File size: 2,129 Bytes
c0446b7 6e01e64 c0446b7 6e01e64 c0446b7 6e01e64 c0446b7 6e01e64 c0446b7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 |
---
license: apache-2.0
base_model: google/vit-base-patch16-224-in21k
tags:
- generated_from_keras_callback
model-index:
- name: Deexit/custom_ViT
results: []
---
<!-- This model card has been generated automatically according to the information Keras had access to. You should
probably proofread and complete it, then remove this comment. -->
# Deexit/custom_ViT
This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on an unknown dataset.
It achieves the following results on the evaluation set:
- Train Loss: 0.9353
- Validation Loss: 1.0343
- Train Accuracy: 0.8667
- Epoch: 9
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 3e-05, 'decay_steps': 1680, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01}
- training_precision: float32
### Training results
| Train Loss | Validation Loss | Train Accuracy | Epoch |
|:----------:|:---------------:|:--------------:|:-----:|
| 2.2697 | 2.1984 | 0.4667 | 0 |
| 2.1245 | 2.0728 | 0.6 | 1 |
| 1.9780 | 1.9057 | 0.8 | 2 |
| 1.8135 | 1.7702 | 0.8667 | 3 |
| 1.6516 | 1.6121 | 0.8667 | 4 |
| 1.4854 | 1.4733 | 0.8667 | 5 |
| 1.3306 | 1.3294 | 0.8667 | 6 |
| 1.1829 | 1.2269 | 0.8333 | 7 |
| 1.0596 | 1.1176 | 0.8667 | 8 |
| 0.9353 | 1.0343 | 0.8667 | 9 |
### Framework versions
- Transformers 4.31.0
- TensorFlow 2.12.0
- Datasets 2.14.4
- Tokenizers 0.13.3
|