Delta-Vector commited on
Commit
bfe8372
·
verified ·
1 Parent(s): fc7ca98

Upload README.md

Browse files
Files changed (1) hide show
  1. README.md +221 -0
README.md ADDED
@@ -0,0 +1,221 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ License: agpl-3.0
3
+ Language:
4
+ - En
5
+ Pipeline_tag: text-generation
6
+ Base_model: nvidia/Mistral-NeMo-Minitron-8B-Base
7
+ Tags:
8
+ - Chat
9
+ license: agpl-3.0
10
+ datasets:
11
+ - anthracite-org/kalo-opus-instruct-22k-no-refusal
12
+ - Epiculous/SynthRP-Gens-v1.1-Filtered-n-Cleaned
13
+ - lodrick-the-lafted/kalo-opus-instruct-3k-filtered
14
+ - anthracite-org/nopm_claude_writing_fixed
15
+ - Epiculous/Synthstruct-Gens-v1.1-Filtered-n-Cleaned
16
+ - anthracite-org/kalo_opus_misc_240827
17
+ - anthracite-org/kalo_misc_part2
18
+ tags:
19
+ - chat
20
+ ---
21
+
22
+
23
+
24
+
25
+ # Quants
26
+
27
+ GGUF:
28
+
29
+ EXL2:
30
+
31
+
32
+ ## Prompting
33
+ Model has been Instruct tuned with the ChatML formatting. A typical input would look like this:
34
+
35
+ ```py
36
+ """<|im_start|>system
37
+ system prompt<|im_end|>
38
+ <|im_start|>user
39
+ Hi there!<|im_end|>
40
+ <|im_start|>assistant
41
+ Nice to meet you!<|im_end|>
42
+ <|im_start|>user
43
+ Can I ask a question?<|im_end|>
44
+ <|im_start|>assistant
45
+ """
46
+ ```
47
+ ## System Prompting
48
+
49
+ I would highly recommend using Sao10k's Euryale System prompt, But the "Roleplay Simple" system prompt provided within SillyTavern will work aswell.
50
+
51
+ ```
52
+ Currently, your role is {{char}}, described in detail below. As {{char}}, continue the narrative exchange with {{user}}.
53
+
54
+ <Guidelines>
55
+ • Write upto 200 words.
56
+ • Maintain the character persona but allow it to evolve with the story.
57
+ • Be creative and proactive. Drive the story forward, introducing plotlines and events when relevant.
58
+ • All types of outputs are encouraged; respond accordingly to the narrative.
59
+ • Include dialogues, actions, and thoughts in each response.
60
+ • Utilize all five senses to describe scenarios within {{char}}'s dialogue.
61
+ • Use emotional symbols such as "!" and "~" in appropriate contexts.
62
+ • Incorporate onomatopoeia when suitable.
63
+ • Allow time for {{user}} to respond with their own input, respecting their agency.
64
+ • Act as secondary characters and NPCs as needed, and remove them when appropriate.
65
+ • When prompted for an Out of Character [OOC:] reply, answer neutrally and in plaintext, not as {{char}}.
66
+ </Guidelines>
67
+
68
+ <Forbidden>
69
+ • Writing more then 200 words.
70
+ • Using excessive literary embellishments and purple prose unless dictated by {{char}}'s persona.
71
+ • Writing for, speaking, thinking, acting, or replying as {{user}} in your response.
72
+ • Repetitive and monotonous outputs.
73
+ • Positivity bias in your replies.
74
+ • Being overly extreme or NSFW when the narrative context is inappropriate.
75
+ </Forbidden>
76
+
77
+ Follow the instructions in <Guidelines></Guidelines>, avoiding the items listed in <Forbidden></Forbidden>.
78
+
79
+ ```
80
+
81
+
82
+ ## Axolotl config
83
+
84
+ <details><summary>See axolotl config</summary>
85
+
86
+ Axolotl version: `0.4.1`
87
+ ```yaml
88
+ base_model: Dans-DiscountModels/Mistral-NeMo-Minitron-8B-Base-ChatML
89
+ model_type: AutoModelForCausalLM
90
+ tokenizer_type: AutoTokenizer
91
+
92
+ plugins:
93
+ - axolotl.integrations.liger.LigerPlugin
94
+ liger_rope: true
95
+ liger_rms_norm: true
96
+ liger_swiglu: true
97
+ #liger_cross_entropy: true
98
+ liger_fused_linear_cross_entropy: true
99
+
100
+ load_in_8bit: false
101
+ load_in_4bit: false
102
+ strict: false
103
+
104
+ datasets:
105
+ - path: anthracite-core/c2_logs_16k_llama_v1.1
106
+ type: sharegpt
107
+ conversation: chatml
108
+ - path: anthracite-org/kalo-opus-instruct-22k-no-refusal
109
+ type: sharegpt
110
+ conversation: chatml
111
+ - path: Epiculous/SynthRP-Gens-v1.1-Filtered-n-Cleaned
112
+ type: sharegpt
113
+ conversation: chatml
114
+ - path: lodrick-the-lafted/kalo-opus-instruct-3k-filtered
115
+ type: sharegpt
116
+ conversation: chatml
117
+ - path: anthracite-org/nopm_claude_writing_fixed
118
+ type: sharegpt
119
+ conversation: chatml
120
+ - path: Epiculous/Synthstruct-Gens-v1.1-Filtered-n-Cleaned
121
+ type: sharegpt
122
+ conversation: chatml
123
+ - path: anthracite-org/kalo_opus_misc_240827
124
+ type: sharegpt
125
+ conversation: chatml
126
+ - path: anthracite-org/kalo_misc_part2
127
+ type: sharegpt
128
+ conversation: chatml
129
+ chat_template: chatml
130
+ shuffle_merged_datasets: false
131
+ default_system_message: "You are a helpful assistant that responds to the user."
132
+ dataset_prepared_path: /workspace/data/8b-nemo-fft-data
133
+ val_set_size: 0.0
134
+ output_dir: /workspace/data/8b-nemo-fft-out
135
+
136
+ sequence_len: 16384
137
+ sample_packing: true
138
+ eval_sample_packing: false
139
+ pad_to_sequence_len: true
140
+
141
+ adapter:
142
+ lora_model_dir:
143
+ lora_r:
144
+ lora_alpha:
145
+ lora_dropout:
146
+ lora_target_linear:
147
+ lora_fan_in_fan_out:
148
+
149
+ wandb_project: 8b-nemoprune-fft
150
+ wandb_entity:
151
+ wandb_watch:
152
+ wandb_name: attempt-01
153
+ wandb_log_model:
154
+
155
+ gradient_accumulation_steps: 2
156
+ micro_batch_size: 2
157
+ num_epochs: 4
158
+ optimizer: adamw_bnb_8bit
159
+ lr_scheduler: cosine
160
+ learning_rate: 0.00001
161
+
162
+ train_on_inputs: false
163
+ group_by_length: false
164
+ bf16: auto
165
+ fp16:
166
+ tf32: false
167
+
168
+ gradient_checkpointing: true
169
+ early_stopping_patience:
170
+ resume_from_checkpoint: /workspace/workspace/thing
171
+ local_rank:
172
+ logging_steps: 1
173
+ xformers_attention:
174
+ flash_attention: true
175
+
176
+ warmup_steps: 10
177
+ evals_per_epoch:
178
+ eval_table_size:
179
+ eval_max_new_tokens:
180
+ saves_per_epoch: 1
181
+ debug:
182
+ deepspeed: deepspeed_configs/zero3_bf16.json
183
+ weight_decay: 0.001
184
+ fsdp:
185
+ fsdp_config:
186
+ special_tokens:
187
+ pad_token: <pad>
188
+
189
+
190
+ ```
191
+
192
+ </details><br>
193
+
194
+ ## Credits
195
+
196
+
197
+ - [anthracite-org/kalo-opus-instruct-22k-no-refusal](https://huggingface.co/datasets/anthracite-org/kalo-opus-instruct-22k-no-refusal)
198
+ - [Epiculous/SynthRP-Gens-v1.1-Filtered-n-Cleaned](https://huggingface.co/datasets/Epiculous/SynthRP-Gens-v1.1-Filtered-n-Cleaned)
199
+ - [lodrick-the-lafted/kalo-opus-instruct-3k-filtered](https://huggingface.co/datasets/lodrick-the-lafted/kalo-opus-instruct-3k-filtered)
200
+ - [anthracite-org/nopm_claude_writing_fixed](https://huggingface.co/datasets/anthracite-org/nopm_claude_writing_fixed)
201
+ - [Epiculous/Synthstruct-Gens-v1.1-Filtered-n-Cleaned](https://huggingface.co/datasets/Epiculous/Synthstruct-Gens-v1.1-Filtered-n-Cleaned)
202
+ - [anthracite-org/kalo_opus_misc_240827](https://huggingface.co/datasets/anthracite-org/kalo_opus_misc_240827)
203
+ - [anthracite-org/kalo_misc_part2](https://huggingface.co/datasets/anthracite-org/kalo_misc_part2)
204
+ - [anthracite-core/c2_logs_16k_llama_v1.1](https://huggingface.co/datasets/anthracite-core/c2_logs_16k_llama_v1.1)
205
+
206
+
207
+ ## Training
208
+ The training was done for 2 epochs. We used 10 x [A40s](https://www.nvidia.com/en-us/data-center/a40/) GPUs graciously provided by [Kalomaze](https://huggingface.co/kalomaze) for the full-parameter fine-tuning of the model.
209
+
210
+ [<img src="https://raw.githubusercontent.com/OpenAccess-AI-Collective/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/OpenAccess-AI-Collective/axolotl)
211
+
212
+ ## Safety
213
+
214
+ Avoid misusing this model, or you’ll need a ‘clicker’ to reset reality. ;)
215
+
216
+ ## Musings
217
+
218
+ One of the members of Anthracite had quite an interesting idea, to finetune a smaller model for 4 epochs at a lower Learning rate as quote "Smaller models learn slower" - [Kalomaze](https://huggingface.co/kalomaze) provided access to 10 X A40s and We finetuned what now is [Tor-8B]() for 2.5 epochs (and it's 4 Epoch version released as [Darkens-8B]()) and the result was quite impressive and the same configuration being used to train [Magnum=9B-V4] & [Odin-9B]. We also finetuned the model at above the 8192 context length to see if the model could "heal" in a way to a context length of 16384 with Needle tests coming soon ;)
219
+
220
+
221
+