File size: 14,388 Bytes
22932ac
1
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n    Policy class for actor-critic algorithms (has both policy and value prediction).\n    Used by A2C, PPO and the likes.\n\n    :param observation_space: Observation space\n    :param action_space: Action space\n    :param lr_schedule: Learning rate schedule (could be constant)\n    :param net_arch: The specification of the policy and value networks.\n    :param activation_fn: Activation function\n    :param ortho_init: Whether to use or not orthogonal initialization\n    :param use_sde: Whether to use State Dependent Exploration or not\n    :param log_std_init: Initial value for the log standard deviation\n    :param full_std: Whether to use (n_features x n_actions) parameters\n        for the std instead of only (n_features,) when using gSDE\n    :param sde_net_arch: Network architecture for extracting features\n        when using gSDE. If None, the latent features from the policy will be used.\n        Pass an empty list to use the states as features.\n    :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n        a positive standard deviation (cf paper). It allows to keep variance\n        above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n    :param squash_output: Whether to squash the output using a tanh function,\n        this allows to ensure boundaries when using gSDE.\n    :param features_extractor_class: Features extractor to use.\n    :param features_extractor_kwargs: Keyword arguments\n        to pass to the features extractor.\n    :param normalize_images: Whether to normalize images or not,\n         dividing by 255.0 (True by default)\n    :param optimizer_class: The optimizer to use,\n        ``th.optim.Adam`` by default\n    :param optimizer_kwargs: Additional keyword arguments,\n        excluding the learning rate, to pass to the optimizer\n    ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f87874e5680>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f87874e5710>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f87874e57a0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f87874e5830>", "_build": "<function ActorCriticPolicy._build at 0x7f87874e58c0>", "forward": "<function ActorCriticPolicy.forward at 0x7f87874e5950>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f87874e59e0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f87874e5a70>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f87874e5b00>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f87874e5b90>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f87874e5c20>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f8787539270>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1651830617.4921982, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAADOLz17qrC6nvIOuFcHFrNPIxY6JD0jNwAAgD8AAIA/Grl0PVJQ57lUixe46SM9s3mxrTrNljU3AACAPwAAgD9A5iQ+M2ymP1UWKD+bArC+gtAdPlFdjD4AAAAAAAAAAKaOrT2uZY26eYGfOenRkTaPLTw6BEm6uAAAgD8AAIA/za2TPK6fnroGvaA6kN1KNbLV87q3mTg0AACAPwAAgD8A07W8H0XuuQBO1bpe9ak0MH4Ku8Po+jkAAIA/AACAP+beGD17Qqm6rmBruevSwLUQsWY6/EeHOAAAgD8AAIA/M9nUPI/eYbo96U05ANTLM1D2gzoGUW+4AACAPwAAgD9afF4+vXorPFNOejkWlX43hE7CPTlrkrgAAIA/AACAP5riijzhkJO6bICtusunqbVVToc6TvHIOQAAgD8AAIA/TcFPvVy6WD5SDR8+/lJwvgB4eTyS4KE7AAAAAAAAAADWKq0+P79gP8ZPrj7EMqy+axlbPiDEzrwAAAAAAAAAAM26U724lrW5jbFWuiMvBLZcd0I7wvh8OQAAgD8AAIA/GtW3PZwCMLxWadi91Ws3vZUAGT0btkQ+AACAPwAAgD9m64Q94eiAupbwQLmNvDM2HkLkuV1XWjgAAIA/AACAPxpScj0pZBm61gzrur6JubUp4gi7+ZELOgAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVfxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI9wFIbWJrYUCUhpRSlIwBbJRN6AOMAXSUR0CUBPEit7rtdX2UKGgGaAloD0MINxjqsMKdYkCUhpRSlGgVTegDaBZHQJQFzAZbY9R1fZQoaAZoCWgPQwhEatrFNElgQJSGlFKUaBVN6ANoFkdAlAZ1tKqXGHV9lChoBmgJaA9DCLXhsDRwUGNAlIaUUpRoFU3oA2gWR0CUCQz/IbOvdX2UKGgGaAloD0MIyHn/HycOZ0CUhpRSlGgVTegDaBZHQJQKLIyTINp1fZQoaAZoCWgPQwjMe5xpQqJiQJSGlFKUaBVN6ANoFkdAlC9RI8QqZ3V9lChoBmgJaA9DCGrC9pOx82JAlIaUUpRoFU3oA2gWR0CUL64S6DoRdX2UKGgGaAloD0MI/kemQyfsYECUhpRSlGgVTegDaBZHQJQ2FN5+pfh1fZQoaAZoCWgPQwiD3EWYot9gQJSGlFKUaBVN6ANoFkdAlDc4JZ4fOnV9lChoBmgJaA9DCL048dUOjmFAlIaUUpRoFU3oA2gWR0CUPo1gH/tIdX2UKGgGaAloD0MISaDBpk5VYECUhpRSlGgVTegDaBZHQJRFCX/o7mx1fZQoaAZoCWgPQwhIh4cwfsRdQJSGlFKUaBVN6ANoFkdAlEcnObAk9nV9lChoBmgJaA9DCCm0rPvH42BAlIaUUpRoFU3oA2gWR0CUTO7vG6wudX2UKGgGaAloD0MISdqNPqabckCUhpRSlGgVTcMCaBZHQJRRxgPVd5Z1fZQoaAZoCWgPQwixijcyD65hQJSGlFKUaBVN6ANoFkdAlF98pgCwKXV9lChoBmgJaA9DCAaFQZnGGmZAlIaUUpRoFU3oA2gWR0CUYIR02cawdX2UKGgGaAloD0MIHO+OjFUuZ0CUhpRSlGgVTegDaBZHQJRl/V9Wp611fZQoaAZoCWgPQwj4qL9eYVteQJSGlFKUaBVN6ANoFkdAlGZHFLnLaHV9lChoBmgJaA9DCAD/lCpR7V9AlIaUUpRoFU3oA2gWR0CUZ7rdFfAsdX2UKGgGaAloD0MI4QhSKXYyYECUhpRSlGgVTegDaBZHQJRqSwRoRI11fZQoaAZoCWgPQwig+Zy73bpkQJSGlFKUaBVN6ANoFkdAlGtvlEJBxHV9lChoBmgJaA9DCKZ7ndSXgTZAlIaUUpRoFUv6aBZHQJRw3BJqZc91fZQoaAZoCWgPQwghkiHH1nJgQJSGlFKUaBVN6ANoFkdAlI+33cpLEnV9lChoBmgJaA9DCIqtoGkJamRAlIaUUpRoFU3oA2gWR0CUkAfIS13MdX2UKGgGaAloD0MIukp319mrZECUhpRSlGgVTegDaBZHQJSVy0zCUHJ1fZQoaAZoCWgPQwgqdF5jlylnQJSGlFKUaBVN6ANoFkdAlJbm7nPmgnV9lChoBmgJaA9DCLzP8dFi52ZAlIaUUpRoFU3oA2gWR0CUnfd+G47SdX2UKGgGaAloD0MI39416EsZQECUhpRSlGgVTQgBaBZHQJShhlvqC6J1fZQoaAZoCWgPQwhOY3staN5vQJSGlFKUaBVNtAFoFkdAlKIYOUdJa3V9lChoBmgJaA9DCDSitDd4g2NAlIaUUpRoFU3oA2gWR0CUpAqp97WvdX2UKGgGaAloD0MIJsgIqHABYUCUhpRSlGgVTegDaBZHQJSl6u0TlDF1fZQoaAZoCWgPQwghyhe0kENjQJSGlFKUaBVN6ANoFkdAlKpzGDL8rXV9lChoBmgJaA9DCKFl3T8WAmNAlIaUUpRoFU3oA2gWR0CUrwTj/+85dX2UKGgGaAloD0MIUS/4NCegbkCUhpRSlGgVTX8BaBZHQJSwDw9aEBd1fZQoaAZoCWgPQwjP91PjpUxgQJSGlFKUaBVN6ANoFkdAlLxbNKRMe3V9lChoBmgJaA9DCL3EWKbfVm1AlIaUUpRoFU2cAWgWR0CUvXDr7fpEdX2UKGgGaAloD0MItvXTf9ZvZUCUhpRSlGgVTegDaBZHQJTC7hn8Koh1fZQoaAZoCWgPQwgbhSSzelNnQJSGlFKUaBVN6ANoFkdAlMM/aL4ve3V9lChoBmgJaA9DCCqr6XoiVWFAlIaUUpRoFU3oA2gWR0CUxLKNyYG/dX2UKGgGaAloD0MIPfIHA8+7Y0CUhpRSlGgVTegDaBZHQJTHTp3X7Lt1fZQoaAZoCWgPQwjYuWkzzhZmQJSGlFKUaBVN6ANoFkdAlM7Q/PgNw3V9lChoBmgJaA9DCJ0PzxLkkWdAlIaUUpRoFU3oA2gWR0CU7otyPuG9dX2UKGgGaAloD0MIJv+Tv/t5Z0CUhpRSlGgVTegDaBZHQJT1QcWCVbB1fZQoaAZoCWgPQwiSk4lbxS1xQJSGlFKUaBVNxAJoFkdAlPbjk6tDD3V9lChoBmgJaA9DCNDVVuwvu+4/lIaUUpRoFUv+aBZHQJT7nG6wt8N1fZQoaAZoCWgPQwh8DFacatRiQJSGlFKUaBVN6ANoFkdAlP4LUgB91HV9lChoBmgJaA9DCKiN6nSgr2VAlIaUUpRoFU3oA2gWR0CVAd8GLUCrdX2UKGgGaAloD0MItYzUeyocZkCUhpRSlGgVTegDaBZHQJUD0Kneizt1fZQoaAZoCWgPQwilEp7Qa0dlQJSGlFKUaBVN6ANoFkdAlQW+glF+eHV9lChoBmgJaA9DCKfoSC5/GGRAlIaUUpRoFU3oA2gWR0CVDvGgi/widX2UKGgGaAloD0MI3c8pyM/gZUCUhpRSlGgVTegDaBZHQJUP6mLtNSJ1fZQoaAZoCWgPQwjc9j3qr1VhQJSGlFKUaBVN6ANoFkdAlRulWCEpRXV9lChoBmgJaA9DCLlRZK2h5GVAlIaUUpRoFU3oA2gWR0CVHJ/sVtXQdX2UKGgGaAloD0MIDvW7sHV0cECUhpRSlGgVTZYBaBZHQJUg4Glhw2l1fZQoaAZoCWgPQwjtnjwsVFRvQJSGlFKUaBVN8QJoFkdAlSGChew9q3V9lChoBmgJaA9DCAeaz7nb9GFAlIaUUpRoFU3oA2gWR0CVIcI5YHPedX2UKGgGaAloD0MITFKZYg5FY0CUhpRSlGgVTegDaBZHQJUiAt+TeO51fZQoaAZoCWgPQwi/Y3jsZ1ZjQJSGlFKUaBVN6ANoFkdAlSM4Mz/IbXV9lChoBmgJaA9DCJl+iXjrWmFAlIaUUpRoFU3oA2gWR0CVJWYraufVdX2UKGgGaAloD0MIIR6Jl+fxcECUhpRSlGgVTX8DaBZHQJUvU7Njbzt1fZQoaAZoCWgPQwiB6EmZ1P5UQJSGlFKUaBVNDQFoFkdAlUzQmVqveXV9lChoBmgJaA9DCA6Fz9ZBLHFAlIaUUpRoFU0pAmgWR0CVTQbR4QjEdX2UKGgGaAloD0MIh4px/iafbUCUhpRSlGgVTV4BaBZHQJVR4qiGnGd1fZQoaAZoCWgPQwhH5/wUxy5jQJSGlFKUaBVN6ANoFkdAlVKoxgy/K3V9lChoBmgJaA9DCK3boPZb1m5AlIaUUpRoFU3aA2gWR0CVVgc4HX2/dX2UKGgGaAloD0MIkh/xK9bpXkCUhpRSlGgVTegDaBZHQJVY3V6NVBF1fZQoaAZoCWgPQwiWkuUklOJfQJSGlFKUaBVN6ANoFkdAlVxfCQ9zO3V9lChoBmgJaA9DCDf92Y8Uf2JAlIaUUpRoFU3oA2gWR0CVXhgTAWSEdX2UKGgGaAloD0MIDcUdb/Llb0CUhpRSlGgVTd8BaBZHQJVoD6P8yet1fZQoaAZoCWgPQwh+dOrK50NxQJSGlFKUaBVN4QNoFkdAlWkwsXizcHV9lChoBmgJaA9DCHIW9rRDiG5AlIaUUpRoFU0wAWgWR0CVa0XrMTvidX2UKGgGaAloD0MIsOjWa/oHY0CUhpRSlGgVTegDaBZHQJVz97XxvvV1fZQoaAZoCWgPQwh9XvHUo05kQJSGlFKUaBVN6ANoFkdAlXTLzCk43nV9lChoBmgJaA9DCHsUrkeh/HJAlIaUUpRoFU1iAmgWR0CVd6AjIJZ4dX2UKGgGaAloD0MIWK63zdTpY0CUhpRSlGgVTegDaBZHQJV4hQoCuEF1fZQoaAZoCWgPQwj/JalMsU9mQJSGlFKUaBVN6ANoFkdAlXkIrjHXE3V9lChoBmgJaA9DCAvsMZHSgWJAlIaUUpRoFU3oA2gWR0CVeqRgqmTDdX2UKGgGaAloD0MIrg0V4/zPZECUhpRSlGgVTegDaBZHQJV8vOObRWt1fZQoaAZoCWgPQwgfaXBb261vQJSGlFKUaBVNWQNoFkdAlYBbmZE2HnV9lChoBmgJaA9DCKvpeqJrZGRAlIaUUpRoFU3oA2gWR0CVowcYIjW1dX2UKGgGaAloD0MIKhkAqnhpcUCUhpRSlGgVTVEBaBZHQJWlRwvQF9t1fZQoaAZoCWgPQwgmOPWBZPdjQJSGlFKUaBVN6ANoFkdAlafbiqABk3V9lChoBmgJaA9DCHbEIRvITGdAlIaUUpRoFU3oA2gWR0CVq7yIpH7QdX2UKGgGaAloD0MISBYwgdtFcUCUhpRSlGgVTawCaBZHQJWr0F7laKV1fZQoaAZoCWgPQwgsu2BwTUBwQJSGlFKUaBVNiwFoFkdAla5fzreImHV9lChoBmgJaA9DCJMCC2BKlWdAlIaUUpRoFU3oA2gWR0CVscnWattAdX2UKGgGaAloD0MIyJdQweFkZUCUhpRSlGgVTegDaBZHQJWzZ2Qnx8V1fZQoaAZoCWgPQwgt6L0xRLFwQJSGlFKUaBVNkgJoFkdAlbRn752yLXV9lChoBmgJaA9DCAt9sIxNMHBAlIaUUpRoFU3MAWgWR0CVtbQ4jrzHdX2UKGgGaAloD0MI64zvi0sxPkCUhpRSlGgVTRcBaBZHQJW7TKV6eGx1fZQoaAZoCWgPQwh9WG/UijxmQJSGlFKUaBVN6ANoFkdAlbx7+DOC5HV9lChoBmgJaA9DCIs3Mo/8O2BAlIaUUpRoFU3oA2gWR0CVv62nsLOSdX2UKGgGaAloD0MId4GSAks+cUCUhpRSlGgVTZYDaBZHQJXEh+z+m3x1fZQoaAZoCWgPQwh/h6JAX25xQJSGlFKUaBVNlQNoFkdAlcidAC4jKXV9lChoBmgJaA9DCNyg9lt78HBAlIaUUpRoFU3DAWgWR0CVyRW07bL2dX2UKGgGaAloD0MIoidlUsMFcUCUhpRSlGgVTbgDaBZHQJXLXwI+nqF1fZQoaAZoCWgPQwhUUiegiSxnQJSGlFKUaBVN6ANoFkdAldB8baRISXV9lChoBmgJaA9DCCkmb4AZq25AlIaUUpRoFU2aAWgWR0CV1yV09yLidX2UKGgGaAloD0MI9DehEIExbUCUhpRSlGgVTdkBaBZHQJXfBN47ihp1fZQoaAZoCWgPQwgEjgQa7J5jQJSGlFKUaBVN6ANoFkdAleFSZSeiBXVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}