SentenceTransformer
This is a sentence-transformers model trained. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 768 dimensions
- Similarity Function: Cosine Similarity
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("Detomo/cl-nagoya-sup-simcse-ja-nss-v0_9_17")
# Run inference
sentences = [
'科目:タイル。名称:階段蹴上タイル。',
'科目:ユニット及びその他。名称:配膳室配膳棚(#段)。',
'科目:ユニット及びその他。名称:#F患者図書室雑誌棚。',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Training Details
Training Dataset
Unnamed Dataset
- Size: 14,153 training samples
- Columns:
sentenceandlabel - Approximate statistics based on the first 1000 samples:
sentence label type string int details - min: 11 tokens
- mean: 17.23 tokens
- max: 29 tokens
- 0: ~0.30%
- 1: ~0.30%
- 2: ~0.30%
- 3: ~0.30%
- 4: ~0.30%
- 5: ~0.30%
- 6: ~0.30%
- 7: ~0.30%
- 8: ~0.30%
- 9: ~0.30%
- 10: ~0.30%
- 11: ~0.40%
- 12: ~0.30%
- 13: ~0.30%
- 14: ~0.30%
- 15: ~0.30%
- 16: ~0.30%
- 17: ~0.30%
- 18: ~0.50%
- 19: ~0.30%
- 20: ~0.30%
- 21: ~0.30%
- 22: ~0.30%
- 23: ~0.30%
- 24: ~0.30%
- 25: ~0.30%
- 26: ~0.30%
- 27: ~0.30%
- 28: ~0.30%
- 29: ~0.30%
- 30: ~0.30%
- 31: ~0.30%
- 32: ~0.30%
- 33: ~0.30%
- 34: ~0.30%
- 35: ~0.30%
- 36: ~0.30%
- 37: ~0.30%
- 38: ~0.30%
- 39: ~0.30%
- 40: ~0.40%
- 41: ~0.30%
- 42: ~0.30%
- 43: ~0.30%
- 44: ~0.60%
- 45: ~0.70%
- 46: ~0.30%
- 47: ~0.30%
- 48: ~0.30%
- 49: ~0.30%
- 50: ~0.30%
- 51: ~0.30%
- 52: ~0.30%
- 53: ~0.30%
- 54: ~0.30%
- 55: ~0.30%
- 56: ~0.30%
- 57: ~0.80%
- 58: ~0.30%
- 59: ~0.30%
- 60: ~0.60%
- 61: ~0.30%
- 62: ~0.30%
- 63: ~0.30%
- 64: ~0.50%
- 65: ~0.30%
- 66: ~0.30%
- 67: ~0.30%
- 68: ~0.30%
- 69: ~0.50%
- 70: ~0.60%
- 71: ~0.30%
- 72: ~0.30%
- 73: ~0.30%
- 74: ~0.30%
- 75: ~0.30%
- 76: ~0.30%
- 77: ~0.30%
- 78: ~0.30%
- 79: ~0.30%
- 80: ~0.30%
- 81: ~0.30%
- 82: ~0.30%
- 83: ~0.30%
- 84: ~0.80%
- 85: ~0.60%
- 86: ~0.50%
- 87: ~0.30%
- 88: ~0.30%
- 89: ~16.30%
- 90: ~0.30%
- 91: ~0.30%
- 92: ~0.30%
- 93: ~0.30%
- 94: ~0.30%
- 95: ~0.30%
- 96: ~0.30%
- 97: ~0.30%
- 98: ~0.50%
- 99: ~0.30%
- 100: ~0.30%
- 101: ~0.30%
- 102: ~0.30%
- 103: ~0.30%
- 104: ~0.30%
- 105: ~0.30%
- 106: ~0.30%
- 107: ~0.70%
- 108: ~0.30%
- 109: ~3.20%
- 110: ~0.30%
- 111: ~0.40%
- 112: ~2.30%
- 113: ~0.30%
- 114: ~0.30%
- 115: ~0.50%
- 116: ~0.50%
- 117: ~0.50%
- 118: ~0.40%
- 119: ~0.30%
- 120: ~0.30%
- 121: ~0.30%
- 122: ~0.80%
- 123: ~0.30%
- 124: ~0.30%
- 125: ~0.30%
- 126: ~0.30%
- 127: ~0.30%
- 128: ~0.30%
- 129: ~0.30%
- 130: ~0.30%
- 131: ~0.50%
- 132: ~0.30%
- 133: ~0.40%
- 134: ~0.30%
- 135: ~0.30%
- 136: ~0.30%
- 137: ~0.30%
- 138: ~0.30%
- 139: ~0.30%
- 140: ~0.30%
- 141: ~0.30%
- 142: ~0.30%
- 143: ~0.30%
- 144: ~0.40%
- 145: ~0.30%
- 146: ~0.30%
- 147: ~0.30%
- 148: ~0.30%
- 149: ~0.30%
- 150: ~0.30%
- 151: ~0.70%
- 152: ~0.30%
- 153: ~0.30%
- 154: ~0.30%
- 155: ~1.30%
- 156: ~0.30%
- 157: ~0.30%
- 158: ~0.30%
- 159: ~0.30%
- 160: ~0.30%
- 161: ~1.50%
- 162: ~0.30%
- 163: ~0.30%
- 164: ~0.30%
- 165: ~0.30%
- 166: ~0.30%
- 167: ~0.30%
- 168: ~0.30%
- 169: ~1.50%
- 170: ~0.30%
- 171: ~0.30%
- 172: ~7.20%
- 173: ~0.30%
- 174: ~1.00%
- 175: ~0.30%
- 176: ~0.30%
- 177: ~0.30%
- 178: ~1.80%
- 179: ~0.30%
- 180: ~0.50%
- 181: ~0.70%
- 182: ~0.30%
- 183: ~0.30%
- 184: ~0.30%
- 185: ~0.30%
- 186: ~0.30%
- 187: ~0.30%
- 188: ~0.30%
- 189: ~0.50%
- 190: ~2.50%
- Samples:
sentence label 科目:コンクリート。名称:免震基礎天端グラウト注入。0科目:コンクリート。名称:免震基礎天端グラウト注入。0科目:コンクリート。名称:免震基礎天端グラウト注入。0 - Loss:
sentence_transformer_lib.custom_batch_all_trip_loss.CustomBatchAllTripletLoss
Training Hyperparameters
Non-Default Hyperparameters
per_device_train_batch_size: 512per_device_eval_batch_size: 512learning_rate: 1e-05weight_decay: 0.01num_train_epochs: 250warmup_ratio: 0.1fp16: Truebatch_sampler: group_by_label
All Hyperparameters
Click to expand
overwrite_output_dir: Falsedo_predict: Falseeval_strategy: noprediction_loss_only: Trueper_device_train_batch_size: 512per_device_eval_batch_size: 512per_gpu_train_batch_size: Noneper_gpu_eval_batch_size: Nonegradient_accumulation_steps: 1eval_accumulation_steps: Nonetorch_empty_cache_steps: Nonelearning_rate: 1e-05weight_decay: 0.01adam_beta1: 0.9adam_beta2: 0.999adam_epsilon: 1e-08max_grad_norm: 1.0num_train_epochs: 250max_steps: -1lr_scheduler_type: linearlr_scheduler_kwargs: {}warmup_ratio: 0.1warmup_steps: 0log_level: passivelog_level_replica: warninglog_on_each_node: Truelogging_nan_inf_filter: Truesave_safetensors: Truesave_on_each_node: Falsesave_only_model: Falserestore_callback_states_from_checkpoint: Falseno_cuda: Falseuse_cpu: Falseuse_mps_device: Falseseed: 42data_seed: Nonejit_mode_eval: Falseuse_ipex: Falsebf16: Falsefp16: Truefp16_opt_level: O1half_precision_backend: autobf16_full_eval: Falsefp16_full_eval: Falsetf32: Nonelocal_rank: 0ddp_backend: Nonetpu_num_cores: Nonetpu_metrics_debug: Falsedebug: []dataloader_drop_last: Falsedataloader_num_workers: 0dataloader_prefetch_factor: Nonepast_index: -1disable_tqdm: Falseremove_unused_columns: Truelabel_names: Noneload_best_model_at_end: Falseignore_data_skip: Falsefsdp: []fsdp_min_num_params: 0fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}tp_size: 0fsdp_transformer_layer_cls_to_wrap: Noneaccelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed: Nonelabel_smoothing_factor: 0.0optim: adamw_torchoptim_args: Noneadafactor: Falsegroup_by_length: Falselength_column_name: lengthddp_find_unused_parameters: Noneddp_bucket_cap_mb: Noneddp_broadcast_buffers: Falsedataloader_pin_memory: Truedataloader_persistent_workers: Falseskip_memory_metrics: Trueuse_legacy_prediction_loop: Falsepush_to_hub: Falseresume_from_checkpoint: Nonehub_model_id: Nonehub_strategy: every_savehub_private_repo: Nonehub_always_push: Falsegradient_checkpointing: Falsegradient_checkpointing_kwargs: Noneinclude_inputs_for_metrics: Falseinclude_for_metrics: []eval_do_concat_batches: Truefp16_backend: autopush_to_hub_model_id: Nonepush_to_hub_organization: Nonemp_parameters:auto_find_batch_size: Falsefull_determinism: Falsetorchdynamo: Noneray_scope: lastddp_timeout: 1800torch_compile: Falsetorch_compile_backend: Nonetorch_compile_mode: Noneinclude_tokens_per_second: Falseinclude_num_input_tokens_seen: Falseneftune_noise_alpha: Noneoptim_target_modules: Nonebatch_eval_metrics: Falseeval_on_start: Falseuse_liger_kernel: Falseeval_use_gather_object: Falseaverage_tokens_across_devices: Falseprompts: Nonebatch_sampler: group_by_labelmulti_dataset_batch_sampler: proportional
Training Logs
| Epoch | Step | Training Loss |
|---|---|---|
| 4.5714 | 100 | 0.0629 |
| 9.3929 | 200 | 0.0706 |
| 14.2143 | 300 | 0.0728 |
| 19.0357 | 400 | 0.0716 |
| 23.6071 | 500 | 0.0683 |
| 28.4286 | 600 | 0.0669 |
| 33.25 | 700 | 0.0686 |
| 38.0714 | 800 | 0.0656 |
| 42.6429 | 900 | 0.0592 |
| 47.4643 | 1000 | 0.0659 |
| 52.2857 | 1100 | 0.0621 |
| 57.1071 | 1200 | 0.064 |
| 61.6786 | 1300 | 0.0604 |
| 66.5 | 1400 | 0.0603 |
| 71.3214 | 1500 | 0.0608 |
| 76.1429 | 1600 | 0.0581 |
| 80.7143 | 1700 | 0.0522 |
| 85.5357 | 1800 | 0.055 |
| 90.3571 | 1900 | 0.0544 |
| 95.1786 | 2000 | 0.0602 |
| 99.75 | 2100 | 0.056 |
| 104.5714 | 2200 | 0.0519 |
| 109.3929 | 2300 | 0.0521 |
| 114.2143 | 2400 | 0.0506 |
| 119.0357 | 2500 | 0.0538 |
| 123.6071 | 2600 | 0.0527 |
| 128.4286 | 2700 | 0.0514 |
| 133.25 | 2800 | 0.0513 |
| 138.0714 | 2900 | 0.0447 |
| 142.6429 | 3000 | 0.0528 |
| 147.4643 | 3100 | 0.0486 |
| 152.2857 | 3200 | 0.0446 |
| 157.1071 | 3300 | 0.0451 |
| 161.6786 | 3400 | 0.0451 |
| 166.5 | 3500 | 0.0459 |
| 171.3214 | 3600 | 0.0485 |
| 176.1429 | 3700 | 0.0469 |
| 180.7143 | 3800 | 0.0446 |
| 185.5357 | 3900 | 0.0443 |
| 190.3571 | 4000 | 0.0439 |
| 195.1786 | 4100 | 0.0382 |
| 199.75 | 4200 | 0.0401 |
| 204.5714 | 4300 | 0.0441 |
| 209.3929 | 4400 | 0.0397 |
| 214.2143 | 4500 | 0.037 |
| 219.0357 | 4600 | 0.04 |
| 223.6071 | 4700 | 0.0386 |
| 228.4286 | 4800 | 0.0396 |
| 233.25 | 4900 | 0.0387 |
| 238.0714 | 5000 | 0.0408 |
| 242.6429 | 5100 | 0.0396 |
| 247.4643 | 5200 | 0.0363 |
Framework Versions
- Python: 3.11.12
- Sentence Transformers: 3.4.1
- Transformers: 4.51.3
- PyTorch: 2.6.0+cu124
- Accelerate: 1.5.2
- Datasets: 3.5.0
- Tokenizers: 0.21.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
CustomBatchAllTripletLoss
@misc{hermans2017defense,
title={In Defense of the Triplet Loss for Person Re-Identification},
author={Alexander Hermans and Lucas Beyer and Bastian Leibe},
year={2017},
eprint={1703.07737},
archivePrefix={arXiv},
primaryClass={cs.CV}
}
- Downloads last month
- 2