DandinPower
commited on
End of training
Browse files
README.md
ADDED
@@ -0,0 +1,98 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
language:
|
3 |
+
- zh
|
4 |
+
license: apache-2.0
|
5 |
+
library_name: peft
|
6 |
+
tags:
|
7 |
+
- trl
|
8 |
+
- sft
|
9 |
+
- nycu-112-2-deeplearning-hw2
|
10 |
+
- generated_from_trainer
|
11 |
+
base_model: MediaTek-Research/Breeze-7B-Instruct-v1_0
|
12 |
+
datasets:
|
13 |
+
- DandinPower/ZH-Reading-Comprehension
|
14 |
+
model-index:
|
15 |
+
- name: breeze_7b_lora
|
16 |
+
results: []
|
17 |
+
---
|
18 |
+
|
19 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
20 |
+
should probably proofread and complete it, then remove this comment. -->
|
21 |
+
|
22 |
+
# breeze_7b_lora
|
23 |
+
|
24 |
+
This model is a fine-tuned version of [MediaTek-Research/Breeze-7B-Instruct-v1_0](https://huggingface.co/MediaTek-Research/Breeze-7B-Instruct-v1_0) on the DandinPower/ZH-Reading-Comprehension dataset.
|
25 |
+
It achieves the following results on the evaluation set:
|
26 |
+
- Loss: 1.3504
|
27 |
+
|
28 |
+
## Model description
|
29 |
+
|
30 |
+
More information needed
|
31 |
+
|
32 |
+
## Intended uses & limitations
|
33 |
+
|
34 |
+
More information needed
|
35 |
+
|
36 |
+
## Training and evaluation data
|
37 |
+
|
38 |
+
More information needed
|
39 |
+
|
40 |
+
## Training procedure
|
41 |
+
|
42 |
+
### Training hyperparameters
|
43 |
+
|
44 |
+
The following hyperparameters were used during training:
|
45 |
+
- learning_rate: 0.0001
|
46 |
+
- train_batch_size: 1
|
47 |
+
- eval_batch_size: 1
|
48 |
+
- seed: 42
|
49 |
+
- distributed_type: multi-GPU
|
50 |
+
- num_devices: 2
|
51 |
+
- gradient_accumulation_steps: 4
|
52 |
+
- total_train_batch_size: 8
|
53 |
+
- total_eval_batch_size: 2
|
54 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
55 |
+
- lr_scheduler_type: linear
|
56 |
+
- lr_scheduler_warmup_steps: 500
|
57 |
+
- num_epochs: 5.0
|
58 |
+
|
59 |
+
### Training results
|
60 |
+
|
61 |
+
| Training Loss | Epoch | Step | Validation Loss |
|
62 |
+
|:-------------:|:------:|:----:|:---------------:|
|
63 |
+
| 2.6567 | 0.1845 | 250 | 2.6359 |
|
64 |
+
| 2.5304 | 0.3690 | 500 | 2.5482 |
|
65 |
+
| 2.4385 | 0.5535 | 750 | 2.4359 |
|
66 |
+
| 2.3947 | 0.7380 | 1000 | 2.3351 |
|
67 |
+
| 2.2359 | 0.9225 | 1250 | 2.2414 |
|
68 |
+
| 1.9919 | 1.1070 | 1500 | 2.1528 |
|
69 |
+
| 1.9533 | 1.2915 | 1750 | 2.0739 |
|
70 |
+
| 1.8919 | 1.4760 | 2000 | 1.9973 |
|
71 |
+
| 1.8247 | 1.6605 | 2250 | 1.9203 |
|
72 |
+
| 1.6582 | 1.8450 | 2500 | 1.8425 |
|
73 |
+
| 1.4947 | 2.0295 | 2750 | 1.7883 |
|
74 |
+
| 1.4298 | 2.2140 | 3000 | 1.7411 |
|
75 |
+
| 1.4936 | 2.3985 | 3250 | 1.6912 |
|
76 |
+
| 1.3752 | 2.5830 | 3500 | 1.6467 |
|
77 |
+
| 1.3758 | 2.7675 | 3750 | 1.5994 |
|
78 |
+
| 1.2897 | 2.9520 | 4000 | 1.5617 |
|
79 |
+
| 1.0563 | 3.1365 | 4250 | 1.5384 |
|
80 |
+
| 1.0315 | 3.3210 | 4500 | 1.5103 |
|
81 |
+
| 1.0657 | 3.5055 | 4750 | 1.4766 |
|
82 |
+
| 1.0247 | 3.6900 | 5000 | 1.4505 |
|
83 |
+
| 1.0058 | 3.8745 | 5250 | 1.4253 |
|
84 |
+
| 0.8809 | 4.0590 | 5500 | 1.4120 |
|
85 |
+
| 0.8298 | 4.2435 | 5750 | 1.3935 |
|
86 |
+
| 0.9152 | 4.4280 | 6000 | 1.3781 |
|
87 |
+
| 0.8512 | 4.6125 | 6250 | 1.3650 |
|
88 |
+
| 0.9111 | 4.7970 | 6500 | 1.3536 |
|
89 |
+
| 0.8168 | 4.9815 | 6750 | 1.3504 |
|
90 |
+
|
91 |
+
|
92 |
+
### Framework versions
|
93 |
+
|
94 |
+
- PEFT 0.10.0
|
95 |
+
- Transformers 4.40.0
|
96 |
+
- Pytorch 2.2.2+cu121
|
97 |
+
- Datasets 2.19.0
|
98 |
+
- Tokenizers 0.19.1
|