi06YE4eaAdN6ANoCEdAl6u9AcDKYHV9lChoBkdAYT1o7muDBmgHTegDaAhHQJewSI+GGmF1fZQoaAZHQGK1rFXJYDFoB03oA2gIR0CXscRq46OpdX2UKGgGR0BlCifvnbItaAdN6ANoCEdAl7bNfTkQw3V9lChoBkdAYZ48scyWRmgHTegDaAhHQJe9Sh8IAwR1fZQoaAZHQGH3tX5nDixoB03oA2gIR0CXwDsGxD9gdX2UKGgGR0BgKmKyfL9uaAdN6ANoCEdAl8BcejmCAnV9lChoBkdAYhLZZB9kSWgHTegDaAhHQJfB++dsi0R1fZQoaAZHQGAeRzijtXxoB03oA2gIR0CXxa6vaDf4dX2UKGgGR0BeHG0qpcX4aAdN6ANoCEdAl96CYTj//HV9lChoBkdAZBE8wHqu82gHTegDaAhHQJfeuvkili11fZQoaAZHQGKPOq3mV7hoB03oA2gIR0CX58pm29csdX2UKGgGR0BmOhtgrpaBaAdN6ANoCEdAl+0lqrR0EHV9lChoBkdAWcUgQpWmxmgHTegDaAhHQJfxVrVOKwZ1fZQoaAZHQGOofUnXumdoB03oA2gIR0CX9NVTrE9/dX2UKGgGR0BezeOjqOcUaAdN6ANoCEdAl/iCCBf8dnV9lChoBkdAYYd9qDbrT2gHTegDaAhHQJf951klNUR1fZQoaAZHQGOK/EfkmyBoB03oA2gIR0CYAiWu5jH5dX2UKGgGR0BbWojv/io9aAdN6ANoCEdAmANv24/eL3V9lChoBkdAZM0X40uUU2gHTegDaAhHQJgG9RR/EwZ1fZQoaAZHQGGyxmTTvy9oB03oA2gIR0CYC+HB1s+FdX2UKGgGR0Bi1qZtvXK9aAdN6ANoCEdAmA7h2wFC9nV9lChoBkdAY5RNke6qbWgHTegDaAhHQJgPAj9n9Nx1fZQoaAZHQGPanGKhtchoB03oA2gIR0CYELnYQJ5WdX2UKGgGR0A1vGJvYODraAdNGQFoCEdAmBNFuaWonHV9lChoBkdAZRVIJZ4fOmgHTegDaAhHQJgUruXu3MJ1fZQoaAZHQGFfs6q814xoB03oA2gIR0CYMUX+2mYTdX2UKGgGR0BjOv/zasZHaAdN6ANoCEdAmDGPQWvbGnV9lChoBkdAYyaMo+fRNWgHTegDaAhHQJg7Qg9vCMx1fZQoaAZHQGOhkJKJ2uBoB03oA2gIR0CYP/iR4hUzdX2UKGgGR0BimXjU/fO2aAdN6ANoCEdAmEOpjDsMRnV9lChoBkdAZMIYa5wwTWgHTegDaAhHQJhHe+K0lZ51fZQoaAZHQGWKVe8f3exoB03oA2gIR0CYS0pIMBp6dX2UKGgGR0Bg7KLEUCaJaAdN6ANoCEdAmFKTxLCemXV9lChoBkdAZZ+Nc4YJmmgHTegDaAhHQJhZCWzF+/h1fZQoaAZHQGMJqd6LOzJoB03oA2gIR0CYXHHvMKTjdX2UKGgGR0BiaSrHU+cIaAdN6ANoCEdAmGEeJxeb/nV9lChoBkdAZDmQPI4lyGgHTegDaAhHQJhkCROk+HJ1fZQoaAZHQGKJgmJFb3ZoB03oA2gIR0CYZCYxcmjTdX2UKGgGR0BlyOszVMEiaAdN6ANoCEdAmGWvZVXFLnV9lChoBkdAYdOOpbUwz2gHTegDaAhHQJhn8sGxD9h1fZQoaAZHQGWWY4hllK9oB03oA2gIR0CYaSOuq3mWdX2UKGgGR0A9GM8ox59maAdNHwFoCEdAmHA/Tw2ETXV9lChoBkdAZez27FsHjmgHTegDaAhHQJhwoYZVGTd1fZQoaAZHQGJ3tF8XvYxoB03oA2gIR0CYcNinYQJ5dX2UKGgGR0BDoI73fyf+aAdNCQFoCEdAmIkeUyHmBHV9lChoBkdAYiXaHsTnJWgHTegDaAhHQJiMgSyt3fR1fZQoaAZHQGjTiJoCdSVoB03oA2gIR0CYkC+RoysTdX2UKGgGR0BmYRIQOFxoaAdN6ANoCEdAmJMbl/6O53V9lChoBkdAZU4BpYcNpmgHTegDaAhHQJiWb6nBLwp1fZQoaAZHQGC24y44Ia9oB03oA2gIR0CYmfMDOkckdX2UKGgGR0BCx5N47ihnaAdL9WgIR0CYmhaHKwIMdX2UKGgGR0BgkYaJhvzfaAdN6ANoCEdAmJ7tkJ8fFXV9lChoBkdAZWNWeYlY2mgHTegDaAhHQJij+uW8h9t1fZQoaAZHQGaeuyu6mO5oB03oA2gIR0CYp3R3u/lAdX2UKGgGR0Bt9hQemvW6aAdNgANoCEdAmKjnrUsnRnV9lChoBkdAXMULeANG3GgHTegDaAhHQJivA6/7BO51fZQoaAZHQGNLgeA/cFhoB03oA2gIR0CYsOLZSNwSdX2UKGgGR0BQGcfJV81GaAdL12gIR0CYtPNR3u/ldX2UKGgGR0Bk4WuJUHY6aAdN6ANoCEdAmLXwG4ZuRHV9lChoBkdAXO0wDeTFEWgHTegDaAhHQJjAWY+jdpJ1fZQoaAZHQGY7aaTfR/poB03oA2gIR0CYwMMH8jzJdX2UKGgGR0Bef2WyC4BnaAdN6ANoCEdAmMD8t9QXRHV9lChoBkdAYQxjAi3XqmgHTegDaAhHQJjXEFUyYXx1fZQoaAZHQGQDhvitJWhoB03oA2gIR0CY3lv863iJdX2UKGgGR0BiIXyup0fYaAdN6ANoCEdAmOHA3gk1M3V9lChoBkdAYtJu3trsSmgHTegDaAhHQJjlY3tKIzp1fZQoaAZHQElqfh/Aj6hoB00HAWgIR0CY517pV0cPdX2UKGgGR0BnkpppN9H+aAdN6ANoCEdAmOoFoxpL3HV9lChoBkdAXwk0sOG0u2gHTegDaAhHQJjqLdi2Dxt1fZQoaAZHQGUaQwCbMHNoB03oA2gIR0CY8Dc/+sHTdX2UKGgGR0Bh4zfDUExJaAdN6ANoCEdAmPTmiDdxhnV9lChoBkdASKgEdNnGsGgHS/9oCEdAmPlS08eS0XV9lChoBkdAZXzMY/FBIGgHTegDaAhHQJj5YY/FBIF1fZQoaAZHQGDcn2AXl8xoB03oA2gIR0CY/yZE2HcldX2UKGgGR0Bb2GD6Fds0aAdN6ANoCEdAmQD6mCROlHV9lChoBkdAX0oSXdCVr2gHTegDaAhHQJkEJ2JSBLB1fZQoaAZHQGUCODJ2dNFoB03oA2gIR0CZBNSde6ZqdX2UKGgGR0BlITPMSsbOaAdN6ANoCEdAmQxgXZXdTHV9lChoBkdAYSauFpPAPGgHTegDaAhHQJkMxegL7XR1fZQoaAZHQGA9Ng8bJfZoB03oA2gIR0CZDPqPOpsHdX2UKGgGR0BhJg/mknCwaAdN6ANoCEdAmSyuN96Tn3V9lChoBkdAY/7A/LTx5WgHTegDaAhHQJkwVoK2KEZ1fZQoaAZHQF6VMHbAUL5oB03oA2gIR0CZNCgkC3gDdX2UKGgGR0Bh571wo9cKaAdN6ANoCEdAmTXDguRLb3V9lChoBkdAZT29qUNayWgHTegDaAhHQJk34rUb1h91fZQoaAZHQGPlX6AOJ+FoB03oA2gIR0CZPS1cdHUddX2UKGgGR0BirU5yU9pzaAdN6ANoCEdAmUKa0x/NJXV9lChoBkdAZh9t/nW8RWgHTegDaAhHQJlHkvK2a2F1fZQoaAZHQGRFFOwgTytoB03oA2gIR0CZR6JYDDCQdX2UKGgGR0BesZPykKu0aAdN6ANoCEdAmU686FM7EHV9lChoBkdAYFl0se4kNWgHTegDaAhHQJlRbZ26kIp1fZQoaAZHQGN7OxB3RohoB03oA2gIR0CZVf9RrJr+dX2UKGgGR0BixDxd6cAjaAdN6ANoCEdAmVb5bILgGnV9lChoBkdAYaSFGG21D2gHTegDaAhHQJlfVHlOoHd1fZQoaAZHQGAsKLsKLKpoB03oA2gIR0CZX76jFhoedX2UKGgGR0BjfOPT5O8DaAdN6ANoCEdAmV/6BRQ793VlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.58+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Sat Nov 18 15:31:17 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.1.0+cu121", "GPU Enabled": "True", "Numpy": "1.23.5", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
ppo-LunarLander-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:caab5cf809ce7d8fc0df228f0f2e16d90428dcad31bad99d035788f5b4baa344
3
+ size 148068
ppo-LunarLander-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 2.0.0a5
ppo-LunarLander-v2/data ADDED
@@ -0,0 +1,99 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f038d23c4c0>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f038d23c550>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f038d23c5e0>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f038d23c670>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f038d23c700>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f038d23c790>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f038d23c820>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f038d23c8b0>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f038d23c940>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f038d23c9d0>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f038d23ca60>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f038d23caf0>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc._abc_data object at 0x7f038d3e33c0>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {},
24
+ "num_timesteps": 1015808,
25
+ "_total_timesteps": 1000000,
26
+ "_num_timesteps_at_start": 0,
27
+ "seed": null,
28
+ "action_noise": null,
29
+ "start_time": 1705301315155060306,
30
+ "learning_rate": 0.0003,
31
+ "tensorboard_log": null,
32
+ "_last_obs": {
33
+ ":type:": "<class 'numpy.ndarray'>",
34
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAGZyNT3sOeO5oiIcO1FvxDVi9ps6IsQ2ugAAgD8AAIA/ZoGSPCnwL7qfApI6K43UtAEMOTsm3Ky5AACAPwAAgD9N7Si9rmWxuiYdnznS7Ge2Xwv7OXNhYbUAAIA/AACAPzOir73Rnn0/SnCoOefUjr7BftG7DiIGugAAAAAAAAAAZuOwvUPGPz1X+CM9hoFsvo3cfbws8oM9AAAAAAAAAADmz489jw4CuusRfTkkg0Q0J1tUu62qkrgAAIA/AACAP2bWuLspHA26+PfvOo9UPjY73wc7zwULugAAgD8AAIA/zbS3u4Wz67mCnZe60AIOtkBatLommrI5AACAPwAAgD/zPCY++A+SP6KpBz0KsqC+9Cc9Ph1FV70AAAAAAAAAAE3Zwz17Lqi6o0/fOSSGUbZfJEE6zoX/uAAAgD8AAIA/AEBuusPVZboCWNY6HLHENQzzMjs+zvq5AACAPwAAgD9mWp69KchFuhadojv3j7M2Ajf2ORdZrzUAAIA/AACAPybmez7XF1o/hzkevucUk77QY4U9uPENvgAAAAAAAAAAc7KqPVz/abqKij45WVy/NKzWdTsDHFu4AACAPwAAgD9mnOS8WNqFPb3v0z0CkMu9xmtbPDZ2LD0AAAAAAAAAAJqKrTyPWky6CrHWOAcKODS7FQk7ktf0twAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
35
+ },
36
+ "_last_episode_starts": {
37
+ ":type:": "<class 'numpy.ndarray'>",
38
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
39
+ },
40
+ "_last_original_obs": null,
41
+ "_episode_num": 0,
42
+ "use_sde": false,
43
+ "sde_sample_freq": -1,
44
+ "_current_progress_remaining": -0.015808000000000044,
45
+ "_stats_window_size": 100,
46
+ "ep_info_buffer": {
47
+ ":type:": "<class 'collections.deque'>",
48
+ ":serialized:": "gAWVQQwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQGWeIK2KEWaMAWyUTegDjAF0lEdAl516oESuhnV9lChoBkdAZDdAnDziCWgHTegDaAhHQJehnuy/sVt1fZQoaAZHQGSb4vvjOs1oB03oA2gIR0CXpcJ2+wkgdX2UKGgGR0BnAi06YE4eaAdN6ANoCEdAl6u9AcDKYHV9lChoBkdAYT1o7muDBmgHTegDaAhHQJewSI+GGmF1fZQoaAZHQGK1rFXJYDFoB03oA2gIR0CXscRq46OpdX2UKGgGR0BlCifvnbItaAdN6ANoCEdAl7bNfTkQw3V9lChoBkdAYZ48scyWRmgHTegDaAhHQJe9Sh8IAwR1fZQoaAZHQGH3tX5nDixoB03oA2gIR0CXwDsGxD9gdX2UKGgGR0BgKmKyfL9uaAdN6ANoCEdAl8BcejmCAnV9lChoBkdAYhLZZB9kSWgHTegDaAhHQJfB++dsi0R1fZQoaAZHQGAeRzijtXxoB03oA2gIR0CXxa6vaDf4dX2UKGgGR0BeHG0qpcX4aAdN6ANoCEdAl96CYTj//HV9lChoBkdAZBE8wHqu82gHTegDaAhHQJfeuvkili11fZQoaAZHQGKPOq3mV7hoB03oA2gIR0CX58pm29csdX2UKGgGR0BmOhtgrpaBaAdN6ANoCEdAl+0lqrR0EHV9lChoBkdAWcUgQpWmxmgHTegDaAhHQJfxVrVOKwZ1fZQoaAZHQGOofUnXumdoB03oA2gIR0CX9NVTrE9/dX2UKGgGR0BezeOjqOcUaAdN6ANoCEdAl/iCCBf8dnV9lChoBkdAYYd9qDbrT2gHTegDaAhHQJf951klNUR1fZQoaAZHQGOK/EfkmyBoB03oA2gIR0CYAiWu5jH5dX2UKGgGR0BbWojv/io9aAdN6ANoCEdAmANv24/eL3V9lChoBkdAZM0X40uUU2gHTegDaAhHQJgG9RR/EwZ1fZQoaAZHQGGyxmTTvy9oB03oA2gIR0CYC+HB1s+FdX2UKGgGR0Bi1qZtvXK9aAdN6ANoCEdAmA7h2wFC9nV9lChoBkdAY5RNke6qbWgHTegDaAhHQJgPAj9n9Nx1fZQoaAZHQGPanGKhtchoB03oA2gIR0CYELnYQJ5WdX2UKGgGR0A1vGJvYODraAdNGQFoCEdAmBNFuaWonHV9lChoBkdAZRVIJZ4fOmgHTegDaAhHQJgUruXu3MJ1fZQoaAZHQGFfs6q814xoB03oA2gIR0CYMUX+2mYTdX2UKGgGR0BjOv/zasZHaAdN6ANoCEdAmDGPQWvbGnV9lChoBkdAYyaMo+fRNWgHTegDaAhHQJg7Qg9vCMx1fZQoaAZHQGOhkJKJ2uBoB03oA2gIR0CYP/iR4hUzdX2UKGgGR0BimXjU/fO2aAdN6ANoCEdAmEOpjDsMRnV9lChoBkdAZMIYa5wwTWgHTegDaAhHQJhHe+K0lZ51fZQoaAZHQGWKVe8f3exoB03oA2gIR0CYS0pIMBp6dX2UKGgGR0Bg7KLEUCaJaAdN6ANoCEdAmFKTxLCemXV9lChoBkdAZZ+Nc4YJmmgHTegDaAhHQJhZCWzF+/h1fZQoaAZHQGMJqd6LOzJoB03oA2gIR0CYXHHvMKTjdX2UKGgGR0BiaSrHU+cIaAdN6ANoCEdAmGEeJxeb/nV9lChoBkdAZDmQPI4lyGgHTegDaAhHQJhkCROk+HJ1fZQoaAZHQGKJgmJFb3ZoB03oA2gIR0CYZCYxcmjTdX2UKGgGR0BlyOszVMEiaAdN6ANoCEdAmGWvZVXFLnV9lChoBkdAYdOOpbUwz2gHTegDaAhHQJhn8sGxD9h1fZQoaAZHQGWWY4hllK9oB03oA2gIR0CYaSOuq3mWdX2UKGgGR0A9GM8ox59maAdNHwFoCEdAmHA/Tw2ETXV9lChoBkdAZez27FsHjmgHTegDaAhHQJhwoYZVGTd1fZQoaAZHQGJ3tF8XvYxoB03oA2gIR0CYcNinYQJ5dX2UKGgGR0BDoI73fyf+aAdNCQFoCEdAmIkeUyHmBHV9lChoBkdAYiXaHsTnJWgHTegDaAhHQJiMgSyt3fR1fZQoaAZHQGjTiJoCdSVoB03oA2gIR0CYkC+RoysTdX2UKGgGR0BmYRIQOFxoaAdN6ANoCEdAmJMbl/6O53V9lChoBkdAZU4BpYcNpmgHTegDaAhHQJiWb6nBLwp1fZQoaAZHQGC24y44Ia9oB03oA2gIR0CYmfMDOkckdX2UKGgGR0BCx5N47ihnaAdL9WgIR0CYmhaHKwIMdX2UKGgGR0BgkYaJhvzfaAdN6ANoCEdAmJ7tkJ8fFXV9lChoBkdAZWNWeYlY2mgHTegDaAhHQJij+uW8h9t1fZQoaAZHQGaeuyu6mO5oB03oA2gIR0CYp3R3u/lAdX2UKGgGR0Bt9hQemvW6aAdNgANoCEdAmKjnrUsnRnV9lChoBkdAXMULeANG3GgHTegDaAhHQJivA6/7BO51fZQoaAZHQGNLgeA/cFhoB03oA2gIR0CYsOLZSNwSdX2UKGgGR0BQGcfJV81GaAdL12gIR0CYtPNR3u/ldX2UKGgGR0Bk4WuJUHY6aAdN6ANoCEdAmLXwG4ZuRHV9lChoBkdAXO0wDeTFEWgHTegDaAhHQJjAWY+jdpJ1fZQoaAZHQGY7aaTfR/poB03oA2gIR0CYwMMH8jzJdX2UKGgGR0Bef2WyC4BnaAdN6ANoCEdAmMD8t9QXRHV9lChoBkdAYQxjAi3XqmgHTegDaAhHQJjXEFUyYXx1fZQoaAZHQGQDhvitJWhoB03oA2gIR0CY3lv863iJdX2UKGgGR0BiIXyup0fYaAdN6ANoCEdAmOHA3gk1M3V9lChoBkdAYtJu3trsSmgHTegDaAhHQJjlY3tKIzp1fZQoaAZHQElqfh/Aj6hoB00HAWgIR0CY517pV0cPdX2UKGgGR0BnkpppN9H+aAdN6ANoCEdAmOoFoxpL3HV9lChoBkdAXwk0sOG0u2gHTegDaAhHQJjqLdi2Dxt1fZQoaAZHQGUaQwCbMHNoB03oA2gIR0CY8Dc/+sHTdX2UKGgGR0Bh4zfDUExJaAdN6ANoCEdAmPTmiDdxhnV9lChoBkdASKgEdNnGsGgHS/9oCEdAmPlS08eS0XV9lChoBkdAZXzMY/FBIGgHTegDaAhHQJj5YY/FBIF1fZQoaAZHQGDcn2AXl8xoB03oA2gIR0CY/yZE2HcldX2UKGgGR0Bb2GD6Fds0aAdN6ANoCEdAmQD6mCROlHV9lChoBkdAX0oSXdCVr2gHTegDaAhHQJkEJ2JSBLB1fZQoaAZHQGUCODJ2dNFoB03oA2gIR0CZBNSde6ZqdX2UKGgGR0BlITPMSsbOaAdN6ANoCEdAmQxgXZXdTHV9lChoBkdAYSauFpPAPGgHTegDaAhHQJkMxegL7XR1fZQoaAZHQGA9Ng8bJfZoB03oA2gIR0CZDPqPOpsHdX2UKGgGR0BhJg/mknCwaAdN6ANoCEdAmSyuN96Tn3V9lChoBkdAY/7A/LTx5WgHTegDaAhHQJkwVoK2KEZ1fZQoaAZHQF6VMHbAUL5oB03oA2gIR0CZNCgkC3gDdX2UKGgGR0Bh571wo9cKaAdN6ANoCEdAmTXDguRLb3V9lChoBkdAZT29qUNayWgHTegDaAhHQJk34rUb1h91fZQoaAZHQGPlX6AOJ+FoB03oA2gIR0CZPS1cdHUddX2UKGgGR0BirU5yU9pzaAdN6ANoCEdAmUKa0x/NJXV9lChoBkdAZh9t/nW8RWgHTegDaAhHQJlHkvK2a2F1fZQoaAZHQGRFFOwgTytoB03oA2gIR0CZR6JYDDCQdX2UKGgGR0BesZPykKu0aAdN6ANoCEdAmU686FM7EHV9lChoBkdAYFl0se4kNWgHTegDaAhHQJlRbZ26kIp1fZQoaAZHQGN7OxB3RohoB03oA2gIR0CZVf9RrJr+dX2UKGgGR0BixDxd6cAjaAdN6ANoCEdAmVb5bILgGnV9lChoBkdAYaSFGG21D2gHTegDaAhHQJlfVHlOoHd1fZQoaAZHQGAsKLsKLKpoB03oA2gIR0CZX76jFhoedX2UKGgGR0BjfOPT5O8DaAdN6ANoCEdAmV/6BRQ793VlLg=="
49
+ },
50
+ "ep_success_buffer": {
51
+ ":type:": "<class 'collections.deque'>",
52
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
53
+ },
54
+ "_n_updates": 248,
55
+ "observation_space": {
56
+ ":type:": "<class 'gymnasium.spaces.box.Box'>",
57
+ ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
58
+ "dtype": "float32",
59
+ "bounded_below": "[ True True True True True True True True]",
60
+ "bounded_above": "[ True True True True True True True True]",
61
+ "_shape": [
62
+ 8
63
+ ],
64
+ "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
65
+ "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
66
+ "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
67
+ "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
68
+ "_np_random": null
69
+ },
70
+ "action_space": {
71
+ ":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
72
+ ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=",
73
+ "n": "4",
74
+ "start": "0",
75
+ "_shape": [],
76
+ "dtype": "int64",
77
+ "_np_random": null
78
+ },
79
+ "n_envs": 16,
80
+ "n_steps": 1024,
81
+ "gamma": 0.999,
82
+ "gae_lambda": 0.98,
83
+ "ent_coef": 0.01,
84
+ "vf_coef": 0.5,
85
+ "max_grad_norm": 0.5,
86
+ "batch_size": 64,
87
+ "n_epochs": 4,
88
+ "clip_range": {
89
+ ":type:": "<class 'function'>",
90
+ ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
91
+ },
92
+ "clip_range_vf": null,
93
+ "normalize_advantage": true,
94
+ "target_kl": null,
95
+ "lr_schedule": {
96
+ ":type:": "<class 'function'>",
97
+ ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
98
+ }
99
+ }
ppo-LunarLander-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5eec0753ad0fbda570500d38003817c3b356f714617890ed5568a3206112ba1e
3
+ size 88362
ppo-LunarLander-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:491fd3d789ca531fce850092a6cb5ff99e6f9df2a848edd7954f979dd9e8d4e6
3
+ size 43762
ppo-LunarLander-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0c35cea3b2e60fb5e7e162d3592df775cd400e575a31c72f359fb9e654ab00c5
3
+ size 864
ppo-LunarLander-v2/system_info.txt ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ - OS: Linux-6.1.58+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Sat Nov 18 15:31:17 UTC 2023
2
+ - Python: 3.10.12
3
+ - Stable-Baselines3: 2.0.0a5
4
+ - PyTorch: 2.1.0+cu121
5
+ - GPU Enabled: True
6
+ - Numpy: 1.23.5
7
+ - Cloudpickle: 2.2.1
8
+ - Gymnasium: 0.28.1
9
+ - OpenAI Gym: 0.25.2
replay.mp4 ADDED
Binary file (196 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 245.61088329999998, "std_reward": 22.190557108010843, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2024-01-15T07:22:21.886491"}