Commit
·
78e5945
1
Parent(s):
b2389b6
Upload PPO LunarLander-v2 trained agent
Browse files- README.md +37 -0
- config.json +1 -0
- ppo-LunarLander-v2.zip +3 -0
- ppo-LunarLander-v2/_stable_baselines3_version +1 -0
- ppo-LunarLander-v2/data +99 -0
- ppo-LunarLander-v2/policy.optimizer.pth +3 -0
- ppo-LunarLander-v2/policy.pth +3 -0
- ppo-LunarLander-v2/pytorch_variables.pth +3 -0
- ppo-LunarLander-v2/system_info.txt +9 -0
- replay.mp4 +0 -0
- results.json +1 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: LunarLander-v2
|
16 |
+
type: LunarLander-v2
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 246.94 +/- 18.54
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **PPO** Agent playing **LunarLander-v2**
|
25 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x783ea8e283a0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x783ea8e28430>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x783ea8e284c0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x783ea8e28550>", "_build": "<function ActorCriticPolicy._build at 0x783ea8e285e0>", "forward": "<function ActorCriticPolicy.forward at 0x783ea8e28670>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x783ea8e28700>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x783ea8e28790>", "_predict": "<function ActorCriticPolicy._predict at 0x783ea8e28820>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x783ea8e288b0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x783ea8e28940>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x783ea8e289d0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x783ea8fba900>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1695204086638807802, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAHPAWD6Poek+VoV+PWOWxb7ExRI+hmF+PQAAAAAAAAAAU0tSPvznRj8aCTC8/7/WvptZxT1AWqe8AAAAAAAAAADNXpC9lLmqPk4RiD2tJnu+1pGnvGO2nj0AAAAAAAAAAE1OzD0wOsQ+qXjBvQMoo74Mdhg9pBGrvQAAAAAAAAAAAKArOte5jz7/VCm+Ni+SvhwIwb1sYqu9AAAAAAAAAABAaDK+zdZPPrIDlT623me+BSioPevdxjsAAAAAAAAAAFAVUb47t/K8mszMu11VbrpOvFI+86E2OwAAgD8AAIA/s3J0vZRxGz4oMou9ljacvkKig71ylyW9AAAAAAAAAAAtrhg+oKnlPmtK5L0S4pK+qc6SPcUPuTwAAAAAAAAAAGahAb0n+ls/d46/vJNi+r4k3Hu9E3vVvAAAAAAAAAAAAMQ7vD9lsz8eMhO/4Jxivj4FPzzZ38s9AAAAAAAAAAA6ATm+QTeZvOjhgDn9PIY3xsADPuI4orgAAIA/AACAP2bHzD1fkx0/EgkJvUtqo75NSrU8nL4evQAAAAAAAAAAmiK3PL6Bsz8Nwes90CKFvgPRLb3Nlc28AAAAAAAAAABmVYO8hcCmPoYsH7xyjWO+DqU6vegSuzwAAAAAAAAAABq5jD3lkG4+jHEPvn1JdL7AXE06YDDLPQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVNAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHE2gN5MURGMAWyUTVEBjAF0lEdAkelcFt8/lnV9lChoBkdAb9Y+QEIPb2gHTUIBaAhHQJHrSGBWge11fZQoaAZHQHGgsTWXkYJoB00+AWgIR0CR7BNM495hdX2UKGgGR0By0gKkVN5/aAdNJAFoCEdAke11oQFs6HV9lChoBkdAceTW7e2uxWgHTZQBaAhHQJHuHKB/Zuh1fZQoaAZHQG+zjMV1wHZoB006AWgIR0CR7rdPtUn5dX2UKGgGR0BvY1x+8XenaAdNCgFoCEdAke/gRf4REnV9lChoBkdAcqHqtHQQc2gHTWICaAhHQJHwU36yjYZ1fZQoaAZHQHE/58v24/hoB00bAWgIR0CR8erlvIfbdX2UKGgGR0BvvPwPRRdhaAdNEwFoCEdAkfa/QWvbGnV9lChoBkdAWlCvfTCtR2gHTegDaAhHQJH3EzhxYJV1fZQoaAZHQHH5YnrpqypoB00bAWgIR0CR942Hck+pdX2UKGgGR0BwE9I1+AmRaAdNDgJoCEdAkfjDst03fnV9lChoBkdAbtVJo0ygw2gHTQEBaAhHQJH4xN+LFXJ1fZQoaAZHQHKt2U8mrsBoB00TAWgIR0CR+lUWEbo9dX2UKGgGR0BzGSAhB7eEaAdNowFoCEdAkfrJ7kXDWXV9lChoBkdAcdcgSOBDomgHTR4BaAhHQJH787q6e5F1fZQoaAZHQHE12Fi8WbhoB00OAWgIR0CR/OEk0JnhdX2UKGgGR0Bwr5Hc1wYMaAdNEQFoCEdAkf1KvzOHFnV9lChoBkdAcPoGfPHDJmgHTRsCaAhHQJH+Wv1UVBV1fZQoaAZHQHKaeE/SpitoB00QAWgIR0CR/mQ79ycTdX2UKGgGR0BwdxZ1V5ryaAdNewFoCEdAkf+g+hXbNHV9lChoBkdAcoKqh11W82gHS+loCEdAkgAygbp/w3V9lChoBkdAcPPYxcmjTWgHTRgBaAhHQJIBt+WnjyZ1fZQoaAZHQHDcdA5aNdZoB00uAWgIR0CSAxL0jC53dX2UKGgGR0BuWhtm+TNdaAdNHAFoCEdAkgM89KVY6nV9lChoBkdARQKq6vq1PWgHS8xoCEdAkgNhd2PkrHV9lChoBkdAcj0bs4T9KmgHTfQBaAhHQJIEi1UlzEJ1fZQoaAZHQHAKQHAymANoB00UAWgIR0CSBNXv6TGHdX2UKGgGR0BjAxmPHT7VaAdN6ANoCEdAkgVAz1schnV9lChoBkdARJpU1hsqKGgHS89oCEdAkgXzollbvHV9lChoBkdAb7iS/0ulGmgHTVIBaAhHQJIGb6O5rgx1fZQoaAZHQHFvRAv+OwRoB00UAWgIR0CSByrGR3eOdX2UKGgGR0BwiRZQpF1CaAdNBAFoCEdAkgeoS6DoQnV9lChoBkdAcPv4XGff42gHTTgBaAhHQJIH/EvTPSl1fZQoaAZHQHQaylenhsJoB0v9aAhHQJIJDMMZxaR1fZQoaAZHQHHyw0O3DvVoB01EAWgIR0CSCxvqTr3TdX2UKGgGR0Bio2ANG3F2aAdN6ANoCEdAkgt6rJbMYHV9lChoBkdAcMukPMB6r2gHTREBaAhHQJIM39ycTal1fZQoaAZHQHC+N8eCCjFoB00+AWgIR0CSDUnJ1aGIdX2UKGgGR0Bu0Off4yoGaAdNMgFoCEdAkg6F9fCyhXV9lChoBkdAcnXig00m+mgHTUcBaAhHQJIPM0Q9RrJ1fZQoaAZHQHHnP1g6U7loB00WAWgIR0CSD3Myad+YdX2UKGgGR0BxzTCAMDwIaAdNQwFoCEdAkhBcO09hZ3V9lChoBkdAcVNmjCYTkGgHS+1oCEdAkiCIq0+kg3V9lChoBkdAcloUaQ3gk2gHTSQBaAhHQJIgoaJhvzh1fZQoaAZHQHJVFVHWjGloB00YAWgIR0CSIXx9oexOdX2UKGgGR0BwmVpHqeK9aAdNPwFoCEdAkiJKjrRjSXV9lChoBkdAbXcoR7JGOWgHTSUBaAhHQJIjdf6XSjR1fZQoaAZHQHJExDb8FZBoB00HAWgIR0CSI7Ebo8p1dX2UKGgGR0ByX1WRzRx+aAdNkgFoCEdAkiQ+lfqoqHV9lChoBkdAcLSVXV9WqGgHTQ0BaAhHQJInUiY9gWt1fZQoaAZHQHDswprk8zRoB00WAWgIR0CSJ2FfiPyTdX2UKGgGR0Byss7W/ag3aAdL92gIR0CSKvywOe8PdX2UKGgGR0BvOHMMZxaQaAdNHQFoCEdAkivR7Z39rHV9lChoBkdAcO4QokRjBmgHTUoBaAhHQJIsr56+nIh1fZQoaAZHQFHM9pRGc4JoB0vSaAhHQJItRXbM5fd1fZQoaAZHQGypOaF23a1oB00yAWgIR0CSLe9E1EVndX2UKGgGR0BwvYOqebuuaAdNGAFoCEdAki43y3CsO3V9lChoBkdAbm+ZEUj9oGgHTTwBaAhHQJIv6nfl6qt1fZQoaAZHQHKciuloDgZoB0v7aAhHQJIwBvegte51fZQoaAZHQHE8SGahHsloB02rAWgIR0CSMGLJCBwudX2UKGgGR0BwbvBwdbPhaAdNMAFoCEdAkjB1XzUZvXV9lChoBkdAV0nbZezD42gHTegDaAhHQJIxAicG1QZ1fZQoaAZHQHIOgUpNKyxoB00dAWgIR0CSMWMDfWMCdX2UKGgGR0Bs+UQRPGhmaAdNMgFoCEdAkjGZL26ClXV9lChoBkdAcWQBGx2SuGgHTQUBaAhHQJIya4hEBsB1fZQoaAZHQHEPHAAQxvhoB00hAWgIR0CSMyk/r0J4dX2UKGgGR0Bx+zd43WFwaAdNugFoCEdAkjOPJ/5Ly3V9lChoBkdAcolmVqveQGgHTRYBaAhHQJI1ExBVuJl1fZQoaAZHQHHuYnWrfchoB0v2aAhHQJI1xUADJU51fZQoaAZHQHJNNEb5uZVoB00YAWgIR0CSNoPFvQ4TdX2UKGgGR0BuvcypJf6XaAdNIgFoCEdAkjeOXzDn/3V9lChoBkdAcQPbSZ0CBGgHTUYBaAhHQJI33iPyTZB1fZQoaAZHQHFzT4+KTB9oB0vmaAhHQJI4xwm3OOd1fZQoaAZHQG3aas6q815oB00SAWgIR0CSONUgB91EdX2UKGgGR0BxrIxN7BwdaAdNDgFoCEdAkjkTRMN+b3V9lChoBkdAbmckcjqv/2gHTR8BaAhHQJI5LRF7Uod1fZQoaAZHQHAVB3V09yNoB0vxaAhHQJI5ZZU1hst1fZQoaAZHQHJW3Tuv2XdoB00QAWgIR0CSOagJTl1bdX2UKGgGR0BwT88TzundaAdNkAFoCEdAkjnQSJ0nxHV9lChoBkdAckKpDNQj2WgHTTgBaAhHQJI6JNDc/MZ1fZQoaAZHQCyy5d4Vym1oB0vXaAhHQJI6fbBXS0B1fZQoaAZHQHIp6KYRdyFoB00hAWgIR0CSO0mfoRqXdX2UKGgGR0ByCuom5UcXaAdNHQFoCEdAkjvhPCVKPHV9lChoBkdAPBjT4L1EmmgHS7toCEdAkjwfdyksSXV9lChoBkdAb9qR/ViF02gHTQoBaAhHQJI/z5zo2XN1fZQoaAZHQHJ4EhePaL5oB01XAWgIR0CSQBoSL61tdX2UKGgGR0BOFtoSL61taAdL+GgIR0CSQLTjebd8dX2UKGgGR0BwLXbYbsF/aAdNIwFoCEdAkkEbvb48EHV9lChoBkdAbzBpeNT99GgHTQwBaAhHQJJBLbnHNot1fZQoaAZHQGzwKdH2AXloB0v0aAhHQJJCAvqTr3V1fZQoaAZHQHFCMlPacqhoB00wAWgIR0CSQmibUgB+dX2UKGgGR0BwQYwmE5AAaAdNFgFoCEdAkkJ9B4Uvf3V9lChoBkdAcavJW/8EV2gHS/xoCEdAkkK9BOYYznV9lChoBkdAcomK0lZ5iWgHTTsBaAhHQJJDGTJQtSR1fZQoaAZHQHLjCLhrFfloB00/AWgIR0CSQ2kiUxEfdX2UKGgGR0Bx1ivpyIYWaAdNDwFoCEdAkkQ3QdCE6HV9lChoBkdAcRCL61stTWgHTR4BaAhHQJJFUPatcOd1fZQoaAZHQG6q21twaR9oB00mAWgIR0CSRdZ1mrbQdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV/QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgLjAJpOJSJiIeUUpQoSwNoD05OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.23.5", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
|
ppo-LunarLander-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4f89a567e08cd9d62249e50baeed447b08fcf1a0b3ce7e869f8f8ce8cd1cd902
|
3 |
+
size 146922
|
ppo-LunarLander-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
2.0.0a5
|
ppo-LunarLander-v2/data
ADDED
@@ -0,0 +1,99 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x783ea8e283a0>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x783ea8e28430>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x783ea8e284c0>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x783ea8e28550>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x783ea8e285e0>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x783ea8e28670>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x783ea8e28700>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x783ea8e28790>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x783ea8e28820>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x783ea8e288b0>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x783ea8e28940>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x783ea8e289d0>",
|
19 |
+
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc._abc_data object at 0x783ea8fba900>"
|
21 |
+
},
|
22 |
+
"verbose": 1,
|
23 |
+
"policy_kwargs": {},
|
24 |
+
"num_timesteps": 1015808,
|
25 |
+
"_total_timesteps": 1000000,
|
26 |
+
"_num_timesteps_at_start": 0,
|
27 |
+
"seed": null,
|
28 |
+
"action_noise": null,
|
29 |
+
"start_time": 1695204086638807802,
|
30 |
+
"learning_rate": 0.0003,
|
31 |
+
"tensorboard_log": null,
|
32 |
+
"_last_obs": {
|
33 |
+
":type:": "<class 'numpy.ndarray'>",
|
34 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAHPAWD6Poek+VoV+PWOWxb7ExRI+hmF+PQAAAAAAAAAAU0tSPvznRj8aCTC8/7/WvptZxT1AWqe8AAAAAAAAAADNXpC9lLmqPk4RiD2tJnu+1pGnvGO2nj0AAAAAAAAAAE1OzD0wOsQ+qXjBvQMoo74Mdhg9pBGrvQAAAAAAAAAAAKArOte5jz7/VCm+Ni+SvhwIwb1sYqu9AAAAAAAAAABAaDK+zdZPPrIDlT623me+BSioPevdxjsAAAAAAAAAAFAVUb47t/K8mszMu11VbrpOvFI+86E2OwAAgD8AAIA/s3J0vZRxGz4oMou9ljacvkKig71ylyW9AAAAAAAAAAAtrhg+oKnlPmtK5L0S4pK+qc6SPcUPuTwAAAAAAAAAAGahAb0n+ls/d46/vJNi+r4k3Hu9E3vVvAAAAAAAAAAAAMQ7vD9lsz8eMhO/4Jxivj4FPzzZ38s9AAAAAAAAAAA6ATm+QTeZvOjhgDn9PIY3xsADPuI4orgAAIA/AACAP2bHzD1fkx0/EgkJvUtqo75NSrU8nL4evQAAAAAAAAAAmiK3PL6Bsz8Nwes90CKFvgPRLb3Nlc28AAAAAAAAAABmVYO8hcCmPoYsH7xyjWO+DqU6vegSuzwAAAAAAAAAABq5jD3lkG4+jHEPvn1JdL7AXE06YDDLPQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
35 |
+
},
|
36 |
+
"_last_episode_starts": {
|
37 |
+
":type:": "<class 'numpy.ndarray'>",
|
38 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
39 |
+
},
|
40 |
+
"_last_original_obs": null,
|
41 |
+
"_episode_num": 0,
|
42 |
+
"use_sde": false,
|
43 |
+
"sde_sample_freq": -1,
|
44 |
+
"_current_progress_remaining": -0.015808000000000044,
|
45 |
+
"_stats_window_size": 100,
|
46 |
+
"ep_info_buffer": {
|
47 |
+
":type:": "<class 'collections.deque'>",
|
48 |
+
":serialized:": "gAWVNAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHE2gN5MURGMAWyUTVEBjAF0lEdAkelcFt8/lnV9lChoBkdAb9Y+QEIPb2gHTUIBaAhHQJHrSGBWge11fZQoaAZHQHGgsTWXkYJoB00+AWgIR0CR7BNM495hdX2UKGgGR0By0gKkVN5/aAdNJAFoCEdAke11oQFs6HV9lChoBkdAceTW7e2uxWgHTZQBaAhHQJHuHKB/Zuh1fZQoaAZHQG+zjMV1wHZoB006AWgIR0CR7rdPtUn5dX2UKGgGR0BvY1x+8XenaAdNCgFoCEdAke/gRf4REnV9lChoBkdAcqHqtHQQc2gHTWICaAhHQJHwU36yjYZ1fZQoaAZHQHE/58v24/hoB00bAWgIR0CR8erlvIfbdX2UKGgGR0BvvPwPRRdhaAdNEwFoCEdAkfa/QWvbGnV9lChoBkdAWlCvfTCtR2gHTegDaAhHQJH3EzhxYJV1fZQoaAZHQHH5YnrpqypoB00bAWgIR0CR942Hck+pdX2UKGgGR0BwE9I1+AmRaAdNDgJoCEdAkfjDst03fnV9lChoBkdAbtVJo0ygw2gHTQEBaAhHQJH4xN+LFXJ1fZQoaAZHQHKt2U8mrsBoB00TAWgIR0CR+lUWEbo9dX2UKGgGR0BzGSAhB7eEaAdNowFoCEdAkfrJ7kXDWXV9lChoBkdAcdcgSOBDomgHTR4BaAhHQJH787q6e5F1fZQoaAZHQHE12Fi8WbhoB00OAWgIR0CR/OEk0JnhdX2UKGgGR0Bwr5Hc1wYMaAdNEQFoCEdAkf1KvzOHFnV9lChoBkdAcPoGfPHDJmgHTRsCaAhHQJH+Wv1UVBV1fZQoaAZHQHKaeE/SpitoB00QAWgIR0CR/mQ79ycTdX2UKGgGR0BwdxZ1V5ryaAdNewFoCEdAkf+g+hXbNHV9lChoBkdAcoKqh11W82gHS+loCEdAkgAygbp/w3V9lChoBkdAcPPYxcmjTWgHTRgBaAhHQJIBt+WnjyZ1fZQoaAZHQHDcdA5aNdZoB00uAWgIR0CSAxL0jC53dX2UKGgGR0BuWhtm+TNdaAdNHAFoCEdAkgM89KVY6nV9lChoBkdARQKq6vq1PWgHS8xoCEdAkgNhd2PkrHV9lChoBkdAcj0bs4T9KmgHTfQBaAhHQJIEi1UlzEJ1fZQoaAZHQHAKQHAymANoB00UAWgIR0CSBNXv6TGHdX2UKGgGR0BjAxmPHT7VaAdN6ANoCEdAkgVAz1schnV9lChoBkdARJpU1hsqKGgHS89oCEdAkgXzollbvHV9lChoBkdAb7iS/0ulGmgHTVIBaAhHQJIGb6O5rgx1fZQoaAZHQHFvRAv+OwRoB00UAWgIR0CSByrGR3eOdX2UKGgGR0BwiRZQpF1CaAdNBAFoCEdAkgeoS6DoQnV9lChoBkdAcPv4XGff42gHTTgBaAhHQJIH/EvTPSl1fZQoaAZHQHQaylenhsJoB0v9aAhHQJIJDMMZxaR1fZQoaAZHQHHyw0O3DvVoB01EAWgIR0CSCxvqTr3TdX2UKGgGR0Bio2ANG3F2aAdN6ANoCEdAkgt6rJbMYHV9lChoBkdAcMukPMB6r2gHTREBaAhHQJIM39ycTal1fZQoaAZHQHC+N8eCCjFoB00+AWgIR0CSDUnJ1aGIdX2UKGgGR0Bu0Off4yoGaAdNMgFoCEdAkg6F9fCyhXV9lChoBkdAcnXig00m+mgHTUcBaAhHQJIPM0Q9RrJ1fZQoaAZHQHHnP1g6U7loB00WAWgIR0CSD3Myad+YdX2UKGgGR0BxzTCAMDwIaAdNQwFoCEdAkhBcO09hZ3V9lChoBkdAcVNmjCYTkGgHS+1oCEdAkiCIq0+kg3V9lChoBkdAcloUaQ3gk2gHTSQBaAhHQJIgoaJhvzh1fZQoaAZHQHJVFVHWjGloB00YAWgIR0CSIXx9oexOdX2UKGgGR0BwmVpHqeK9aAdNPwFoCEdAkiJKjrRjSXV9lChoBkdAbXcoR7JGOWgHTSUBaAhHQJIjdf6XSjR1fZQoaAZHQHJExDb8FZBoB00HAWgIR0CSI7Ebo8p1dX2UKGgGR0ByX1WRzRx+aAdNkgFoCEdAkiQ+lfqoqHV9lChoBkdAcLSVXV9WqGgHTQ0BaAhHQJInUiY9gWt1fZQoaAZHQHDswprk8zRoB00WAWgIR0CSJ2FfiPyTdX2UKGgGR0Byss7W/ag3aAdL92gIR0CSKvywOe8PdX2UKGgGR0BvOHMMZxaQaAdNHQFoCEdAkivR7Z39rHV9lChoBkdAcO4QokRjBmgHTUoBaAhHQJIsr56+nIh1fZQoaAZHQFHM9pRGc4JoB0vSaAhHQJItRXbM5fd1fZQoaAZHQGypOaF23a1oB00yAWgIR0CSLe9E1EVndX2UKGgGR0BwvYOqebuuaAdNGAFoCEdAki43y3CsO3V9lChoBkdAbm+ZEUj9oGgHTTwBaAhHQJIv6nfl6qt1fZQoaAZHQHKciuloDgZoB0v7aAhHQJIwBvegte51fZQoaAZHQHE8SGahHsloB02rAWgIR0CSMGLJCBwudX2UKGgGR0BwbvBwdbPhaAdNMAFoCEdAkjB1XzUZvXV9lChoBkdAV0nbZezD42gHTegDaAhHQJIxAicG1QZ1fZQoaAZHQHIOgUpNKyxoB00dAWgIR0CSMWMDfWMCdX2UKGgGR0Bs+UQRPGhmaAdNMgFoCEdAkjGZL26ClXV9lChoBkdAcWQBGx2SuGgHTQUBaAhHQJIya4hEBsB1fZQoaAZHQHEPHAAQxvhoB00hAWgIR0CSMyk/r0J4dX2UKGgGR0Bx+zd43WFwaAdNugFoCEdAkjOPJ/5Ly3V9lChoBkdAcolmVqveQGgHTRYBaAhHQJI1ExBVuJl1fZQoaAZHQHHuYnWrfchoB0v2aAhHQJI1xUADJU51fZQoaAZHQHJNNEb5uZVoB00YAWgIR0CSNoPFvQ4TdX2UKGgGR0BuvcypJf6XaAdNIgFoCEdAkjeOXzDn/3V9lChoBkdAcQPbSZ0CBGgHTUYBaAhHQJI33iPyTZB1fZQoaAZHQHFzT4+KTB9oB0vmaAhHQJI4xwm3OOd1fZQoaAZHQG3aas6q815oB00SAWgIR0CSONUgB91EdX2UKGgGR0BxrIxN7BwdaAdNDgFoCEdAkjkTRMN+b3V9lChoBkdAbmckcjqv/2gHTR8BaAhHQJI5LRF7Uod1fZQoaAZHQHAVB3V09yNoB0vxaAhHQJI5ZZU1hst1fZQoaAZHQHJW3Tuv2XdoB00QAWgIR0CSOagJTl1bdX2UKGgGR0BwT88TzundaAdNkAFoCEdAkjnQSJ0nxHV9lChoBkdAckKpDNQj2WgHTTgBaAhHQJI6JNDc/MZ1fZQoaAZHQCyy5d4Vym1oB0vXaAhHQJI6fbBXS0B1fZQoaAZHQHIp6KYRdyFoB00hAWgIR0CSO0mfoRqXdX2UKGgGR0ByCuom5UcXaAdNHQFoCEdAkjvhPCVKPHV9lChoBkdAPBjT4L1EmmgHS7toCEdAkjwfdyksSXV9lChoBkdAb9qR/ViF02gHTQoBaAhHQJI/z5zo2XN1fZQoaAZHQHJ4EhePaL5oB01XAWgIR0CSQBoSL61tdX2UKGgGR0BOFtoSL61taAdL+GgIR0CSQLTjebd8dX2UKGgGR0BwLXbYbsF/aAdNIwFoCEdAkkEbvb48EHV9lChoBkdAbzBpeNT99GgHTQwBaAhHQJJBLbnHNot1fZQoaAZHQGzwKdH2AXloB0v0aAhHQJJCAvqTr3V1fZQoaAZHQHFCMlPacqhoB00wAWgIR0CSQmibUgB+dX2UKGgGR0BwQYwmE5AAaAdNFgFoCEdAkkJ9B4Uvf3V9lChoBkdAcavJW/8EV2gHS/xoCEdAkkK9BOYYznV9lChoBkdAcomK0lZ5iWgHTTsBaAhHQJJDGTJQtSR1fZQoaAZHQHLjCLhrFfloB00/AWgIR0CSQ2kiUxEfdX2UKGgGR0Bx1ivpyIYWaAdNDwFoCEdAkkQ3QdCE6HV9lChoBkdAcRCL61stTWgHTR4BaAhHQJJFUPatcOd1fZQoaAZHQG6q21twaR9oB00mAWgIR0CSRdZ1mrbQdWUu"
|
49 |
+
},
|
50 |
+
"ep_success_buffer": {
|
51 |
+
":type:": "<class 'collections.deque'>",
|
52 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
53 |
+
},
|
54 |
+
"_n_updates": 248,
|
55 |
+
"n_steps": 1024,
|
56 |
+
"gamma": 0.999,
|
57 |
+
"gae_lambda": 0.98,
|
58 |
+
"ent_coef": 0.01,
|
59 |
+
"vf_coef": 0.5,
|
60 |
+
"max_grad_norm": 0.5,
|
61 |
+
"batch_size": 64,
|
62 |
+
"n_epochs": 4,
|
63 |
+
"clip_range": {
|
64 |
+
":type:": "<class 'function'>",
|
65 |
+
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
66 |
+
},
|
67 |
+
"clip_range_vf": null,
|
68 |
+
"normalize_advantage": true,
|
69 |
+
"target_kl": null,
|
70 |
+
"observation_space": {
|
71 |
+
":type:": "<class 'gymnasium.spaces.box.Box'>",
|
72 |
+
":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
|
73 |
+
"dtype": "float32",
|
74 |
+
"bounded_below": "[ True True True True True True True True]",
|
75 |
+
"bounded_above": "[ True True True True True True True True]",
|
76 |
+
"_shape": [
|
77 |
+
8
|
78 |
+
],
|
79 |
+
"low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
|
80 |
+
"high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
|
81 |
+
"low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
|
82 |
+
"high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
|
83 |
+
"_np_random": null
|
84 |
+
},
|
85 |
+
"action_space": {
|
86 |
+
":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
|
87 |
+
":serialized:": "gAWV/QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgLjAJpOJSJiIeUUpQoSwNoD05OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
|
88 |
+
"n": "4",
|
89 |
+
"start": "0",
|
90 |
+
"_shape": [],
|
91 |
+
"dtype": "int64",
|
92 |
+
"_np_random": null
|
93 |
+
},
|
94 |
+
"n_envs": 16,
|
95 |
+
"lr_schedule": {
|
96 |
+
":type:": "<class 'function'>",
|
97 |
+
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
98 |
+
}
|
99 |
+
}
|
ppo-LunarLander-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1c0b79af66f785d2a4058127ea79f0cb974f0488e9411c2481dde5361f148325
|
3 |
+
size 88057
|
ppo-LunarLander-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:00ab32a8fe0fa44aa61efdfb0e036e401b2ff1ec8842f84a2d113db44144a213
|
3 |
+
size 43329
|
ppo-LunarLander-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
ppo-LunarLander-v2/system_info.txt
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023
|
2 |
+
- Python: 3.10.12
|
3 |
+
- Stable-Baselines3: 2.0.0a5
|
4 |
+
- PyTorch: 2.0.1+cu118
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.23.5
|
7 |
+
- Cloudpickle: 2.2.1
|
8 |
+
- Gymnasium: 0.28.1
|
9 |
+
- OpenAI Gym: 0.25.2
|
replay.mp4
ADDED
Binary file (189 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 246.94450053085424, "std_reward": 18.544066570763164, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-09-20T10:59:29.380685"}
|