|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""Tokenization Fast class for InternLM."""
|
|
import os
|
|
from shutil import copyfile
|
|
from typing import Any, Dict, Optional, Tuple
|
|
|
|
from tokenizers import Tokenizer, decoders, normalizers, processors
|
|
from tokenizers.models import BPE
|
|
from transformers.convert_slow_tokenizer import (SLOW_TO_FAST_CONVERTERS,
|
|
SentencePieceExtractor,
|
|
SpmConverter)
|
|
from transformers.tokenization_utils_fast import PreTrainedTokenizerFast
|
|
from transformers.utils import logging
|
|
|
|
from .tokenization_internlm2 import InternLM2Tokenizer
|
|
|
|
logger = logging.get_logger(__name__)
|
|
|
|
VOCAB_FILES_NAMES = {'vocab_file': './tokenizer.model'}
|
|
|
|
|
|
|
|
class InternLM2Converter(SpmConverter):
|
|
handle_byte_fallback = True
|
|
|
|
def vocab(self, proto):
|
|
vocab = [
|
|
('<unk>', 0.0),
|
|
('<s>', 0.0),
|
|
('</s>', 0.0),
|
|
]
|
|
vocab += [(piece.piece, piece.score) for piece in proto.pieces[3:]]
|
|
return vocab
|
|
|
|
def unk_id(self, proto):
|
|
unk_id = 0
|
|
return unk_id
|
|
|
|
def decoder(self, replacement, add_prefix_space):
|
|
return decoders.Sequence(
|
|
[
|
|
decoders.Replace('▁', ' '),
|
|
decoders.ByteFallback(),
|
|
decoders.Fuse(),
|
|
decoders.Strip(content=' ', left=1),
|
|
]
|
|
)
|
|
|
|
def tokenizer(self, proto):
|
|
model_type = proto.trainer_spec.model_type
|
|
vocab_scores = self.vocab(proto)
|
|
|
|
added_tokens = self.original_tokenizer.added_tokens_decoder
|
|
for i in range(len(vocab_scores)):
|
|
piece, score = vocab_scores[i]
|
|
if i in added_tokens:
|
|
vocab_scores[i] = (added_tokens[i].content, score)
|
|
if model_type == 1:
|
|
raise RuntimeError('InternLM2 is supposed to be a BPE model!')
|
|
|
|
elif model_type == 2:
|
|
_, merges = SentencePieceExtractor(self.original_tokenizer.vocab_file).extract(vocab_scores)
|
|
bpe_vocab = {word: i for i, (word, _score) in enumerate(vocab_scores)}
|
|
tokenizer = Tokenizer(
|
|
BPE(bpe_vocab, merges, unk_token=proto.trainer_spec.unk_piece, fuse_unk=True, byte_fallback=True)
|
|
)
|
|
tokenizer.add_special_tokens(
|
|
[ added_token for index, added_token in added_tokens.items()]
|
|
)
|
|
else:
|
|
raise Exception(
|
|
"You're trying to run a `Unigram` model but you're file was trained with a different algorithm"
|
|
)
|
|
|
|
return tokenizer
|
|
|
|
def normalizer(self, proto):
|
|
normalizers_list = []
|
|
if proto.normalizer_spec.add_dummy_prefix:
|
|
normalizers_list.append(normalizers.Prepend(prepend='▁'))
|
|
normalizers_list.append(normalizers.Replace(pattern=' ', content='▁'))
|
|
return normalizers.Sequence(normalizers_list)
|
|
|
|
def pre_tokenizer(self, replacement, add_prefix_space):
|
|
return None
|
|
|
|
|
|
SLOW_TO_FAST_CONVERTERS['InternLM2Tokenizer'] = InternLM2Converter
|
|
|
|
|
|
|
|
class InternLM2TokenizerFast(PreTrainedTokenizerFast):
|
|
vocab_files_names = VOCAB_FILES_NAMES
|
|
slow_tokenizer_class = InternLM2Tokenizer
|
|
padding_side = 'left'
|
|
model_input_names = ['input_ids', 'attention_mask']
|
|
_auto_class = 'AutoTokenizer'
|
|
|
|
def __init__(
|
|
self,
|
|
vocab_file,
|
|
unk_token='<unk>',
|
|
bos_token='<s>',
|
|
eos_token='</s>',
|
|
pad_token='</s>',
|
|
sp_model_kwargs: Optional[Dict[str, Any]] = None,
|
|
add_bos_token=True,
|
|
add_eos_token=False,
|
|
decode_with_prefix_space=False,
|
|
clean_up_tokenization_spaces=False,
|
|
**kwargs,
|
|
):
|
|
super().__init__(
|
|
vocab_file=vocab_file,
|
|
unk_token=unk_token,
|
|
bos_token=bos_token,
|
|
eos_token=eos_token,
|
|
pad_token=pad_token,
|
|
sp_model_kwargs=sp_model_kwargs,
|
|
add_bos_token=add_bos_token,
|
|
add_eos_token=add_eos_token,
|
|
decode_with_prefix_space=decode_with_prefix_space,
|
|
clean_up_tokenization_spaces=clean_up_tokenization_spaces,
|
|
**kwargs,
|
|
)
|
|
self._add_bos_token = add_bos_token
|
|
self._add_eos_token = add_eos_token
|
|
self.update_post_processor()
|
|
self.vocab_file = vocab_file
|
|
|
|
@property
|
|
def can_save_slow_tokenizer(self) -> bool:
|
|
return os.path.isfile(self.vocab_file) if self.vocab_file else False
|
|
|
|
def update_post_processor(self):
|
|
"""
|
|
Updates the underlying post processor with the current `bos_token` and `eos_token`.
|
|
"""
|
|
bos = self.bos_token
|
|
bos_token_id = self.bos_token_id
|
|
if bos is None and self.add_bos_token:
|
|
raise ValueError('add_bos_token = True but bos_token = None')
|
|
|
|
eos = self.eos_token
|
|
eos_token_id = self.eos_token_id
|
|
if eos is None and self.add_eos_token:
|
|
raise ValueError('add_eos_token = True but eos_token = None')
|
|
|
|
single = f"{(bos+':0 ') if self.add_bos_token else ''}$A:0{(' '+eos+':0') if self.add_eos_token else ''}"
|
|
pair = f"{single}{(' '+bos+':1') if self.add_bos_token else ''} $B:1{(' '+eos+':1') if self.add_eos_token else ''}"
|
|
|
|
special_tokens = []
|
|
if self.add_bos_token:
|
|
special_tokens.append((bos, bos_token_id))
|
|
if self.add_eos_token:
|
|
special_tokens.append((eos, eos_token_id))
|
|
self._tokenizer.post_processor = processors.TemplateProcessing(
|
|
single=single, pair=pair, special_tokens=special_tokens
|
|
)
|
|
|
|
@property
|
|
def add_eos_token(self):
|
|
return self._add_eos_token
|
|
|
|
@property
|
|
def add_bos_token(self):
|
|
return self._add_bos_token
|
|
|
|
@add_eos_token.setter
|
|
def add_eos_token(self, value):
|
|
self._add_eos_token = value
|
|
self.update_post_processor()
|
|
|
|
@add_bos_token.setter
|
|
def add_bos_token(self, value):
|
|
self._add_bos_token = value
|
|
self.update_post_processor()
|
|
|
|
def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]:
|
|
if not self.can_save_slow_tokenizer:
|
|
raise ValueError(
|
|
'Your fast tokenizer does not have the necessary information to save the vocabulary for a slow '
|
|
'tokenizer.'
|
|
)
|
|
|
|
if not os.path.isdir(save_directory):
|
|
logger.error(f'Vocabulary path ({save_directory}) should be a directory')
|
|
return
|
|
out_vocab_file = os.path.join(
|
|
save_directory, (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file']
|
|
)
|
|
|
|
if os.path.abspath(self.vocab_file) != os.path.abspath(out_vocab_file):
|
|
copyfile(self.vocab_file, out_vocab_file)
|
|
|
|
return (out_vocab_file,)
|
|
|