Update README.md
Browse files
README.md
CHANGED
@@ -15,44 +15,47 @@ base_model:
|
|
15 |
- glasses/densenet201
|
16 |
pipeline_tag: image-segmentation
|
17 |
model-index:
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
|
|
|
|
|
|
56 |
---
|
57 |
|
58 |
A precise segmentation model trained on the ISIC2016 and 2017 datasets. Throws an accuracy of 98.06% and a Jaccard Index of 90.86. Based on the U-Net architecture with a DenseNet201 backbone.
|
|
|
15 |
- glasses/densenet201
|
16 |
pipeline_tag: image-segmentation
|
17 |
model-index:
|
18 |
+
- name: Skin-Lesion-Segmentation
|
19 |
+
results:
|
20 |
+
- task:
|
21 |
+
type: image-segmentation
|
22 |
+
dataset:
|
23 |
+
name: isic2016
|
24 |
+
type: image
|
25 |
+
metrics:
|
26 |
+
- name: accuracy
|
27 |
+
type: float
|
28 |
+
value: 98.04
|
29 |
+
- name: precision
|
30 |
+
type: float
|
31 |
+
value: 97.09
|
32 |
+
- name: IoU (jaccard index)
|
33 |
+
type: float
|
34 |
+
value: 90.86
|
35 |
+
- name: F1-score (dice coefficient)
|
36 |
+
type: float
|
37 |
+
value: 94.78
|
38 |
+
- task:
|
39 |
+
type: image-segmentation
|
40 |
+
dataset:
|
41 |
+
name: isic2017
|
42 |
+
type: image
|
43 |
+
metrics:
|
44 |
+
- name: accuracy
|
45 |
+
type: float
|
46 |
+
value: 93.06
|
47 |
+
- name: precision
|
48 |
+
type: float
|
49 |
+
value: 98.63
|
50 |
+
- name: IoU (jaccard index)
|
51 |
+
type: float
|
52 |
+
value: 89.97
|
53 |
+
- name: F1-score (dice coefficient)
|
54 |
+
type: float
|
55 |
+
value: 94.35
|
56 |
+
tags:
|
57 |
+
- tensorflow
|
58 |
+
- keras
|
59 |
---
|
60 |
|
61 |
A precise segmentation model trained on the ISIC2016 and 2017 datasets. Throws an accuracy of 98.06% and a Jaccard Index of 90.86. Based on the U-Net architecture with a DenseNet201 backbone.
|