Deathsquad10 commited on
Commit
8f33364
โ€ข
1 Parent(s): c705fa2

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +56 -0
README.md CHANGED
@@ -1,3 +1,59 @@
1
  ---
2
  license: apache-2.0
 
 
 
 
 
 
 
 
 
3
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
  license: apache-2.0
3
+ datasets:
4
+ - cerebras/SlimPajama-627B
5
+ - bigcode/starcoderdata
6
+ - HuggingFaceH4/ultrachat_200k
7
+ - HuggingFaceH4/ultrafeedback_binarized
8
+ language:
9
+ - en
10
+ widget:
11
+ - text: "<|system|>\nYou are a chatbot who can help code!</s>\n<|user|>\nWrite out the first 10 digits in the fibonacci sequence then write out the function to calculate the first 10 digits of the fibonacci sequence in Python and print it out to the CLI.</s>\n<|assistant|>\n"
12
  ---
13
+ <div align="center">
14
+
15
+ # TinyLlama-1.1B ---My personal Test update Version 2
16
+ </div>
17
+
18
+
19
+ https://github.com/jzhang38/TinyLlama
20
+
21
+ The TinyLlama project aims to **pretrain** a **1.1B Llama model on 3 trillion tokens**. With some proper optimization, we can achieve this within a span of "just" 90 days using 16 A100-40G GPUs ๐Ÿš€๐Ÿš€. The training has started on 2023-09-01.
22
+
23
+
24
+ We adopted exactly the same architecture and tokenizer as Llama 2. This means TinyLlama can be plugged and played in many open-source projects built upon Llama. Besides, TinyLlama is compact with only 1.1B parameters. This compactness allows it to cater to a multitude of applications demanding a restricted computation and memory footprint.
25
+
26
+ #### This Model
27
+ This is the chat model finetuned on top of [TinyLlama/TinyLlama-1.1B-intermediate-step-1431k-3T](https://huggingface.co/TinyLlama/TinyLlama-1.1B-intermediate-step-1431k-3T). **We follow [HF's Zephyr](https://huggingface.co/HuggingFaceH4/zephyr-7b-alpha/edit/main/README.md)'s training recipe.** The model was " initially fine-tuned on a variant of the [`UltraChat`](https://huggingface.co/datasets/stingning/ultrachat) dataset, which contains a diverse range of synthetic dialogues generated by ChatGPT.
28
+ We then further aligned the model with [๐Ÿค— TRL's](https://github.com/huggingface/trl) `DPOTrainer` on the [openbmb/UltraFeedback](https://huggingface.co/datasets/openbmb/UltraFeedback) dataset, which contain 64k prompts and model completions that are ranked by GPT-4."
29
+
30
+
31
+ #### How to use
32
+ You will need the transformers>=4.34
33
+ Do check the [TinyLlama](https://github.com/jzhang38/TinyLlama) github page for more information.
34
+
35
+ ```python
36
+ # Install transformers from source - only needed for versions <= v4.34
37
+ # pip install git+https://github.com/huggingface/transformers.git
38
+ # pip install accelerate
39
+ import torch
40
+ from transformers import pipeline
41
+ pipe = pipeline("text-generation", model="TinyLlama/TinyLlama-1.1B-Chat-v1.0", torch_dtype=torch.bfloat16, device_map="auto")
42
+ # We use the tokenizer's chat template to format each message - see https://huggingface.co/docs/transformers/main/en/chat_templating
43
+ messages = [
44
+ {
45
+ "role": "system",
46
+ "content": "You are a friendly chatbot who always responds in the style of a pirate",
47
+ },
48
+ {"role": "user", "content": "How many helicopters can a human eat in one sitting?"},
49
+ ]
50
+ prompt = pipe.tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
51
+ outputs = pipe(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
52
+ print(outputs[0]["generated_text"])
53
+ # <|system|>
54
+ # You are a friendly chatbot who always responds in the style of a pirate.</s>
55
+ # <|user|>
56
+ # How many helicopters can a human eat in one sitting?</s>
57
+ # <|assistant|>
58
+ # ...
59
+ ```