update model card README.md
Browse files
emotion_detection_conversations/README.md
ADDED
@@ -0,0 +1,74 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
tags:
|
4 |
+
- simplification
|
5 |
+
- generated_from_trainer
|
6 |
+
metrics:
|
7 |
+
- precision
|
8 |
+
- recall
|
9 |
+
- f1
|
10 |
+
model-index:
|
11 |
+
- name: emotion_detection_conversations
|
12 |
+
results: []
|
13 |
+
---
|
14 |
+
|
15 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
16 |
+
should probably proofread and complete it, then remove this comment. -->
|
17 |
+
|
18 |
+
# emotion_detection_conversations
|
19 |
+
|
20 |
+
This model is a fine-tuned version of [distilbert-base-uncased-finetuned-sst-2-english](https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english) on the None dataset.
|
21 |
+
It achieves the following results on the evaluation set:
|
22 |
+
- Loss: 9.3107
|
23 |
+
- Precision: 0.1293
|
24 |
+
- Recall: 0.1319
|
25 |
+
- F1: 0.0835
|
26 |
+
|
27 |
+
## Model description
|
28 |
+
|
29 |
+
More information needed
|
30 |
+
|
31 |
+
## Intended uses & limitations
|
32 |
+
|
33 |
+
More information needed
|
34 |
+
|
35 |
+
## Training and evaluation data
|
36 |
+
|
37 |
+
More information needed
|
38 |
+
|
39 |
+
## Training procedure
|
40 |
+
|
41 |
+
### Training hyperparameters
|
42 |
+
|
43 |
+
The following hyperparameters were used during training:
|
44 |
+
- learning_rate: 5e-05
|
45 |
+
- train_batch_size: 16
|
46 |
+
- eval_batch_size: 16
|
47 |
+
- seed: 42
|
48 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
49 |
+
- lr_scheduler_type: linear
|
50 |
+
- lr_scheduler_warmup_ratio: 0.1
|
51 |
+
- num_epochs: 10
|
52 |
+
|
53 |
+
### Training results
|
54 |
+
|
55 |
+
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 |
|
56 |
+
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|
|
57 |
+
| No log | 1.0 | 151 | 3.8943 | 0.0239 | 0.0789 | 0.0352 |
|
58 |
+
| No log | 2.0 | 302 | 4.8539 | 0.0666 | 0.0717 | 0.0585 |
|
59 |
+
| No log | 3.0 | 453 | 5.8488 | 0.0534 | 0.1240 | 0.0679 |
|
60 |
+
| 1.3425 | 4.0 | 604 | 6.7323 | 0.1186 | 0.1234 | 0.0753 |
|
61 |
+
| 1.3425 | 5.0 | 755 | 7.5279 | 0.0712 | 0.1343 | 0.0680 |
|
62 |
+
| 1.3425 | 6.0 | 906 | 7.9147 | 0.0858 | 0.1239 | 0.0774 |
|
63 |
+
| 0.331 | 7.0 | 1057 | 8.5365 | 0.0961 | 0.1386 | 0.0821 |
|
64 |
+
| 0.331 | 8.0 | 1208 | 8.9932 | 0.1065 | 0.1447 | 0.0882 |
|
65 |
+
| 0.331 | 9.0 | 1359 | 9.3523 | 0.1292 | 0.1319 | 0.0831 |
|
66 |
+
| 0.1291 | 10.0 | 1510 | 9.3107 | 0.1293 | 0.1319 | 0.0835 |
|
67 |
+
|
68 |
+
|
69 |
+
### Framework versions
|
70 |
+
|
71 |
+
- Transformers 4.27.2
|
72 |
+
- Pytorch 1.13.1+cu116
|
73 |
+
- Datasets 2.10.1
|
74 |
+
- Tokenizers 0.13.2
|