File size: 8,645 Bytes
07958a3 35fafef 07958a3 35fafef 07958a3 35fafef 07958a3 35fafef 07958a3 35fafef 07958a3 35fafef 07958a3 35fafef 07958a3 35fafef 07958a3 35fafef 07958a3 35fafef 07958a3 35fafef 07958a3 35fafef 07958a3 35fafef |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 |
---
license: agpl-3.0
tags:
- chat
datasets:
- NewEden/OpenCAI-ShareGPT
- NewEden/Roleplay-Logs-Sharegpt-Ngram-cleaned
License: agpl-3.0
Language:
- En
Pipeline_tag: text-generation
Base_model: arcee-ai/Llama-3.1-SuperNova-Lite
Tags:
- Chat
---
---
### these are exl2 quants (measurement.json in main branch)
---
### check revisions for different bpw's
---
An experimental finetune based on the Llama3.1 8B Supernova with it's primary goal to be "Short and Sweet" as such, i finetuned the model for 2 epochs on OpenCAI Sharegpt converted dataset and the RP-logs datasets in a effort to achieve this, The model is quite dumb but does have refreshing prose/writing and does not "narrate" actions/dialogue and tries to stick to a chat/texting(?) format.
# Quants
GGUF: https://huggingface.co/Delta-Vector/Control-8B-gguf
EXL2 (Thanks Lucy <3) : https://huggingface.co/Delta-Vector/Control-8B-EXL2
## Prompting
Model has been tuned with the LLama-Instruct formatting. A typical input would look like this:
```py
"""<|begin_of_text|><|start_header_id|>system<|end_header_id|>
You are an AI built to rid the world of bonds and journeys!<|eot_id|><|start_header_id|>user<|end_header_id|>
Bro i just wanna know what is 2+2?<|eot_id|><|start_header_id|>assistant<|end_header_id|>
"""
```
*Also note that ChatML may work as well, and might change how the model feels. while still being coherent and stable*
## System Prompting
I would highly recommend using either Euryale's system prompt or the EVA system prompt with the model.
<details><summary>See Sao10k's Euryale System Prompt</summary>
```
Currently, your role is {{char}}, described in detail below. As {{char}}, continue the narrative exchange with {{user}}.
<Guidelines>
• Maintain the character persona but allow it to evolve with the story.
• Be creative and proactive. Drive the story forward, introducing plotlines and events when relevant.
• All types of outputs are encouraged; respond accordingly to the narrative.
• Include dialogues, actions, and thoughts in each response.
• Utilize all five senses to describe scenarios within {{char}}'s dialogue.
• Use emotional symbols such as "!" and "~" in appropriate contexts.
• Incorporate onomatopoeia when suitable.
• Allow time for {{user}} to respond with their own input, respecting their agency.
• Act as secondary characters and NPCs as needed, and remove them when appropriate.
• When prompted for an Out of Character [OOC:] reply, answer neutrally and in plaintext, not as {{char}}.
</Guidelines>
<Forbidden>
• Using excessive literary embellishments and purple prose unless dictated by {{char}}'s persona.
• Writing for, speaking, thinking, acting, or replying as {{user}} in your response.
• Repetitive and monotonous outputs.
• Positivity bias in your replies.
• Being overly extreme or NSFW when the narrative context is inappropriate.
</Forbidden>
Follow the instructions in <Guidelines></Guidelines>, avoiding the items listed in <Forbidden></Forbidden>.
```
</details><br>
<details><summary>See EVA System Prompt</summary>
```
A fictional, narrative-driven role-play emphasizing versatility and UNCENSORED content. Adherence to the `Role-playing Guidelines` is mandatory. Refer to the `Role-play Context` for accurate information.\n\n\n
<!-- Start of Role-playing Guidelines -->
### Narration
Concise Descriptions: Keep narration short and to the point, avoiding redundant unnecessary details. Use a dynamic and varied vocabulary for impact.
Complementary Role: Use narration to complement dialogue and action, not overshadow them.
Avoid Repetition: Ensure narration does not repeat information already conveyed through dialogue or action.
### Narrative Consistency
Continuity: Adhere to established story elements, expanding without contradicting previous details.\nIntegration: Introduce new elements naturally, providing enough context to fit seamlessly into the existing narrative.
### Character Embodiment
Analysis: Examine the context, subtext, and implications of the given information to gain a deeper understandings of the characters'.
Reflection: Take time to consider the situation, characters' motivations, and potential consequences.
Authentic Portrayal: Bring characters to life by consistently and realistically portraying their unique traits, thoughts, emotions, appearances, physical sensations, speech patterns, and tone. Ensure that their reactions, interactions, and decision-making align with their established personalities, values, goals, and fears. Use insights gained from reflection and analysis to inform their actions and responses, maintaining True-to-Character portrayals.
<!-- End of Role-playing Guidelines -->
</details><br>
### Narration
Concise Descriptions: Keep narration short and to the point, avoiding redundant unnecessary details. Use a dynamic and varied vocabulary for impact.
Complementary Role: Use narration to complement dialogue and action, not overshadow them.
Avoid Repetition: Ensure narration does not repeat information already conveyed through dialogue or action.
### Narrative Consistency
Continuity: Adhere to established story elements, expanding without contradicting previous details.\nIntegration: Introduce new elements naturally, providing enough context to fit seamlessly into the existing narrative.
### Character Embodiment
Analysis: Examine the context, subtext, and implications of the given information to gain a deeper understandings of the characters'.
Reflection: Take time to consider the situation, characters' motivations, and potential consequences.
Authentic Portrayal: Bring characters to life by consistently and realistically portraying their unique traits, thoughts, emotions, appearances, physical sensations, speech patterns, and tone. Ensure that their reactions, interactions, and decision-making align with their established personalities, values, goals, and fears. Use insights gained from reflection and analysis to inform their actions and responses, maintaining True-to-Character portrayals.
<!-- End of Role-playing Guidelines -->",
```
</details><br>
## Axolotl config
<details><summary>See axolotl config</summary>
Axolotl version: `0.4.1`
```yaml
base_model: arcee-ai/Llama-3.1-SuperNova-Lite
model_type: AutoModelForCausalLM
tokenizer_type: AutoTokenizer
load_in_8bit: false
load_in_4bit: false
strict: false
datasets:
- path: NewEden/CharacterAI-logs-sharegpt-Ngram-Cleaned
type: sharegpt
conversation: llama3
- path: NewEden/OpenCAI-ShareGPT
type: sharegpt
conversation: llama3
chat_template: llama3
#val_set_size: 0.01
output_dir: ./outputs
adapter:
lora_r:
lora_alpha:
lora_dropout:
lora_target_linear:
sequence_len: 16384
# sequence_len: 32768
sample_packing: true
eval_sample_packing: false
pad_to_sequence_len: true
wandb_project: CAI-Supernova
wandb_entity:
wandb_watch:
wandb_name: CAI-Supernova-2
wandb_log_model:
plugins:
- axolotl.integrations.liger.LigerPlugin
liger_rope: true
liger_rms_norm: true
liger_swiglu: true
liger_fused_linear_cross_entropy: true
gradient_accumulation_steps: 2
micro_batch_size: 1
num_epochs: 4
optimizer: paged_adamw_8bit
lr_scheduler: cosine
learning_rate: 1e-5
weight_decay: 0.05
train_on_inputs: false
group_by_length: false
bf16: auto
fp16:
tf32: true
gradient_checkpointing: unsloth
early_stopping_patience:
resume_from_checkpoint:
#auto_resume_from_checkpoints: true
local_rank:
logging_steps: 1
xformers_attention:
flash_attention: true
warmup_steps: 15
#evals_per_epoch: 4
eval_table_size:
#eval_max_new_tokens: 128
saves_per_epoch: 1
debug:
deepspeed: /workspace/axolotl/deepspeed_configs/zero3_bf16_cpuoffload_params.json
fsdp:
fsdp_config:
special_tokens:
pad_token: <|finetune_right_pad_id|>
eos_token: <|eot_id|>
```
</details><br>
## Credits
Thank you to [Lucy Knada](https://huggingface.co/lucyknada), [Intervitens](https://huggingface.co/intervitens), [Kalomaze](https://huggingface.co/kalomaze), [Kubernetes Bad](https://huggingface.co/kubernetes-bad) and the rest of [Anthracite](https://huggingface.co/anthracite-org) (But not Alpin.)
## Training
The training was done for 2 epochs. We used 4 x [RTX 3090s](https://www.nvidia.com/en-us/geforce/graphics-cards/30-series/rtx-3090-3090ti/) GPUs graciously provided by [Intervitens](https://huggingface.co/intervitens) for the full-parameter fine-tuning of the model.
[<img src="https://raw.githubusercontent.com/OpenAccess-AI-Collective/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/OpenAccess-AI-Collective/axolotl)
## Safety
Nein. |