DeepDiveDev commited on
Commit
d7a58a5
·
verified ·
1 Parent(s): 8bbc92b

Initial commit of my fine-tuned model

Browse files
.gitignore ADDED
@@ -0,0 +1,22 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ### AL ###
2
+ #Template for AL projects for Dynamics 365 Business Central
3
+ #launch.json folder
4
+ .vscode/
5
+ #Cache folder
6
+ .alcache/
7
+ #Symbols folder
8
+ .alpackages/
9
+ #Snapshots folder
10
+ .snapshots/
11
+ #Testing Output folder
12
+ .output/
13
+ #Extension App-file
14
+ *.app
15
+ #Rapid Application Development File
16
+ rad.json
17
+ #Translation Base-file
18
+ *.g.xlf
19
+ #License-file
20
+ *.flf
21
+ #Test results file
22
+ TestResults.xml
Fine_tuning_TTS_Bengali.ipynb ADDED
The diff for this file is too large to render. See raw diff
 
LICENSE ADDED
@@ -0,0 +1,21 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ MIT License
2
+
3
+ Copyright (c) 2024 Jyotirmoyee Mandal
4
+
5
+ Permission is hereby granted, free of charge, to any person obtaining a copy
6
+ of this software and associated documentation files (the "Software"), to deal
7
+ in the Software without restriction, including without limitation the rights
8
+ to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
9
+ copies of the Software, and to permit persons to whom the Software is
10
+ furnished to do so, subject to the following conditions:
11
+
12
+ The above copyright notice and this permission notice shall be included in all
13
+ copies or substantial portions of the Software.
14
+
15
+ THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16
+ IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17
+ FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
18
+ AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19
+ LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20
+ OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21
+ SOFTWARE.
README.md CHANGED
@@ -1,78 +1,3 @@
1
- ---
2
- library_name: transformers
3
- license: mit
4
- base_model: microsoft/speecht5_tts
5
- tags:
6
- - generated_from_trainer
7
- datasets:
8
- - lj_speech
9
- model-index:
10
- - name: speecht5_finetuned_English
11
- results: []
12
- ---
13
-
14
- <!-- This model card has been generated automatically according to the information the Trainer had access to. You
15
- should probably proofread and complete it, then remove this comment. -->
16
-
17
- # speecht5_finetuned_English
18
-
19
- This model is a fine-tuned version of [microsoft/speecht5_tts](https://huggingface.co/microsoft/speecht5_tts) on the lj_speech dataset.
20
- It achieves the following results on the evaluation set:
21
- - Loss: 0.3717
22
-
23
- ## Model description
24
-
25
- More information needed
26
-
27
- ## Intended uses & limitations
28
-
29
- More information needed
30
-
31
- ## Training and evaluation data
32
-
33
- More information needed
34
-
35
- ## Training procedure
36
-
37
- ### Training hyperparameters
38
-
39
- The following hyperparameters were used during training:
40
- - learning_rate: 0.0001
41
- - train_batch_size: 4
42
- - eval_batch_size: 2
43
- - seed: 42
44
- - gradient_accumulation_steps: 8
45
- - total_train_batch_size: 32
46
- - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
47
- - lr_scheduler_type: linear
48
- - lr_scheduler_warmup_steps: 100
49
- - training_steps: 1500
50
- - mixed_precision_training: Native AMP
51
-
52
- ### Training results
53
-
54
- | Training Loss | Epoch | Step | Validation Loss |
55
- |:-------------:|:------:|:----:|:---------------:|
56
- | 3.772 | 0.3053 | 100 | 0.4201 |
57
- | 3.5912 | 0.6107 | 200 | 0.4052 |
58
- | 3.4604 | 0.9160 | 300 | 0.3948 |
59
- | 3.3894 | 1.2214 | 400 | 0.3906 |
60
- | 3.3737 | 1.5267 | 500 | 0.3865 |
61
- | 3.3628 | 1.8321 | 600 | 0.3851 |
62
- | 3.3236 | 2.1374 | 700 | 0.3821 |
63
- | 3.306 | 2.4427 | 800 | 0.3811 |
64
- | 3.2859 | 2.7481 | 900 | 0.3797 |
65
- | 3.2663 | 3.0534 | 1000 | 0.3763 |
66
- | 3.2368 | 3.3588 | 1100 | 0.3757 |
67
- | 3.2107 | 3.6641 | 1200 | 0.3749 |
68
- | 3.2035 | 3.9695 | 1300 | 0.3730 |
69
- | 3.1969 | 4.2748 | 1400 | 0.3728 |
70
- | 3.2107 | 4.5802 | 1500 | 0.3717 |
71
-
72
-
73
- ### Framework versions
74
-
75
- - Transformers 4.46.0.dev0
76
- - Pytorch 2.4.1+cu121
77
- - Datasets 3.0.2
78
- - Tokenizers 0.20.1
 
1
+ # TTS_FineTuning_GenAI_Assignment
2
+ Implementation of fine-tuning TTS models for technical vocabulary in English and in Bengali, as part of IIT Roorkee’s GenAI Internship. Includes dataset creation, model fine-tuning, and evaluation using MOS scores. Also explores optimization techniques like quantization for faster inference.
3
+ # Fine-tuning TTS for English with a Focus on Technical Vocabulary
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
SpeechT5_finetune_technicalTerm.ipynb ADDED
The diff for this file is too large to render. See raw diff