DeepRoller commited on
Commit
65fac2a
·
1 Parent(s): ffccb55

this is my first model it did not pass the game

Browse files
.gitattributes CHANGED
@@ -25,3 +25,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
25
  *.zip filter=lfs diff=lfs merge=lfs -text
26
  *.zstandard filter=lfs diff=lfs merge=lfs -text
27
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
25
  *.zip filter=lfs diff=lfs merge=lfs -text
26
  *.zstandard filter=lfs diff=lfs merge=lfs -text
27
  *tfevents* filter=lfs diff=lfs merge=lfs -text
28
+ *.mp4 filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - metrics:
12
+ - type: mean_reward
13
+ value: 248.52 +/- 19.00
14
+ name: mean_reward
15
+ task:
16
+ type: reinforcement-learning
17
+ name: reinforcement-learning
18
+ dataset:
19
+ name: LunarLander-v2
20
+ type: LunarLander-v2
21
+ ---
22
+
23
+ # **PPO** Agent playing **LunarLander-v2**
24
+ This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
25
+
26
+ ## Usage (with Stable-baselines3)
27
+ TODO: Add your code
28
+
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f3b1ecfec20>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f3b1ecfecb0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f3b1ecfed40>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f3b1ecfedd0>", "_build": "<function ActorCriticPolicy._build at 0x7f3b1ecfee60>", "forward": "<function ActorCriticPolicy.forward at 0x7f3b1ecfeef0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f3b1ecfef80>", "_predict": "<function ActorCriticPolicy._predict at 0x7f3b1ed04050>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f3b1ed040e0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f3b1ed04170>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f3b1ed04200>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f3b1ecd24e0>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 1, "num_timesteps": 500736, "_total_timesteps": 500000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1651759712.6501682, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVlQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAADNzUzqiYXM/NcXOPZzi+L5r8Qk9nn07vQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksBSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYBAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.0014719999999999178, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVeBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIILb0aCrycECUhpRSlIwBbJRNVQKMAXSUR0CVy9NJe3QVdX2UKGgGaAloD0MITmTmApelWUCUhpRSlGgVTegDaBZHQJXX7ibUgB91fZQoaAZoCWgPQwh3oiQkkvhxQJSGlFKUaBVNfAFoFkdAlduVfmcOLHV9lChoBmgJaA9DCJPEknL3uGpAlIaUUpRoFU2LAWgWR0CV4UqMm4RVdX2UKGgGaAloD0MInG1uTE9yXkCUhpRSlGgVTegDaBZHQJXvxYFJQLx1fZQoaAZoCWgPQwi8lSU6i+9wQJSGlFKUaBVNkwFoFkdAlfODjJdSl3V9lChoBmgJaA9DCNLFppXCPm9AlIaUUpRoFU2XAmgWR0CV+6cafjCIdX2UKGgGaAloD0MIjjulgzX7cECUhpRSlGgVTU4DaBZHQJYG331zySV1fZQoaAZoCWgPQwgB3gIJCqZqQJSGlFKUaBVNPwJoFkdAlg0aJVKf4HV9lChoBmgJaA9DCAqhgy5hFmZAlIaUUpRoFU3oA2gWR0CWGQTw2ETQdX2UKGgGaAloD0MIaB8r+O05b0CUhpRSlGgVTZ8BaBZHQJYe+Wu5jH51fZQoaAZoCWgPQwjUK2UZIkxwQJSGlFKUaBVNcgFoFkdAliJsuBczInV9lChoBmgJaA9DCDKP/MFA3m9AlIaUUpRoFU2cAWgWR0CWJoQo1DSgdX2UKGgGaAloD0MICaUvhBzEcECUhpRSlGgVTYIBaBZHQJYsEWbgCOp1fZQoaAZoCWgPQwhCzCVV29NAQJSGlFKUaBVNIQFoFkdAli6mtlqagHV9lChoBmgJaA9DCAIrhxbZkWlAlIaUUpRoFU2vAWgWR0CWMu2rGR3edX2UKGgGaAloD0MIaqD5nLuJQECUhpRSlGgVTRwBaBZHQJY3THIZIhB1fZQoaAZoCWgPQwhhwmhWNvBxQJSGlFKUaBVNogFoFkdAljsbi++M63V9lChoBmgJaA9DCJbMsbzr/XBAlIaUUpRoFU3EAWgWR0CWQROObRWtdX2UKGgGaAloD0MIlIeFWhNKcUCUhpRSlGgVTVgBaBZHQJZEVDNQj2V1fZQoaAZoCWgPQwiSlPQw9JlxQJSGlFKUaBVNdgFoFkdAlkezFyaNM3V9lChoBmgJaA9DCNh+MsaHmQZAlIaUUpRoFU0yAWgWR0CWTFdzGPxQdX2UKGgGaAloD0MIhzHp76V1bkCUhpRSlGgVTaIBaBZHQJZQU6RyOrB1fZQoaAZoCWgPQwhT6LzGLiBxQJSGlFKUaBVNYgFoFkdAllNY0/GEPHV9lChoBmgJaA9DCPmCFhJwJnFAlIaUUpRoFU01AWgWR0CWWAA+IMz/dX2UKGgGaAloD0MI4e1BCAgHcUCUhpRSlGgVTWECaBZHQJZeiugYgq51fZQoaAZoCWgPQwgzMV2I1cBsQJSGlFKUaBVN4wFoFkdAlmVK2F36h3V9lChoBmgJaA9DCHQNMzQe+G5AlIaUUpRoFU1GAmgWR0CWa6uF6AvtdX2UKGgGaAloD0MIxOxl2+lUb0CUhpRSlGgVTX8BaBZHQJZxQv7FbV11fZQoaAZoCWgPQwhfKGA7mOFtQJSGlFKUaBVNogNoFkdAlnwDwUg0THV9lChoBmgJaA9DCAd5PZgUizvAlIaUUpRoFU0eAWgWR0CWgGpVS4vwdX2UKGgGaAloD0MIETXR5yN+b0CUhpRSlGgVTUABaBZHQJaDXh0hePd1fZQoaAZoCWgPQwhVF/Ayw/psQJSGlFKUaBVNlwFoFkdAlocruUliSnV9lChoBmgJaA9DCN+pgHueVm5AlIaUUpRoFU2VAWgWR0CWjOrC3w1BdX2UKGgGaAloD0MIu2BwzR3MbkCUhpRSlGgVTfUBaBZHQJaRxo11nul1fZQoaAZoCWgPQwhJKlPMwdxtQJSGlFKUaBVNUwFoFkdAlpbIXsPatnV9lChoBmgJaA9DCCvc8pEUE3BAlIaUUpRoFU1lAWgWR0CWmiP+n62wdX2UKGgGaAloD0MIpFTCE/qrbUCUhpRSlGgVTYMBaBZHQJadvAXVLBd1fZQoaAZoCWgPQwiymxn96ExvQJSGlFKUaBVNggFoFkdAlqMZxvNu+HV9lChoBmgJaA9DCABV3LjFBnFAlIaUUpRoFU2QAWgWR0CWpsaTOgQIdX2UKGgGaAloD0MITMEaZ1Ntb0CUhpRSlGgVTf4CaBZHQJawZRdhRZV1fZQoaAZoCWgPQwgoK4argyZuQJSGlFKUaBVNmwFoFkdAlrRsejmCAnV9lChoBmgJaA9DCF4QkZr2yG9AlIaUUpRoFU1QAWgWR0CWuUjd56dEdX2UKGgGaAloD0MIgsXhzK8MbkCUhpRSlGgVTUUBaBZHQJa8Qlw97nh1fZQoaAZoCWgPQwg7NgLxOsdtQJSGlFKUaBVNRAFoFkdAlr8rbQC0W3V9lChoBmgJaA9DCD3RdeGH2m1AlIaUUpRoFU1dAWgWR0CWxE+NLlFMdX2UKGgGaAloD0MIeQH20SmwcECUhpRSlGgVTQACaBZHQJbJGBtk4FR1fZQoaAZoCWgPQwi/m27ZoWhxQJSGlFKUaBVNZgFoFkdAlsxXjMmnfnV9lChoBmgJaA9DCEyln3D23HBAlIaUUpRoFU2cAWgWR0CW0ieii7CjdX2UKGgGaAloD0MIUz9vKhIAcECUhpRSlGgVTTsBaBZHQJbVFg3Lmp51fZQoaAZoCWgPQwjyBpj5DnBCQJSGlFKUaBVNCAFoFkdAltdLO3UhFHV9lChoBmgJaA9DCNMyUu+pPkFAlIaUUpRoFU0IAWgWR0CW24VbiZOSdX2UKGgGaAloD0MI6pJxjGTfIMCUhpRSlGgVS/hoFkdAlt2VZTyau3V9lChoBmgJaA9DCDC8kuQ5W21AlIaUUpRoFU1nAWgWR0CW4Oxo7FKkdX2UKGgGaAloD0MIr3rAPGShbUCUhpRSlGgVTSEBaBZHQJblY3rD6311fZQoaAZoCWgPQwiTbkvkApJtQJSGlFKUaBVNWgFoFkdAluiP0mMOw3V9lChoBmgJaA9DCHP1Y5P8MWxAlIaUUpRoFU0zAWgWR0CW6znrpqyodX2UKGgGaAloD0MIKgKc3sWgbkCUhpRSlGgVTTMBaBZHQJbv0MPSUkh1fZQoaAZoCWgPQwg/OQoQBRttQJSGlFKUaBVNKAFoFkdAlvJdyPuG9HV9lChoBmgJaA9DCNkiaTf6YGFAlIaUUpRoFU3oA2gWR0CW/o2uxKQJdX2UKGgGaAloD0MIf2d79IaRbECUhpRSlGgVTXsBaBZHQJcCBRiw0O51fZQoaAZoCWgPQwgNb9bgfZk9QJSGlFKUaBVNCQFoFkdAlwRAOFxn4HV9lChoBmgJaA9DCEvqBDQRHHBAlIaUUpRoFU2bAWgWR0CXCfd5Y5ktdX2UKGgGaAloD0MI09o0ttc9akCUhpRSlGgVTUwBaBZHQJcM/nq3VkN1fZQoaAZoCWgPQwgR/G8lO3oxQJSGlFKUaBVNBwFoFkdAlw9AOe8PF3V9lChoBmgJaA9DCNobfGFydXBAlIaUUpRoFU0sAWgWR0CXE8MvAXVLdX2UKGgGaAloD0MI26LMBpkUTECUhpRSlGgVS/doFkdAlxXyz1K5CnV9lChoBmgJaA9DCDkroib632pAlIaUUpRoFU2EAWgWR0CXGZfkFOfvdX2UKGgGaAloD0MIjxt+N10QbUCUhpRSlGgVTVYBaBZHQJceuOdXko51fZQoaAZoCWgPQwh3hqkt9eRtQJSGlFKUaBVNQAFoFkdAlyG4fW+XaHV9lChoBmgJaA9DCNAJoYOuOW1AlIaUUpRoFU1bAWgWR0CXJP5RCQcQdX2UKGgGaAloD0MIPBVwz/Oeb0CUhpRSlGgVTToBaBZHQJcpxjBl+Vl1fZQoaAZoCWgPQwix3NJqSKNvQJSGlFKUaBVNdQFoFkdAly03xFy7w3V9lChoBmgJaA9DCNV1qKYk/U1AlIaUUpRoFU0WAWgWR0CXL5OBUaQ4dX2UKGgGaAloD0MI8GlOXuQlbECUhpRSlGgVTS8BaBZHQJc0GwIMSbp1fZQoaAZoCWgPQwiale1DHlBxQJSGlFKUaBVNTgFoFkdAlzcYyXUpeHV9lChoBmgJaA9DCBZM/FHUTTrAlIaUUpRoFUvYaBZHQJc4/SWqtHR1fZQoaAZoCWgPQwgqG9ZUVppxQJSGlFKUaBVNNwFoFkdAlzvMEA5q/XV9lChoBmgJaA9DCK/pQUEpx2tAlIaUUpRoFU1pAWgWR0CXQQ3Dej20dX2UKGgGaAloD0MIMCk+PiHLFMCUhpRSlGgVS/RoFkdAl0MqiCaqj3V9lChoBmgJaA9DCHsvvmiPgzLAlIaUUpRoFUvnaBZHQJdFJeXzDoB1fZQoaAZoCWgPQwiRD3o2q14pQJSGlFKUaBVNDwFoFkdAl0d50OmR/3V9lChoBmgJaA9DCBU5RNzcHXBAlIaUUpRoFU1JAWgWR0CXTH4PPLPldX2UKGgGaAloD0MItg4O9ia0SUCUhpRSlGgVTegDaBZHQJdZEaCL/CJ1fZQoaAZoCWgPQwgsLSP1nh40wJSGlFKUaBVLw2gWR0CXWr8+RoysdX2UKGgGaAloD0MIPSgoRasRbUCUhpRSlGgVTUYBaBZHQJddr5ftx+91fZQoaAZoCWgPQwhU/UrnA15wQJSGlFKUaBVN1QFoFkdAl2Q+67NB4XV9lChoBmgJaA9DCP8kPneCcGdAlIaUUpRoFU1TAWgWR0CXZ3f029+PdX2UKGgGaAloD0MItaSjHMx5akCUhpRSlGgVTSgBaBZHQJdp+wV0tAd1fZQoaAZoCWgPQwgWaeIdYKRpQJSGlFKUaBVNQwFoFkdAl26qBd2Pk3V9lChoBmgJaA9DCC8UsB2MvFdAlIaUUpRoFU3oA2gWR0CXevRoh6jWdX2UKGgGaAloD0MIwakPJC/WcECUhpRSlGgVTRIBaBZHQJd9UI5YHPh1fZQoaAZoCWgPQwjAriZPWYUuwJSGlFKUaBVL32gWR0CXfyKwIMScdX2UKGgGaAloD0MIhZhLqratRkCUhpRSlGgVS99oFkdAl4EQiA2AG3V9lChoBmgJaA9DCGwldJfEKTZAlIaUUpRoFUv4aBZHQJeFDNJOFg51fZQoaAZoCWgPQwg3bjE/9yZwQJSGlFKUaBVNXwFoFkdAl4g/0qYqonV9lChoBmgJaA9DCFiQZiwaaWtAlIaUUpRoFU0DAmgWR0CXjW8Md92HdX2UKGgGaAloD0MIPu3w1+SEbkCUhpRSlGgVTSUBaBZHQJeR1uZThpB1fZQoaAZoCWgPQwg02T9PA5VtQJSGlFKUaBVNrgFoFkdAl5YGfseGPHV9lChoBmgJaA9DCAWoqWXrgm5AlIaUUpRoFU0hAWgWR0CXmIjkMkQgdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 1956, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
ppo-lunar-almost-lander.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:43bddf7a02e592b5cf11e720b62cd7f5499e02323afebd0876292a950e632324
3
+ size 143377
ppo-lunar-almost-lander/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.5.0
ppo-lunar-almost-lander/data ADDED
@@ -0,0 +1,94 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f3b1ecfec20>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f3b1ecfecb0>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f3b1ecfed40>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f3b1ecfedd0>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f3b1ecfee60>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f3b1ecfeef0>",
13
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f3b1ecfef80>",
14
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f3b1ed04050>",
15
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f3b1ed040e0>",
16
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f3b1ed04170>",
17
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f3b1ed04200>",
18
+ "__abstractmethods__": "frozenset()",
19
+ "_abc_impl": "<_abc_data object at 0x7f3b1ecd24e0>"
20
+ },
21
+ "verbose": 1,
22
+ "policy_kwargs": {},
23
+ "observation_space": {
24
+ ":type:": "<class 'gym.spaces.box.Box'>",
25
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
26
+ "dtype": "float32",
27
+ "_shape": [
28
+ 8
29
+ ],
30
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
31
+ "high": "[inf inf inf inf inf inf inf inf]",
32
+ "bounded_below": "[False False False False False False False False]",
33
+ "bounded_above": "[False False False False False False False False]",
34
+ "_np_random": null
35
+ },
36
+ "action_space": {
37
+ ":type:": "<class 'gym.spaces.discrete.Discrete'>",
38
+ ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
39
+ "n": 4,
40
+ "_shape": [],
41
+ "dtype": "int64",
42
+ "_np_random": null
43
+ },
44
+ "n_envs": 1,
45
+ "num_timesteps": 500736,
46
+ "_total_timesteps": 500000,
47
+ "_num_timesteps_at_start": 0,
48
+ "seed": null,
49
+ "action_noise": null,
50
+ "start_time": 1651759712.6501682,
51
+ "learning_rate": 0.0003,
52
+ "tensorboard_log": null,
53
+ "lr_schedule": {
54
+ ":type:": "<class 'function'>",
55
+ ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
56
+ },
57
+ "_last_obs": {
58
+ ":type:": "<class 'numpy.ndarray'>",
59
+ ":serialized:": "gAWVlQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAADNzUzqiYXM/NcXOPZzi+L5r8Qk9nn07vQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksBSwiGlIwBQ5R0lFKULg=="
60
+ },
61
+ "_last_episode_starts": {
62
+ ":type:": "<class 'numpy.ndarray'>",
63
+ ":serialized:": "gAWVdAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYBAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKULg=="
64
+ },
65
+ "_last_original_obs": null,
66
+ "_episode_num": 0,
67
+ "use_sde": false,
68
+ "sde_sample_freq": -1,
69
+ "_current_progress_remaining": -0.0014719999999999178,
70
+ "ep_info_buffer": {
71
+ ":type:": "<class 'collections.deque'>",
72
+ ":serialized:": "gAWVeBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIILb0aCrycECUhpRSlIwBbJRNVQKMAXSUR0CVy9NJe3QVdX2UKGgGaAloD0MITmTmApelWUCUhpRSlGgVTegDaBZHQJXX7ibUgB91fZQoaAZoCWgPQwh3oiQkkvhxQJSGlFKUaBVNfAFoFkdAlduVfmcOLHV9lChoBmgJaA9DCJPEknL3uGpAlIaUUpRoFU2LAWgWR0CV4UqMm4RVdX2UKGgGaAloD0MInG1uTE9yXkCUhpRSlGgVTegDaBZHQJXvxYFJQLx1fZQoaAZoCWgPQwi8lSU6i+9wQJSGlFKUaBVNkwFoFkdAlfODjJdSl3V9lChoBmgJaA9DCNLFppXCPm9AlIaUUpRoFU2XAmgWR0CV+6cafjCIdX2UKGgGaAloD0MIjjulgzX7cECUhpRSlGgVTU4DaBZHQJYG331zySV1fZQoaAZoCWgPQwgB3gIJCqZqQJSGlFKUaBVNPwJoFkdAlg0aJVKf4HV9lChoBmgJaA9DCAqhgy5hFmZAlIaUUpRoFU3oA2gWR0CWGQTw2ETQdX2UKGgGaAloD0MIaB8r+O05b0CUhpRSlGgVTZ8BaBZHQJYe+Wu5jH51fZQoaAZoCWgPQwjUK2UZIkxwQJSGlFKUaBVNcgFoFkdAliJsuBczInV9lChoBmgJaA9DCDKP/MFA3m9AlIaUUpRoFU2cAWgWR0CWJoQo1DSgdX2UKGgGaAloD0MICaUvhBzEcECUhpRSlGgVTYIBaBZHQJYsEWbgCOp1fZQoaAZoCWgPQwhCzCVV29NAQJSGlFKUaBVNIQFoFkdAli6mtlqagHV9lChoBmgJaA9DCAIrhxbZkWlAlIaUUpRoFU2vAWgWR0CWMu2rGR3edX2UKGgGaAloD0MIaqD5nLuJQECUhpRSlGgVTRwBaBZHQJY3THIZIhB1fZQoaAZoCWgPQwhhwmhWNvBxQJSGlFKUaBVNogFoFkdAljsbi++M63V9lChoBmgJaA9DCJbMsbzr/XBAlIaUUpRoFU3EAWgWR0CWQROObRWtdX2UKGgGaAloD0MIlIeFWhNKcUCUhpRSlGgVTVgBaBZHQJZEVDNQj2V1fZQoaAZoCWgPQwiSlPQw9JlxQJSGlFKUaBVNdgFoFkdAlkezFyaNM3V9lChoBmgJaA9DCNh+MsaHmQZAlIaUUpRoFU0yAWgWR0CWTFdzGPxQdX2UKGgGaAloD0MIhzHp76V1bkCUhpRSlGgVTaIBaBZHQJZQU6RyOrB1fZQoaAZoCWgPQwhT6LzGLiBxQJSGlFKUaBVNYgFoFkdAllNY0/GEPHV9lChoBmgJaA9DCPmCFhJwJnFAlIaUUpRoFU01AWgWR0CWWAA+IMz/dX2UKGgGaAloD0MI4e1BCAgHcUCUhpRSlGgVTWECaBZHQJZeiugYgq51fZQoaAZoCWgPQwgzMV2I1cBsQJSGlFKUaBVN4wFoFkdAlmVK2F36h3V9lChoBmgJaA9DCHQNMzQe+G5AlIaUUpRoFU1GAmgWR0CWa6uF6AvtdX2UKGgGaAloD0MIxOxl2+lUb0CUhpRSlGgVTX8BaBZHQJZxQv7FbV11fZQoaAZoCWgPQwhfKGA7mOFtQJSGlFKUaBVNogNoFkdAlnwDwUg0THV9lChoBmgJaA9DCAd5PZgUizvAlIaUUpRoFU0eAWgWR0CWgGpVS4vwdX2UKGgGaAloD0MIETXR5yN+b0CUhpRSlGgVTUABaBZHQJaDXh0hePd1fZQoaAZoCWgPQwhVF/Ayw/psQJSGlFKUaBVNlwFoFkdAlocruUliSnV9lChoBmgJaA9DCN+pgHueVm5AlIaUUpRoFU2VAWgWR0CWjOrC3w1BdX2UKGgGaAloD0MIu2BwzR3MbkCUhpRSlGgVTfUBaBZHQJaRxo11nul1fZQoaAZoCWgPQwhJKlPMwdxtQJSGlFKUaBVNUwFoFkdAlpbIXsPatnV9lChoBmgJaA9DCCvc8pEUE3BAlIaUUpRoFU1lAWgWR0CWmiP+n62wdX2UKGgGaAloD0MIpFTCE/qrbUCUhpRSlGgVTYMBaBZHQJadvAXVLBd1fZQoaAZoCWgPQwiymxn96ExvQJSGlFKUaBVNggFoFkdAlqMZxvNu+HV9lChoBmgJaA9DCABV3LjFBnFAlIaUUpRoFU2QAWgWR0CWpsaTOgQIdX2UKGgGaAloD0MITMEaZ1Ntb0CUhpRSlGgVTf4CaBZHQJawZRdhRZV1fZQoaAZoCWgPQwgoK4argyZuQJSGlFKUaBVNmwFoFkdAlrRsejmCAnV9lChoBmgJaA9DCF4QkZr2yG9AlIaUUpRoFU1QAWgWR0CWuUjd56dEdX2UKGgGaAloD0MIgsXhzK8MbkCUhpRSlGgVTUUBaBZHQJa8Qlw97nh1fZQoaAZoCWgPQwg7NgLxOsdtQJSGlFKUaBVNRAFoFkdAlr8rbQC0W3V9lChoBmgJaA9DCD3RdeGH2m1AlIaUUpRoFU1dAWgWR0CWxE+NLlFMdX2UKGgGaAloD0MIeQH20SmwcECUhpRSlGgVTQACaBZHQJbJGBtk4FR1fZQoaAZoCWgPQwi/m27ZoWhxQJSGlFKUaBVNZgFoFkdAlsxXjMmnfnV9lChoBmgJaA9DCEyln3D23HBAlIaUUpRoFU2cAWgWR0CW0ieii7CjdX2UKGgGaAloD0MIUz9vKhIAcECUhpRSlGgVTTsBaBZHQJbVFg3Lmp51fZQoaAZoCWgPQwjyBpj5DnBCQJSGlFKUaBVNCAFoFkdAltdLO3UhFHV9lChoBmgJaA9DCNMyUu+pPkFAlIaUUpRoFU0IAWgWR0CW24VbiZOSdX2UKGgGaAloD0MI6pJxjGTfIMCUhpRSlGgVS/hoFkdAlt2VZTyau3V9lChoBmgJaA9DCDC8kuQ5W21AlIaUUpRoFU1nAWgWR0CW4Oxo7FKkdX2UKGgGaAloD0MIr3rAPGShbUCUhpRSlGgVTSEBaBZHQJblY3rD6311fZQoaAZoCWgPQwiTbkvkApJtQJSGlFKUaBVNWgFoFkdAluiP0mMOw3V9lChoBmgJaA9DCHP1Y5P8MWxAlIaUUpRoFU0zAWgWR0CW6znrpqyodX2UKGgGaAloD0MIKgKc3sWgbkCUhpRSlGgVTTMBaBZHQJbv0MPSUkh1fZQoaAZoCWgPQwg/OQoQBRttQJSGlFKUaBVNKAFoFkdAlvJdyPuG9HV9lChoBmgJaA9DCNkiaTf6YGFAlIaUUpRoFU3oA2gWR0CW/o2uxKQJdX2UKGgGaAloD0MIf2d79IaRbECUhpRSlGgVTXsBaBZHQJcCBRiw0O51fZQoaAZoCWgPQwgNb9bgfZk9QJSGlFKUaBVNCQFoFkdAlwRAOFxn4HV9lChoBmgJaA9DCEvqBDQRHHBAlIaUUpRoFU2bAWgWR0CXCfd5Y5ktdX2UKGgGaAloD0MI09o0ttc9akCUhpRSlGgVTUwBaBZHQJcM/nq3VkN1fZQoaAZoCWgPQwgR/G8lO3oxQJSGlFKUaBVNBwFoFkdAlw9AOe8PF3V9lChoBmgJaA9DCNobfGFydXBAlIaUUpRoFU0sAWgWR0CXE8MvAXVLdX2UKGgGaAloD0MI26LMBpkUTECUhpRSlGgVS/doFkdAlxXyz1K5CnV9lChoBmgJaA9DCDkroib632pAlIaUUpRoFU2EAWgWR0CXGZfkFOfvdX2UKGgGaAloD0MIjxt+N10QbUCUhpRSlGgVTVYBaBZHQJceuOdXko51fZQoaAZoCWgPQwh3hqkt9eRtQJSGlFKUaBVNQAFoFkdAlyG4fW+XaHV9lChoBmgJaA9DCNAJoYOuOW1AlIaUUpRoFU1bAWgWR0CXJP5RCQcQdX2UKGgGaAloD0MIPBVwz/Oeb0CUhpRSlGgVTToBaBZHQJcpxjBl+Vl1fZQoaAZoCWgPQwix3NJqSKNvQJSGlFKUaBVNdQFoFkdAly03xFy7w3V9lChoBmgJaA9DCNV1qKYk/U1AlIaUUpRoFU0WAWgWR0CXL5OBUaQ4dX2UKGgGaAloD0MI8GlOXuQlbECUhpRSlGgVTS8BaBZHQJc0GwIMSbp1fZQoaAZoCWgPQwiale1DHlBxQJSGlFKUaBVNTgFoFkdAlzcYyXUpeHV9lChoBmgJaA9DCBZM/FHUTTrAlIaUUpRoFUvYaBZHQJc4/SWqtHR1fZQoaAZoCWgPQwgqG9ZUVppxQJSGlFKUaBVNNwFoFkdAlzvMEA5q/XV9lChoBmgJaA9DCK/pQUEpx2tAlIaUUpRoFU1pAWgWR0CXQQ3Dej20dX2UKGgGaAloD0MIMCk+PiHLFMCUhpRSlGgVS/RoFkdAl0MqiCaqj3V9lChoBmgJaA9DCHsvvmiPgzLAlIaUUpRoFUvnaBZHQJdFJeXzDoB1fZQoaAZoCWgPQwiRD3o2q14pQJSGlFKUaBVNDwFoFkdAl0d50OmR/3V9lChoBmgJaA9DCBU5RNzcHXBAlIaUUpRoFU1JAWgWR0CXTH4PPLPldX2UKGgGaAloD0MItg4O9ia0SUCUhpRSlGgVTegDaBZHQJdZEaCL/CJ1fZQoaAZoCWgPQwgsLSP1nh40wJSGlFKUaBVLw2gWR0CXWr8+RoysdX2UKGgGaAloD0MIPSgoRasRbUCUhpRSlGgVTUYBaBZHQJddr5ftx+91fZQoaAZoCWgPQwhU/UrnA15wQJSGlFKUaBVN1QFoFkdAl2Q+67NB4XV9lChoBmgJaA9DCP8kPneCcGdAlIaUUpRoFU1TAWgWR0CXZ3f029+PdX2UKGgGaAloD0MItaSjHMx5akCUhpRSlGgVTSgBaBZHQJdp+wV0tAd1fZQoaAZoCWgPQwgWaeIdYKRpQJSGlFKUaBVNQwFoFkdAl26qBd2Pk3V9lChoBmgJaA9DCC8UsB2MvFdAlIaUUpRoFU3oA2gWR0CXevRoh6jWdX2UKGgGaAloD0MIwakPJC/WcECUhpRSlGgVTRIBaBZHQJd9UI5YHPh1fZQoaAZoCWgPQwjAriZPWYUuwJSGlFKUaBVL32gWR0CXfyKwIMScdX2UKGgGaAloD0MIhZhLqratRkCUhpRSlGgVS99oFkdAl4EQiA2AG3V9lChoBmgJaA9DCGwldJfEKTZAlIaUUpRoFUv4aBZHQJeFDNJOFg51fZQoaAZoCWgPQwg3bjE/9yZwQJSGlFKUaBVNXwFoFkdAl4g/0qYqonV9lChoBmgJaA9DCFiQZiwaaWtAlIaUUpRoFU0DAmgWR0CXjW8Md92HdX2UKGgGaAloD0MIPu3w1+SEbkCUhpRSlGgVTSUBaBZHQJeR1uZThpB1fZQoaAZoCWgPQwg02T9PA5VtQJSGlFKUaBVNrgFoFkdAl5YGfseGPHV9lChoBmgJaA9DCAWoqWXrgm5AlIaUUpRoFU0hAWgWR0CXmIjkMkQgdWUu"
73
+ },
74
+ "ep_success_buffer": {
75
+ ":type:": "<class 'collections.deque'>",
76
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
77
+ },
78
+ "_n_updates": 1956,
79
+ "n_steps": 1024,
80
+ "gamma": 0.999,
81
+ "gae_lambda": 0.98,
82
+ "ent_coef": 0.01,
83
+ "vf_coef": 0.5,
84
+ "max_grad_norm": 0.5,
85
+ "batch_size": 64,
86
+ "n_epochs": 4,
87
+ "clip_range": {
88
+ ":type:": "<class 'function'>",
89
+ ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
90
+ },
91
+ "clip_range_vf": null,
92
+ "normalize_advantage": true,
93
+ "target_kl": null
94
+ }
ppo-lunar-almost-lander/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5da1381253fcde053bfa7743d6006d32a9350620a4bb1ee66b8efc64bb53d135
3
+ size 84829
ppo-lunar-almost-lander/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:81cfff8d45b21adb079848cc1161d61808ccc6f2be29610260799a425fe65c0d
3
+ size 43201
ppo-lunar-almost-lander/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
ppo-lunar-almost-lander/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ OS: Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022
2
+ Python: 3.7.13
3
+ Stable-Baselines3: 1.5.0
4
+ PyTorch: 1.11.0+cu113
5
+ GPU Enabled: True
6
+ Numpy: 1.21.6
7
+ Gym: 0.21.0
replay.mp4 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ec03997eaa436f600b92af7034ccf9e16a578f2c6e14db500842f3a6ad1e5b1d
3
+ size 229329
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 248.52439436533018, "std_reward": 18.999433524987435, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-05-05T14:38:36.910804"}