DeepRoller
commited on
Commit
·
65fac2a
1
Parent(s):
ffccb55
this is my first model it did not pass the game
Browse files- .gitattributes +1 -0
- README.md +28 -0
- config.json +1 -0
- ppo-lunar-almost-lander.zip +3 -0
- ppo-lunar-almost-lander/_stable_baselines3_version +1 -0
- ppo-lunar-almost-lander/data +94 -0
- ppo-lunar-almost-lander/policy.optimizer.pth +3 -0
- ppo-lunar-almost-lander/policy.pth +3 -0
- ppo-lunar-almost-lander/pytorch_variables.pth +3 -0
- ppo-lunar-almost-lander/system_info.txt +7 -0
- replay.mp4 +3 -0
- results.json +1 -0
.gitattributes
CHANGED
@@ -25,3 +25,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
28 |
+
*.mp4 filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- metrics:
|
12 |
+
- type: mean_reward
|
13 |
+
value: 248.52 +/- 19.00
|
14 |
+
name: mean_reward
|
15 |
+
task:
|
16 |
+
type: reinforcement-learning
|
17 |
+
name: reinforcement-learning
|
18 |
+
dataset:
|
19 |
+
name: LunarLander-v2
|
20 |
+
type: LunarLander-v2
|
21 |
+
---
|
22 |
+
|
23 |
+
# **PPO** Agent playing **LunarLander-v2**
|
24 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
25 |
+
|
26 |
+
## Usage (with Stable-baselines3)
|
27 |
+
TODO: Add your code
|
28 |
+
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f3b1ecfec20>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f3b1ecfecb0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f3b1ecfed40>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f3b1ecfedd0>", "_build": "<function ActorCriticPolicy._build at 0x7f3b1ecfee60>", "forward": "<function ActorCriticPolicy.forward at 0x7f3b1ecfeef0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f3b1ecfef80>", "_predict": "<function ActorCriticPolicy._predict at 0x7f3b1ed04050>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f3b1ed040e0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f3b1ed04170>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f3b1ed04200>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f3b1ecd24e0>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 1, "num_timesteps": 500736, "_total_timesteps": 500000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1651759712.6501682, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVlQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAADNzUzqiYXM/NcXOPZzi+L5r8Qk9nn07vQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksBSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYBAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.0014719999999999178, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVeBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIILb0aCrycECUhpRSlIwBbJRNVQKMAXSUR0CVy9NJe3QVdX2UKGgGaAloD0MITmTmApelWUCUhpRSlGgVTegDaBZHQJXX7ibUgB91fZQoaAZoCWgPQwh3oiQkkvhxQJSGlFKUaBVNfAFoFkdAlduVfmcOLHV9lChoBmgJaA9DCJPEknL3uGpAlIaUUpRoFU2LAWgWR0CV4UqMm4RVdX2UKGgGaAloD0MInG1uTE9yXkCUhpRSlGgVTegDaBZHQJXvxYFJQLx1fZQoaAZoCWgPQwi8lSU6i+9wQJSGlFKUaBVNkwFoFkdAlfODjJdSl3V9lChoBmgJaA9DCNLFppXCPm9AlIaUUpRoFU2XAmgWR0CV+6cafjCIdX2UKGgGaAloD0MIjjulgzX7cECUhpRSlGgVTU4DaBZHQJYG331zySV1fZQoaAZoCWgPQwgB3gIJCqZqQJSGlFKUaBVNPwJoFkdAlg0aJVKf4HV9lChoBmgJaA9DCAqhgy5hFmZAlIaUUpRoFU3oA2gWR0CWGQTw2ETQdX2UKGgGaAloD0MIaB8r+O05b0CUhpRSlGgVTZ8BaBZHQJYe+Wu5jH51fZQoaAZoCWgPQwjUK2UZIkxwQJSGlFKUaBVNcgFoFkdAliJsuBczInV9lChoBmgJaA9DCDKP/MFA3m9AlIaUUpRoFU2cAWgWR0CWJoQo1DSgdX2UKGgGaAloD0MICaUvhBzEcECUhpRSlGgVTYIBaBZHQJYsEWbgCOp1fZQoaAZoCWgPQwhCzCVV29NAQJSGlFKUaBVNIQFoFkdAli6mtlqagHV9lChoBmgJaA9DCAIrhxbZkWlAlIaUUpRoFU2vAWgWR0CWMu2rGR3edX2UKGgGaAloD0MIaqD5nLuJQECUhpRSlGgVTRwBaBZHQJY3THIZIhB1fZQoaAZoCWgPQwhhwmhWNvBxQJSGlFKUaBVNogFoFkdAljsbi++M63V9lChoBmgJaA9DCJbMsbzr/XBAlIaUUpRoFU3EAWgWR0CWQROObRWtdX2UKGgGaAloD0MIlIeFWhNKcUCUhpRSlGgVTVgBaBZHQJZEVDNQj2V1fZQoaAZoCWgPQwiSlPQw9JlxQJSGlFKUaBVNdgFoFkdAlkezFyaNM3V9lChoBmgJaA9DCNh+MsaHmQZAlIaUUpRoFU0yAWgWR0CWTFdzGPxQdX2UKGgGaAloD0MIhzHp76V1bkCUhpRSlGgVTaIBaBZHQJZQU6RyOrB1fZQoaAZoCWgPQwhT6LzGLiBxQJSGlFKUaBVNYgFoFkdAllNY0/GEPHV9lChoBmgJaA9DCPmCFhJwJnFAlIaUUpRoFU01AWgWR0CWWAA+IMz/dX2UKGgGaAloD0MI4e1BCAgHcUCUhpRSlGgVTWECaBZHQJZeiugYgq51fZQoaAZoCWgPQwgzMV2I1cBsQJSGlFKUaBVN4wFoFkdAlmVK2F36h3V9lChoBmgJaA9DCHQNMzQe+G5AlIaUUpRoFU1GAmgWR0CWa6uF6AvtdX2UKGgGaAloD0MIxOxl2+lUb0CUhpRSlGgVTX8BaBZHQJZxQv7FbV11fZQoaAZoCWgPQwhfKGA7mOFtQJSGlFKUaBVNogNoFkdAlnwDwUg0THV9lChoBmgJaA9DCAd5PZgUizvAlIaUUpRoFU0eAWgWR0CWgGpVS4vwdX2UKGgGaAloD0MIETXR5yN+b0CUhpRSlGgVTUABaBZHQJaDXh0hePd1fZQoaAZoCWgPQwhVF/Ayw/psQJSGlFKUaBVNlwFoFkdAlocruUliSnV9lChoBmgJaA9DCN+pgHueVm5AlIaUUpRoFU2VAWgWR0CWjOrC3w1BdX2UKGgGaAloD0MIu2BwzR3MbkCUhpRSlGgVTfUBaBZHQJaRxo11nul1fZQoaAZoCWgPQwhJKlPMwdxtQJSGlFKUaBVNUwFoFkdAlpbIXsPatnV9lChoBmgJaA9DCCvc8pEUE3BAlIaUUpRoFU1lAWgWR0CWmiP+n62wdX2UKGgGaAloD0MIpFTCE/qrbUCUhpRSlGgVTYMBaBZHQJadvAXVLBd1fZQoaAZoCWgPQwiymxn96ExvQJSGlFKUaBVNggFoFkdAlqMZxvNu+HV9lChoBmgJaA9DCABV3LjFBnFAlIaUUpRoFU2QAWgWR0CWpsaTOgQIdX2UKGgGaAloD0MITMEaZ1Ntb0CUhpRSlGgVTf4CaBZHQJawZRdhRZV1fZQoaAZoCWgPQwgoK4argyZuQJSGlFKUaBVNmwFoFkdAlrRsejmCAnV9lChoBmgJaA9DCF4QkZr2yG9AlIaUUpRoFU1QAWgWR0CWuUjd56dEdX2UKGgGaAloD0MIgsXhzK8MbkCUhpRSlGgVTUUBaBZHQJa8Qlw97nh1fZQoaAZoCWgPQwg7NgLxOsdtQJSGlFKUaBVNRAFoFkdAlr8rbQC0W3V9lChoBmgJaA9DCD3RdeGH2m1AlIaUUpRoFU1dAWgWR0CWxE+NLlFMdX2UKGgGaAloD0MIeQH20SmwcECUhpRSlGgVTQACaBZHQJbJGBtk4FR1fZQoaAZoCWgPQwi/m27ZoWhxQJSGlFKUaBVNZgFoFkdAlsxXjMmnfnV9lChoBmgJaA9DCEyln3D23HBAlIaUUpRoFU2cAWgWR0CW0ieii7CjdX2UKGgGaAloD0MIUz9vKhIAcECUhpRSlGgVTTsBaBZHQJbVFg3Lmp51fZQoaAZoCWgPQwjyBpj5DnBCQJSGlFKUaBVNCAFoFkdAltdLO3UhFHV9lChoBmgJaA9DCNMyUu+pPkFAlIaUUpRoFU0IAWgWR0CW24VbiZOSdX2UKGgGaAloD0MI6pJxjGTfIMCUhpRSlGgVS/hoFkdAlt2VZTyau3V9lChoBmgJaA9DCDC8kuQ5W21AlIaUUpRoFU1nAWgWR0CW4Oxo7FKkdX2UKGgGaAloD0MIr3rAPGShbUCUhpRSlGgVTSEBaBZHQJblY3rD6311fZQoaAZoCWgPQwiTbkvkApJtQJSGlFKUaBVNWgFoFkdAluiP0mMOw3V9lChoBmgJaA9DCHP1Y5P8MWxAlIaUUpRoFU0zAWgWR0CW6znrpqyodX2UKGgGaAloD0MIKgKc3sWgbkCUhpRSlGgVTTMBaBZHQJbv0MPSUkh1fZQoaAZoCWgPQwg/OQoQBRttQJSGlFKUaBVNKAFoFkdAlvJdyPuG9HV9lChoBmgJaA9DCNkiaTf6YGFAlIaUUpRoFU3oA2gWR0CW/o2uxKQJdX2UKGgGaAloD0MIf2d79IaRbECUhpRSlGgVTXsBaBZHQJcCBRiw0O51fZQoaAZoCWgPQwgNb9bgfZk9QJSGlFKUaBVNCQFoFkdAlwRAOFxn4HV9lChoBmgJaA9DCEvqBDQRHHBAlIaUUpRoFU2bAWgWR0CXCfd5Y5ktdX2UKGgGaAloD0MI09o0ttc9akCUhpRSlGgVTUwBaBZHQJcM/nq3VkN1fZQoaAZoCWgPQwgR/G8lO3oxQJSGlFKUaBVNBwFoFkdAlw9AOe8PF3V9lChoBmgJaA9DCNobfGFydXBAlIaUUpRoFU0sAWgWR0CXE8MvAXVLdX2UKGgGaAloD0MI26LMBpkUTECUhpRSlGgVS/doFkdAlxXyz1K5CnV9lChoBmgJaA9DCDkroib632pAlIaUUpRoFU2EAWgWR0CXGZfkFOfvdX2UKGgGaAloD0MIjxt+N10QbUCUhpRSlGgVTVYBaBZHQJceuOdXko51fZQoaAZoCWgPQwh3hqkt9eRtQJSGlFKUaBVNQAFoFkdAlyG4fW+XaHV9lChoBmgJaA9DCNAJoYOuOW1AlIaUUpRoFU1bAWgWR0CXJP5RCQcQdX2UKGgGaAloD0MIPBVwz/Oeb0CUhpRSlGgVTToBaBZHQJcpxjBl+Vl1fZQoaAZoCWgPQwix3NJqSKNvQJSGlFKUaBVNdQFoFkdAly03xFy7w3V9lChoBmgJaA9DCNV1qKYk/U1AlIaUUpRoFU0WAWgWR0CXL5OBUaQ4dX2UKGgGaAloD0MI8GlOXuQlbECUhpRSlGgVTS8BaBZHQJc0GwIMSbp1fZQoaAZoCWgPQwiale1DHlBxQJSGlFKUaBVNTgFoFkdAlzcYyXUpeHV9lChoBmgJaA9DCBZM/FHUTTrAlIaUUpRoFUvYaBZHQJc4/SWqtHR1fZQoaAZoCWgPQwgqG9ZUVppxQJSGlFKUaBVNNwFoFkdAlzvMEA5q/XV9lChoBmgJaA9DCK/pQUEpx2tAlIaUUpRoFU1pAWgWR0CXQQ3Dej20dX2UKGgGaAloD0MIMCk+PiHLFMCUhpRSlGgVS/RoFkdAl0MqiCaqj3V9lChoBmgJaA9DCHsvvmiPgzLAlIaUUpRoFUvnaBZHQJdFJeXzDoB1fZQoaAZoCWgPQwiRD3o2q14pQJSGlFKUaBVNDwFoFkdAl0d50OmR/3V9lChoBmgJaA9DCBU5RNzcHXBAlIaUUpRoFU1JAWgWR0CXTH4PPLPldX2UKGgGaAloD0MItg4O9ia0SUCUhpRSlGgVTegDaBZHQJdZEaCL/CJ1fZQoaAZoCWgPQwgsLSP1nh40wJSGlFKUaBVLw2gWR0CXWr8+RoysdX2UKGgGaAloD0MIPSgoRasRbUCUhpRSlGgVTUYBaBZHQJddr5ftx+91fZQoaAZoCWgPQwhU/UrnA15wQJSGlFKUaBVN1QFoFkdAl2Q+67NB4XV9lChoBmgJaA9DCP8kPneCcGdAlIaUUpRoFU1TAWgWR0CXZ3f029+PdX2UKGgGaAloD0MItaSjHMx5akCUhpRSlGgVTSgBaBZHQJdp+wV0tAd1fZQoaAZoCWgPQwgWaeIdYKRpQJSGlFKUaBVNQwFoFkdAl26qBd2Pk3V9lChoBmgJaA9DCC8UsB2MvFdAlIaUUpRoFU3oA2gWR0CXevRoh6jWdX2UKGgGaAloD0MIwakPJC/WcECUhpRSlGgVTRIBaBZHQJd9UI5YHPh1fZQoaAZoCWgPQwjAriZPWYUuwJSGlFKUaBVL32gWR0CXfyKwIMScdX2UKGgGaAloD0MIhZhLqratRkCUhpRSlGgVS99oFkdAl4EQiA2AG3V9lChoBmgJaA9DCGwldJfEKTZAlIaUUpRoFUv4aBZHQJeFDNJOFg51fZQoaAZoCWgPQwg3bjE/9yZwQJSGlFKUaBVNXwFoFkdAl4g/0qYqonV9lChoBmgJaA9DCFiQZiwaaWtAlIaUUpRoFU0DAmgWR0CXjW8Md92HdX2UKGgGaAloD0MIPu3w1+SEbkCUhpRSlGgVTSUBaBZHQJeR1uZThpB1fZQoaAZoCWgPQwg02T9PA5VtQJSGlFKUaBVNrgFoFkdAl5YGfseGPHV9lChoBmgJaA9DCAWoqWXrgm5AlIaUUpRoFU0hAWgWR0CXmIjkMkQgdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 1956, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
ppo-lunar-almost-lander.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:43bddf7a02e592b5cf11e720b62cd7f5499e02323afebd0876292a950e632324
|
3 |
+
size 143377
|
ppo-lunar-almost-lander/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.5.0
|
ppo-lunar-almost-lander/data
ADDED
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f3b1ecfec20>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f3b1ecfecb0>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f3b1ecfed40>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f3b1ecfedd0>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f3b1ecfee60>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f3b1ecfeef0>",
|
13 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f3b1ecfef80>",
|
14 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f3b1ed04050>",
|
15 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f3b1ed040e0>",
|
16 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f3b1ed04170>",
|
17 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f3b1ed04200>",
|
18 |
+
"__abstractmethods__": "frozenset()",
|
19 |
+
"_abc_impl": "<_abc_data object at 0x7f3b1ecd24e0>"
|
20 |
+
},
|
21 |
+
"verbose": 1,
|
22 |
+
"policy_kwargs": {},
|
23 |
+
"observation_space": {
|
24 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
25 |
+
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
26 |
+
"dtype": "float32",
|
27 |
+
"_shape": [
|
28 |
+
8
|
29 |
+
],
|
30 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
|
31 |
+
"high": "[inf inf inf inf inf inf inf inf]",
|
32 |
+
"bounded_below": "[False False False False False False False False]",
|
33 |
+
"bounded_above": "[False False False False False False False False]",
|
34 |
+
"_np_random": null
|
35 |
+
},
|
36 |
+
"action_space": {
|
37 |
+
":type:": "<class 'gym.spaces.discrete.Discrete'>",
|
38 |
+
":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
|
39 |
+
"n": 4,
|
40 |
+
"_shape": [],
|
41 |
+
"dtype": "int64",
|
42 |
+
"_np_random": null
|
43 |
+
},
|
44 |
+
"n_envs": 1,
|
45 |
+
"num_timesteps": 500736,
|
46 |
+
"_total_timesteps": 500000,
|
47 |
+
"_num_timesteps_at_start": 0,
|
48 |
+
"seed": null,
|
49 |
+
"action_noise": null,
|
50 |
+
"start_time": 1651759712.6501682,
|
51 |
+
"learning_rate": 0.0003,
|
52 |
+
"tensorboard_log": null,
|
53 |
+
"lr_schedule": {
|
54 |
+
":type:": "<class 'function'>",
|
55 |
+
":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
56 |
+
},
|
57 |
+
"_last_obs": {
|
58 |
+
":type:": "<class 'numpy.ndarray'>",
|
59 |
+
":serialized:": "gAWVlQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAADNzUzqiYXM/NcXOPZzi+L5r8Qk9nn07vQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksBSwiGlIwBQ5R0lFKULg=="
|
60 |
+
},
|
61 |
+
"_last_episode_starts": {
|
62 |
+
":type:": "<class 'numpy.ndarray'>",
|
63 |
+
":serialized:": "gAWVdAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYBAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKULg=="
|
64 |
+
},
|
65 |
+
"_last_original_obs": null,
|
66 |
+
"_episode_num": 0,
|
67 |
+
"use_sde": false,
|
68 |
+
"sde_sample_freq": -1,
|
69 |
+
"_current_progress_remaining": -0.0014719999999999178,
|
70 |
+
"ep_info_buffer": {
|
71 |
+
":type:": "<class 'collections.deque'>",
|
72 |
+
":serialized:": "gAWVeBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIILb0aCrycECUhpRSlIwBbJRNVQKMAXSUR0CVy9NJe3QVdX2UKGgGaAloD0MITmTmApelWUCUhpRSlGgVTegDaBZHQJXX7ibUgB91fZQoaAZoCWgPQwh3oiQkkvhxQJSGlFKUaBVNfAFoFkdAlduVfmcOLHV9lChoBmgJaA9DCJPEknL3uGpAlIaUUpRoFU2LAWgWR0CV4UqMm4RVdX2UKGgGaAloD0MInG1uTE9yXkCUhpRSlGgVTegDaBZHQJXvxYFJQLx1fZQoaAZoCWgPQwi8lSU6i+9wQJSGlFKUaBVNkwFoFkdAlfODjJdSl3V9lChoBmgJaA9DCNLFppXCPm9AlIaUUpRoFU2XAmgWR0CV+6cafjCIdX2UKGgGaAloD0MIjjulgzX7cECUhpRSlGgVTU4DaBZHQJYG331zySV1fZQoaAZoCWgPQwgB3gIJCqZqQJSGlFKUaBVNPwJoFkdAlg0aJVKf4HV9lChoBmgJaA9DCAqhgy5hFmZAlIaUUpRoFU3oA2gWR0CWGQTw2ETQdX2UKGgGaAloD0MIaB8r+O05b0CUhpRSlGgVTZ8BaBZHQJYe+Wu5jH51fZQoaAZoCWgPQwjUK2UZIkxwQJSGlFKUaBVNcgFoFkdAliJsuBczInV9lChoBmgJaA9DCDKP/MFA3m9AlIaUUpRoFU2cAWgWR0CWJoQo1DSgdX2UKGgGaAloD0MICaUvhBzEcECUhpRSlGgVTYIBaBZHQJYsEWbgCOp1fZQoaAZoCWgPQwhCzCVV29NAQJSGlFKUaBVNIQFoFkdAli6mtlqagHV9lChoBmgJaA9DCAIrhxbZkWlAlIaUUpRoFU2vAWgWR0CWMu2rGR3edX2UKGgGaAloD0MIaqD5nLuJQECUhpRSlGgVTRwBaBZHQJY3THIZIhB1fZQoaAZoCWgPQwhhwmhWNvBxQJSGlFKUaBVNogFoFkdAljsbi++M63V9lChoBmgJaA9DCJbMsbzr/XBAlIaUUpRoFU3EAWgWR0CWQROObRWtdX2UKGgGaAloD0MIlIeFWhNKcUCUhpRSlGgVTVgBaBZHQJZEVDNQj2V1fZQoaAZoCWgPQwiSlPQw9JlxQJSGlFKUaBVNdgFoFkdAlkezFyaNM3V9lChoBmgJaA9DCNh+MsaHmQZAlIaUUpRoFU0yAWgWR0CWTFdzGPxQdX2UKGgGaAloD0MIhzHp76V1bkCUhpRSlGgVTaIBaBZHQJZQU6RyOrB1fZQoaAZoCWgPQwhT6LzGLiBxQJSGlFKUaBVNYgFoFkdAllNY0/GEPHV9lChoBmgJaA9DCPmCFhJwJnFAlIaUUpRoFU01AWgWR0CWWAA+IMz/dX2UKGgGaAloD0MI4e1BCAgHcUCUhpRSlGgVTWECaBZHQJZeiugYgq51fZQoaAZoCWgPQwgzMV2I1cBsQJSGlFKUaBVN4wFoFkdAlmVK2F36h3V9lChoBmgJaA9DCHQNMzQe+G5AlIaUUpRoFU1GAmgWR0CWa6uF6AvtdX2UKGgGaAloD0MIxOxl2+lUb0CUhpRSlGgVTX8BaBZHQJZxQv7FbV11fZQoaAZoCWgPQwhfKGA7mOFtQJSGlFKUaBVNogNoFkdAlnwDwUg0THV9lChoBmgJaA9DCAd5PZgUizvAlIaUUpRoFU0eAWgWR0CWgGpVS4vwdX2UKGgGaAloD0MIETXR5yN+b0CUhpRSlGgVTUABaBZHQJaDXh0hePd1fZQoaAZoCWgPQwhVF/Ayw/psQJSGlFKUaBVNlwFoFkdAlocruUliSnV9lChoBmgJaA9DCN+pgHueVm5AlIaUUpRoFU2VAWgWR0CWjOrC3w1BdX2UKGgGaAloD0MIu2BwzR3MbkCUhpRSlGgVTfUBaBZHQJaRxo11nul1fZQoaAZoCWgPQwhJKlPMwdxtQJSGlFKUaBVNUwFoFkdAlpbIXsPatnV9lChoBmgJaA9DCCvc8pEUE3BAlIaUUpRoFU1lAWgWR0CWmiP+n62wdX2UKGgGaAloD0MIpFTCE/qrbUCUhpRSlGgVTYMBaBZHQJadvAXVLBd1fZQoaAZoCWgPQwiymxn96ExvQJSGlFKUaBVNggFoFkdAlqMZxvNu+HV9lChoBmgJaA9DCABV3LjFBnFAlIaUUpRoFU2QAWgWR0CWpsaTOgQIdX2UKGgGaAloD0MITMEaZ1Ntb0CUhpRSlGgVTf4CaBZHQJawZRdhRZV1fZQoaAZoCWgPQwgoK4argyZuQJSGlFKUaBVNmwFoFkdAlrRsejmCAnV9lChoBmgJaA9DCF4QkZr2yG9AlIaUUpRoFU1QAWgWR0CWuUjd56dEdX2UKGgGaAloD0MIgsXhzK8MbkCUhpRSlGgVTUUBaBZHQJa8Qlw97nh1fZQoaAZoCWgPQwg7NgLxOsdtQJSGlFKUaBVNRAFoFkdAlr8rbQC0W3V9lChoBmgJaA9DCD3RdeGH2m1AlIaUUpRoFU1dAWgWR0CWxE+NLlFMdX2UKGgGaAloD0MIeQH20SmwcECUhpRSlGgVTQACaBZHQJbJGBtk4FR1fZQoaAZoCWgPQwi/m27ZoWhxQJSGlFKUaBVNZgFoFkdAlsxXjMmnfnV9lChoBmgJaA9DCEyln3D23HBAlIaUUpRoFU2cAWgWR0CW0ieii7CjdX2UKGgGaAloD0MIUz9vKhIAcECUhpRSlGgVTTsBaBZHQJbVFg3Lmp51fZQoaAZoCWgPQwjyBpj5DnBCQJSGlFKUaBVNCAFoFkdAltdLO3UhFHV9lChoBmgJaA9DCNMyUu+pPkFAlIaUUpRoFU0IAWgWR0CW24VbiZOSdX2UKGgGaAloD0MI6pJxjGTfIMCUhpRSlGgVS/hoFkdAlt2VZTyau3V9lChoBmgJaA9DCDC8kuQ5W21AlIaUUpRoFU1nAWgWR0CW4Oxo7FKkdX2UKGgGaAloD0MIr3rAPGShbUCUhpRSlGgVTSEBaBZHQJblY3rD6311fZQoaAZoCWgPQwiTbkvkApJtQJSGlFKUaBVNWgFoFkdAluiP0mMOw3V9lChoBmgJaA9DCHP1Y5P8MWxAlIaUUpRoFU0zAWgWR0CW6znrpqyodX2UKGgGaAloD0MIKgKc3sWgbkCUhpRSlGgVTTMBaBZHQJbv0MPSUkh1fZQoaAZoCWgPQwg/OQoQBRttQJSGlFKUaBVNKAFoFkdAlvJdyPuG9HV9lChoBmgJaA9DCNkiaTf6YGFAlIaUUpRoFU3oA2gWR0CW/o2uxKQJdX2UKGgGaAloD0MIf2d79IaRbECUhpRSlGgVTXsBaBZHQJcCBRiw0O51fZQoaAZoCWgPQwgNb9bgfZk9QJSGlFKUaBVNCQFoFkdAlwRAOFxn4HV9lChoBmgJaA9DCEvqBDQRHHBAlIaUUpRoFU2bAWgWR0CXCfd5Y5ktdX2UKGgGaAloD0MI09o0ttc9akCUhpRSlGgVTUwBaBZHQJcM/nq3VkN1fZQoaAZoCWgPQwgR/G8lO3oxQJSGlFKUaBVNBwFoFkdAlw9AOe8PF3V9lChoBmgJaA9DCNobfGFydXBAlIaUUpRoFU0sAWgWR0CXE8MvAXVLdX2UKGgGaAloD0MI26LMBpkUTECUhpRSlGgVS/doFkdAlxXyz1K5CnV9lChoBmgJaA9DCDkroib632pAlIaUUpRoFU2EAWgWR0CXGZfkFOfvdX2UKGgGaAloD0MIjxt+N10QbUCUhpRSlGgVTVYBaBZHQJceuOdXko51fZQoaAZoCWgPQwh3hqkt9eRtQJSGlFKUaBVNQAFoFkdAlyG4fW+XaHV9lChoBmgJaA9DCNAJoYOuOW1AlIaUUpRoFU1bAWgWR0CXJP5RCQcQdX2UKGgGaAloD0MIPBVwz/Oeb0CUhpRSlGgVTToBaBZHQJcpxjBl+Vl1fZQoaAZoCWgPQwix3NJqSKNvQJSGlFKUaBVNdQFoFkdAly03xFy7w3V9lChoBmgJaA9DCNV1qKYk/U1AlIaUUpRoFU0WAWgWR0CXL5OBUaQ4dX2UKGgGaAloD0MI8GlOXuQlbECUhpRSlGgVTS8BaBZHQJc0GwIMSbp1fZQoaAZoCWgPQwiale1DHlBxQJSGlFKUaBVNTgFoFkdAlzcYyXUpeHV9lChoBmgJaA9DCBZM/FHUTTrAlIaUUpRoFUvYaBZHQJc4/SWqtHR1fZQoaAZoCWgPQwgqG9ZUVppxQJSGlFKUaBVNNwFoFkdAlzvMEA5q/XV9lChoBmgJaA9DCK/pQUEpx2tAlIaUUpRoFU1pAWgWR0CXQQ3Dej20dX2UKGgGaAloD0MIMCk+PiHLFMCUhpRSlGgVS/RoFkdAl0MqiCaqj3V9lChoBmgJaA9DCHsvvmiPgzLAlIaUUpRoFUvnaBZHQJdFJeXzDoB1fZQoaAZoCWgPQwiRD3o2q14pQJSGlFKUaBVNDwFoFkdAl0d50OmR/3V9lChoBmgJaA9DCBU5RNzcHXBAlIaUUpRoFU1JAWgWR0CXTH4PPLPldX2UKGgGaAloD0MItg4O9ia0SUCUhpRSlGgVTegDaBZHQJdZEaCL/CJ1fZQoaAZoCWgPQwgsLSP1nh40wJSGlFKUaBVLw2gWR0CXWr8+RoysdX2UKGgGaAloD0MIPSgoRasRbUCUhpRSlGgVTUYBaBZHQJddr5ftx+91fZQoaAZoCWgPQwhU/UrnA15wQJSGlFKUaBVN1QFoFkdAl2Q+67NB4XV9lChoBmgJaA9DCP8kPneCcGdAlIaUUpRoFU1TAWgWR0CXZ3f029+PdX2UKGgGaAloD0MItaSjHMx5akCUhpRSlGgVTSgBaBZHQJdp+wV0tAd1fZQoaAZoCWgPQwgWaeIdYKRpQJSGlFKUaBVNQwFoFkdAl26qBd2Pk3V9lChoBmgJaA9DCC8UsB2MvFdAlIaUUpRoFU3oA2gWR0CXevRoh6jWdX2UKGgGaAloD0MIwakPJC/WcECUhpRSlGgVTRIBaBZHQJd9UI5YHPh1fZQoaAZoCWgPQwjAriZPWYUuwJSGlFKUaBVL32gWR0CXfyKwIMScdX2UKGgGaAloD0MIhZhLqratRkCUhpRSlGgVS99oFkdAl4EQiA2AG3V9lChoBmgJaA9DCGwldJfEKTZAlIaUUpRoFUv4aBZHQJeFDNJOFg51fZQoaAZoCWgPQwg3bjE/9yZwQJSGlFKUaBVNXwFoFkdAl4g/0qYqonV9lChoBmgJaA9DCFiQZiwaaWtAlIaUUpRoFU0DAmgWR0CXjW8Md92HdX2UKGgGaAloD0MIPu3w1+SEbkCUhpRSlGgVTSUBaBZHQJeR1uZThpB1fZQoaAZoCWgPQwg02T9PA5VtQJSGlFKUaBVNrgFoFkdAl5YGfseGPHV9lChoBmgJaA9DCAWoqWXrgm5AlIaUUpRoFU0hAWgWR0CXmIjkMkQgdWUu"
|
73 |
+
},
|
74 |
+
"ep_success_buffer": {
|
75 |
+
":type:": "<class 'collections.deque'>",
|
76 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
77 |
+
},
|
78 |
+
"_n_updates": 1956,
|
79 |
+
"n_steps": 1024,
|
80 |
+
"gamma": 0.999,
|
81 |
+
"gae_lambda": 0.98,
|
82 |
+
"ent_coef": 0.01,
|
83 |
+
"vf_coef": 0.5,
|
84 |
+
"max_grad_norm": 0.5,
|
85 |
+
"batch_size": 64,
|
86 |
+
"n_epochs": 4,
|
87 |
+
"clip_range": {
|
88 |
+
":type:": "<class 'function'>",
|
89 |
+
":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
90 |
+
},
|
91 |
+
"clip_range_vf": null,
|
92 |
+
"normalize_advantage": true,
|
93 |
+
"target_kl": null
|
94 |
+
}
|
ppo-lunar-almost-lander/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5da1381253fcde053bfa7743d6006d32a9350620a4bb1ee66b8efc64bb53d135
|
3 |
+
size 84829
|
ppo-lunar-almost-lander/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:81cfff8d45b21adb079848cc1161d61808ccc6f2be29610260799a425fe65c0d
|
3 |
+
size 43201
|
ppo-lunar-almost-lander/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
ppo-lunar-almost-lander/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
OS: Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022
|
2 |
+
Python: 3.7.13
|
3 |
+
Stable-Baselines3: 1.5.0
|
4 |
+
PyTorch: 1.11.0+cu113
|
5 |
+
GPU Enabled: True
|
6 |
+
Numpy: 1.21.6
|
7 |
+
Gym: 0.21.0
|
replay.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ec03997eaa436f600b92af7034ccf9e16a578f2c6e14db500842f3a6ad1e5b1d
|
3 |
+
size 229329
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 248.52439436533018, "std_reward": 18.999433524987435, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-05-05T14:38:36.910804"}
|