File size: 2,779 Bytes
9588452 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 |
---
license: apache-2.0
base_model: DevAibest/opus-mt-en-fr-finetuned-en-to-fr
tags:
- generated_from_trainer
datasets:
- opus_books
metrics:
- bleu
model-index:
- name: opus-mt-finetuned-en-to-fr
results:
- task:
name: Sequence-to-sequence Language Modeling
type: text2text-generation
dataset:
name: opus_books
type: opus_books
config: en-fr
split: train
args: en-fr
metrics:
- name: Bleu
type: bleu
value: 26.9265
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# opus-mt-finetuned-en-to-fr
This model is a fine-tuned version of [DevAibest/opus-mt-en-fr-finetuned-en-to-fr](https://huggingface.co/DevAibest/opus-mt-en-fr-finetuned-en-to-fr) on the opus_books dataset.
It achieves the following results on the evaluation set:
- Loss: 1.6538
- Bleu: 26.9265
- Gen Len: 34.161
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 15
### Training results
| Training Loss | Epoch | Step | Validation Loss | Bleu | Gen Len |
|:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|
| No log | 1.0 | 398 | 1.6540 | 26.2729 | 34.3078 |
| 1.764 | 2.0 | 796 | 1.6364 | 26.484 | 34.4081 |
| 1.6142 | 3.0 | 1194 | 1.6313 | 26.533 | 34.273 |
| 1.5079 | 4.0 | 1592 | 1.6291 | 26.6765 | 34.1672 |
| 1.5079 | 5.0 | 1990 | 1.6323 | 26.8527 | 34.0352 |
| 1.4218 | 6.0 | 2388 | 1.6314 | 26.8336 | 34.1142 |
| 1.3423 | 7.0 | 2786 | 1.6316 | 26.8037 | 34.2929 |
| 1.2812 | 8.0 | 3184 | 1.6361 | 26.9189 | 34.2471 |
| 1.2421 | 9.0 | 3582 | 1.6369 | 26.9398 | 34.2674 |
| 1.2421 | 10.0 | 3980 | 1.6413 | 26.9029 | 34.2462 |
| 1.1991 | 11.0 | 4378 | 1.6445 | 26.9221 | 34.1811 |
| 1.1562 | 12.0 | 4776 | 1.6495 | 26.8817 | 34.249 |
| 1.1392 | 13.0 | 5174 | 1.6517 | 26.8928 | 34.1777 |
| 1.1194 | 14.0 | 5572 | 1.6531 | 26.8547 | 34.2342 |
| 1.1194 | 15.0 | 5970 | 1.6538 | 26.9265 | 34.161 |
### Framework versions
- Transformers 4.33.0
- Pytorch 2.0.0
- Datasets 2.1.0
- Tokenizers 0.13.3
|