DavidCombei commited on
Commit
cb4a1b9
·
1 Parent(s): 0bb245a

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +65 -0
README.md ADDED
@@ -0,0 +1,65 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ tags:
3
+ - generated_from_trainer
4
+ metrics:
5
+ - accuracy
6
+ model-index:
7
+ - name: wavLM-base-DeepFake_UTCN
8
+ results: []
9
+ ---
10
+
11
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
12
+ should probably proofread and complete it, then remove this comment. -->
13
+
14
+ # wavLM-base-DeepFake_UTCN
15
+
16
+ This model is a fine-tuned version of [microsoft/wavLM-base](https://huggingface.co/microsoft/wavLM-base) on an unknown dataset.
17
+ It achieves the following results on the evaluation set:
18
+ - Loss: 0.9119
19
+ - Accuracy: 0.73
20
+
21
+ ## Model description
22
+
23
+ More information needed
24
+
25
+ ## Intended uses & limitations
26
+
27
+ More information needed
28
+
29
+ ## Training and evaluation data
30
+
31
+ More information needed
32
+
33
+ ## Training procedure
34
+
35
+ ### Training hyperparameters
36
+
37
+ The following hyperparameters were used during training:
38
+ - learning_rate: 3e-05
39
+ - train_batch_size: 8
40
+ - eval_batch_size: 8
41
+ - seed: 42
42
+ - gradient_accumulation_steps: 4
43
+ - total_train_batch_size: 32
44
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
45
+ - lr_scheduler_type: linear
46
+ - lr_scheduler_warmup_ratio: 0.1
47
+ - num_epochs: 5
48
+
49
+ ### Training results
50
+
51
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy |
52
+ |:-------------:|:-----:|:----:|:---------------:|:--------:|
53
+ | 0.0316 | 1.0 | 281 | 1.0076 | 0.6022 |
54
+ | 0.0486 | 2.0 | 562 | 1.2997 | 0.4522 |
55
+ | 0.0788 | 3.0 | 843 | 1.1793 | 0.6089 |
56
+ | 0.0559 | 4.0 | 1125 | 1.0675 | 0.6678 |
57
+ | 0.0396 | 5.0 | 1405 | 0.9119 | 0.73 |
58
+
59
+
60
+ ### Framework versions
61
+
62
+ - Transformers 4.30.0
63
+ - Pytorch 2.3.1+cu121
64
+ - Datasets 2.20.0
65
+ - Tokenizers 0.13.3