DanGalt commited on
Commit
e00e25d
1 Parent(s): 246449c

Initial commit

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - AntBulletEnv-v0
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: A2C
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: AntBulletEnv-v0
16
+ type: AntBulletEnv-v0
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 1167.48 +/- 206.87
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **A2C** Agent playing **AntBulletEnv-v0**
25
+ This is a trained model of a **A2C** agent playing **AntBulletEnv-v0**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
a2c-AntBulletEnv-v0.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b18e7ee01f1506cd40bbac8808378287d3c9cc0037ca596afafe1cec3ec7fba3
3
+ size 129260
a2c-AntBulletEnv-v0/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.7.0
a2c-AntBulletEnv-v0/data ADDED
@@ -0,0 +1,106 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7ff23e7c58b0>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7ff23e7c5940>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7ff23e7c59d0>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7ff23e7c5a60>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7ff23e7c5af0>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7ff23e7c5b80>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7ff23e7c5c10>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7ff23e7c5ca0>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7ff23e7c5d30>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7ff23e7c5dc0>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7ff23e7c5e50>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7ff23e7c5ee0>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc_data object at 0x7ff23e7c1840>"
21
+ },
22
+ "verbose": 0,
23
+ "policy_kwargs": {
24
+ ":type:": "<class 'dict'>",
25
+ ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu",
26
+ "log_std_init": -2,
27
+ "ortho_init": false,
28
+ "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
29
+ "optimizer_kwargs": {
30
+ "alpha": 0.99,
31
+ "eps": 1e-05,
32
+ "weight_decay": 0
33
+ }
34
+ },
35
+ "observation_space": {
36
+ ":type:": "<class 'gym.spaces.box.Box'>",
37
+ ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=",
38
+ "dtype": "float32",
39
+ "_shape": [
40
+ 28
41
+ ],
42
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]",
43
+ "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]",
44
+ "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
45
+ "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
46
+ "_np_random": null
47
+ },
48
+ "action_space": {
49
+ ":type:": "<class 'gym.spaces.box.Box'>",
50
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
51
+ "dtype": "float32",
52
+ "_shape": [
53
+ 8
54
+ ],
55
+ "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]",
56
+ "high": "[1. 1. 1. 1. 1. 1. 1. 1.]",
57
+ "bounded_below": "[ True True True True True True True True]",
58
+ "bounded_above": "[ True True True True True True True True]",
59
+ "_np_random": null
60
+ },
61
+ "n_envs": 4,
62
+ "num_timesteps": 1000000,
63
+ "_total_timesteps": 1000000,
64
+ "_num_timesteps_at_start": 0,
65
+ "seed": null,
66
+ "action_noise": null,
67
+ "start_time": 1673965606013668805,
68
+ "learning_rate": 0.001,
69
+ "tensorboard_log": null,
70
+ "lr_schedule": {
71
+ ":type:": "<class 'function'>",
72
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/UGJN0vGp/IWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
73
+ },
74
+ "_last_obs": {
75
+ ":type:": "<class 'numpy.ndarray'>",
76
+ ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAHvRAD7RcDe/5MxiPqlmKkCBNya/NmDTPnwNA792hnG/otuCP786nT9K8aK+7tEnPI4elT9PsvM+YYQ3Pz2mND0uqaq9VpqPvk60tj11j/k+/HxZPzkSpT/jOTW/oQqkvfamvT7FAsw+orYOP/MxtL88CEa9ho2Yv55MAr9yxCc/Ne+SvzGKFz8PMMa++4Kkvv/IV76gvv+/pombvk9w4D4am8a9H35xv9XBDj9zwrg/r5sQvmhgXz+FZlU//I5/QJQ25z6SZaq+0lYDP03uKz/2pr0+xQLMPmWb5b/zMbS/72+DPn27hT9E50w/POTHvzgehz9SClnAxLa7voP7Ab+vnRo/tFwgwM4pkb48/F/AAvsdP7LVJMC3Z6o/AiqBwH9Kgr7N2xBAMH8hP2LTCEAXAbC/PgC3Pz63OT8cPQBAiMcswHGeIMBlm+W/8zG0v5R3zz5eG3i/lNeGvX/UAD/UckTAnVgYv9BVZL+rr36/KqoDP9rqdj+L66i+pk0RwKB/kT+zaaG+fkY4P/U0Fz2eiPY+Yp6yvjndQL81IHu/il+7vsD/fj4+3Da/6NTwvPamvT7FAsw+orYOP/MxtL+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
77
+ },
78
+ "_last_episode_starts": {
79
+ ":type:": "<class 'numpy.ndarray'>",
80
+ ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
81
+ },
82
+ "_last_original_obs": {
83
+ ":type:": "<class 'numpy.ndarray'>",
84
+ ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAADS0dA2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAWYf+PAAAAAA3n+C/AAAAAKMrCD4AAAAAIkHgPwAAAABs8qU9AAAAALDm4j8AAAAApleqvQAAAAB1Ct6/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAVgxDNQAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgElfqD0AAAAA20HfvwAAAABkzrA8AAAAALP08z8AAAAAoFwFPgAAAAD6+gBAAAAAAKjDCD0AAAAAAXv0vwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOH7pbYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAICQxbs9AAAAAMYR9L8AAAAAR8UFvgAAAAC8bfc/AAAAANsEuj0AAAAAywLvPwAAAABL3aw9AAAAAPWD/b8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABCf4y1AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAFPLhPQAAAADQjPi/AAAAABIH/r0AAAAAgoDnPwAAAAAILeM9AAAAAC8tAUAAAAAAZv+cvQAAAAAPwPS/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
85
+ },
86
+ "_episode_num": 0,
87
+ "use_sde": true,
88
+ "sde_sample_freq": -1,
89
+ "_current_progress_remaining": 0.0,
90
+ "ep_info_buffer": {
91
+ ":type:": "<class 'collections.deque'>",
92
+ ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQIhSe7SRbKSMAWyUTegDjAF0lEdAmXvUHhS9/XV9lChoBkdAhhABaTwDvGgHTegDaAhHQJl9hFhG6PN1fZQoaAZHQIGFgu5BkZtoB03oA2gIR0CZf3/1QIlddX2UKGgGR0CD3LTvRZ2ZaAdN6ANoCEdAmYrrwKBuoHV9lChoBkdAinMMEq2BrmgHTegDaAhHQJmXw9xIatN1fZQoaAZHQIl7uDjBEa5oB03oA2gIR0CZmWZgXuVpdX2UKGgGR0CGOIfEn9ehaAdN6ANoCEdAmZtrbxmTT3V9lChoBkdAj/AJp35eq2gHTegDaAhHQJmnr/Q0GeN1fZQoaAZHQIyD5un/DLtoB03oA2gIR0CZtGk690zTdX2UKGgGR0CJDRhiLEUCaAdN6ANoCEdAmbYbUPQOWnV9lChoBkdAicRk+xGDtmgHTegDaAhHQJm4KiJwbVB1fZQoaAZHQIuzCowVTJhoB03oA2gIR0CZw2vqC6H1dX2UKGgGR0CD3J/5LytnaAdN6ANoCEdAmdA+Rs/IKnV9lChoBkdAijl59d/rjmgHTegDaAhHQJnR50r9VFR1fZQoaAZHQJCJwWgvlEJoB03oA2gIR0CZ0/bor4FidX2UKGgGR0CLmTarWAf/aAdN6ANoCEdAmd93eaa1C3V9lChoBkdAkyvc/IKc/mgHTegDaAhHQJnsslXzUZx1fZQoaAZHQIyY8RlHz6JoB03oA2gIR0CZ7mSyMUAUdX2UKGgGR0CRcQO9FnZkaAdN6ANoCEdAmfB/x2B8QnV9lChoBkdAkCBxwuM+/2gHTegDaAhHQJn72U+s5n11fZQoaAZHQJMAtGCqZMNoB03oA2gIR0CaCGbTMJQddX2UKGgGR0CTRDeBxxT9aAdN6ANoCEdAmgoRBE8aGnV9lChoBkdAkPp/5pJwsGgHTegDaAhHQJoMI3974SJ1fZQoaAZHQJPiSvUz9CNoB03oA2gIR0CaF3WKMvRJdX2UKGgGR0CUDJQHzH0caAdN6ANoCEdAmiWrOmixmnV9lChoBkdAkp+DJyQxOGgHTegDaAhHQJonT8baRIV1fZQoaAZHQJOE64x1xKhoB03oA2gIR0CaKWORkmQbdX2UKGgGR0CTjJlCkXUIaAdN6ANoCEdAmjR9mL9/BnV9lChoBkdAjVhIw/PgN2gHTegDaAhHQJpCSsgdOqN1fZQoaAZHQJS20GTs6aNoB03oA2gIR0CaRBmZ3LV4dX2UKGgGR0CTNK9fkWAPaAdN6ANoCEdAmkZReC04R3V9lChoBkdAkxzDRIBikWgHTegDaAhHQJpReDSPU8V1fZQoaAZHQJLJYWHk92ZoB03oA2gIR0CaXiI7Njb0dX2UKGgGR0CUHIgLJCBxaAdN6ANoCEdAml/KzNUwSXV9lChoBkdAlcSs2vStvGgHTegDaAhHQJph085jpcJ1fZQoaAZHQJJLEgq3EydoB03oA2gIR0CabQmozeoDdX2UKGgGR0CSzRpDu0CzaAdN6ANoCEdAmnnHEdeY2XV9lChoBkdAklcQtSQ5m2gHTegDaAhHQJp7cNDtw711fZQoaAZHQJGmYcS5AhVoB03oA2gIR0CafX+ZPVNIdX2UKGgGR0CThWQEIPbxaAdN6ANoCEdAmosSgGr0a3V9lChoBkdAkWg4jW07bWgHTegDaAhHQJqcqZ5Rjz91fZQoaAZHQJNCYqMFUyZoB03oA2gIR0Canj/SH/LldX2UKGgGR0CQOe9bHIZJaAdN6ANoCEdAmqBOsDGLk3V9lChoBkdAkaphs67ulWgHTegDaAhHQJqrbdYW+Gp1fZQoaAZHQIrAnxFy7wtoB03oA2gIR0CauCQDFId3dX2UKGgGR0CP/WWBz3h5aAdN6ANoCEdAmrnVRHf/FXV9lChoBkdAjPIvGyX2NGgHTegDaAhHQJq70wBYFJR1fZQoaAZHQJJaS/JvHcVoB03oA2gIR0Caxyv24/eMdX2UKGgGR0CQ8N18stkGaAdN6ANoCEdAmtPkuL74z3V9lChoBkdAkcq7/jsD4mgHTegDaAhHQJrVfQu27Wd1fZQoaAZHQJGi/CqIacZoB03oA2gIR0Ca14YkVvdedX2UKGgGR0CR1u7ulXRxaAdN6ANoCEdAmuLRuTA31nV9lChoBkdAkcKjb349HWgHTegDaAhHQJrvfBwdbPh1fZQoaAZHQJGcAsSTQmhoB03oA2gIR0Ca8S9Nvfj0dX2UKGgGR0CQnouGsV+JaAdN6ANoCEdAmvNRG2Cul3V9lChoBkdAkNkzMA3kxWgHTegDaAhHQJr+nqt5le51fZQoaAZHQJNL8JXyRSxoB03oA2gIR0CbC9g5R0lrdX2UKGgGR0CTBZR1oxpMaAdN6ANoCEdAmw2e5OJtSHV9lChoBkdAkx13bRF7U2gHTegDaAhHQJsPnyauwHJ1fZQoaAZHQJV0Tr0J4SpoB03oA2gIR0CbGvMcp9ZzdX2UKGgGR0CVNJmDUVi4aAdN6ANoCEdAmyeLc0tRN3V9lChoBkdAk45cPjGT92gHTegDaAhHQJspMmMOwxF1fZQoaAZHQJSQJtFa0QdoB03oA2gIR0CbK0t2s7uEdX2UKGgGR0CVl/dD6WPcaAdN6ANoCEdAmzakhRqGlHV9lChoBkdAk5CHbh3qzWgHTegDaAhHQJtDWG/N7jV1fZQoaAZHQJN9e8Gs3hpoB03oA2gIR0CbRRfMfRu1dX2UKGgGR0CF1L1p0wJxaAdN6ANoCEdAm0ce3x4IKXV9lChoBkdAkw+CmMwUQGgHTegDaAhHQJtSTAJswcp1fZQoaAZHQJLrnb/Ot4loB03oA2gIR0CbXyCW/rSmdX2UKGgGR0CSUX4kNWluaAdN6ANoCEdAm2DTg/C66XV9lChoBkdAk4Aaji4rjGgHTegDaAhHQJti2508vEl1fZQoaAZHQJA2ok7fYSRoB03oA2gIR0CbbhhPCVKPdX2UKGgGR0CTeM2wFC9iaAdN6ANoCEdAm3q3kcS5AnV9lChoBkdAkP3TJ6po9WgHTegDaAhHQJt8ZDMNc4Z1fZQoaAZHQI8CLzwtrbhoB03oA2gIR0CbfmoKlYU4dX2UKGgGR0CSfOVD8cdYaAdN6ANoCEdAm4pm9Htnf3V9lChoBkdAj/QL5ylvZWgHTegDaAhHQJuX4xwhnrZ1fZQoaAZHQJLtNMXaakRoB03oA2gIR0CbmZ779AHFdX2UKGgGR0CSkuq4H5aeaAdN6ANoCEdAm5uuotL+P3V9lChoBkdAk8Y8UIsyz2gHTegDaAhHQJum9xiobXJ1fZQoaAZHQJGADvF3pwFoB03oA2gIR0Cbs3sMiKR/dX2UKGgGR0CSfK6uGKyfaAdN6ANoCEdAm7UtytFKCnV9lChoBkdAkXprp7kXDWgHTegDaAhHQJu3MtGus911fZQoaAZHQJJ/vumaYu1oB03oA2gIR0CbwoenAIppdX2UKGgGR0CUvyZuQ6p6aAdN6ANoCEdAm88oEW69TXV9lChoBkdAlKG7zCk43mgHTegDaAhHQJvQ3nnuAqd1fZQoaAZHQJNBaEQGwA5oB03oA2gIR0Cb0ubHIZIhdX2UKGgGR0CRV5Q40dilaAdN6ANoCEdAm94e7g88tHV9lChoBkdAk2BtFKCg9WgHTegDaAhHQJvqtlAeJYV1fZQoaAZHQJLuw0TDfm9oB03oA2gIR0Cb7E9YOlO5dX2UKGgGR0CU033/Pw/gaAdN6ANoCEdAm+5pVOsT4HV9lChoBkdAlG/4XbdrPGgHTegDaAhHQJv5vo8p1A91fZQoaAZHQJLOgT8HfMxoB03oA2gIR0CcBxWo3rD7dX2UKGgGR0CTOAhHLA58aAdN6ANoCEdAnAjDwUg0THV9lChoBkdAjAHn9m6GxmgHTegDaAhHQJwK3fyf+S91fZQoaAZHQJDGmnAIpphoB03oA2gIR0CcFgckdFOPdX2UKGgGR0CPkQVAzHjqaAdN6ANoCEdAnCLPddmg8XV9lChoBkdAkdqGLUCq62gHTegDaAhHQJwkflLeyiV1fZQoaAZHQIMFkXvYvnNoB03oA2gIR0CcJooybhFWdX2UKGgGR0CTjXCDmKZVaAdN6ANoCEdAnDGqSLZSN3VlLg=="
93
+ },
94
+ "ep_success_buffer": {
95
+ ":type:": "<class 'collections.deque'>",
96
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
97
+ },
98
+ "_n_updates": 31250,
99
+ "n_steps": 8,
100
+ "gamma": 0.99,
101
+ "gae_lambda": 0.9,
102
+ "ent_coef": 0.001,
103
+ "vf_coef": 0.4,
104
+ "max_grad_norm": 0.5,
105
+ "normalize_advantage": false
106
+ }
a2c-AntBulletEnv-v0/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e4422fd9d7fd3526dd81c58923b5c2c59e82dcd386a1c8093f02fa9c17a52575
3
+ size 56190
a2c-AntBulletEnv-v0/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:abb20128515c2980e14771b29882a234b100d1c1f09222ce2862ddcb36469042
3
+ size 56958
a2c-AntBulletEnv-v0/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
a2c-AntBulletEnv-v0/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.10.147+-x86_64-with-glibc2.27 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
2
+ - Python: 3.8.16
3
+ - Stable-Baselines3: 1.7.0
4
+ - PyTorch: 1.13.0+cu116
5
+ - GPU Enabled: True
6
+ - Numpy: 1.21.6
7
+ - Gym: 0.21.0
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7ff23e7c58b0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7ff23e7c5940>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7ff23e7c59d0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7ff23e7c5a60>", "_build": "<function ActorCriticPolicy._build at 0x7ff23e7c5af0>", "forward": "<function ActorCriticPolicy.forward at 0x7ff23e7c5b80>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7ff23e7c5c10>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7ff23e7c5ca0>", "_predict": "<function ActorCriticPolicy._predict at 0x7ff23e7c5d30>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7ff23e7c5dc0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7ff23e7c5e50>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7ff23e7c5ee0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7ff23e7c1840>"}, "verbose": 0, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1673965606013668805, "learning_rate": 0.001, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/UGJN0vGp/IWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAHvRAD7RcDe/5MxiPqlmKkCBNya/NmDTPnwNA792hnG/otuCP786nT9K8aK+7tEnPI4elT9PsvM+YYQ3Pz2mND0uqaq9VpqPvk60tj11j/k+/HxZPzkSpT/jOTW/oQqkvfamvT7FAsw+orYOP/MxtL88CEa9ho2Yv55MAr9yxCc/Ne+SvzGKFz8PMMa++4Kkvv/IV76gvv+/pombvk9w4D4am8a9H35xv9XBDj9zwrg/r5sQvmhgXz+FZlU//I5/QJQ25z6SZaq+0lYDP03uKz/2pr0+xQLMPmWb5b/zMbS/72+DPn27hT9E50w/POTHvzgehz9SClnAxLa7voP7Ab+vnRo/tFwgwM4pkb48/F/AAvsdP7LVJMC3Z6o/AiqBwH9Kgr7N2xBAMH8hP2LTCEAXAbC/PgC3Pz63OT8cPQBAiMcswHGeIMBlm+W/8zG0v5R3zz5eG3i/lNeGvX/UAD/UckTAnVgYv9BVZL+rr36/KqoDP9rqdj+L66i+pk0RwKB/kT+zaaG+fkY4P/U0Fz2eiPY+Yp6yvjndQL81IHu/il+7vsD/fj4+3Da/6NTwvPamvT7FAsw+orYOP/MxtL+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAADS0dA2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAWYf+PAAAAAA3n+C/AAAAAKMrCD4AAAAAIkHgPwAAAABs8qU9AAAAALDm4j8AAAAApleqvQAAAAB1Ct6/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAVgxDNQAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgElfqD0AAAAA20HfvwAAAABkzrA8AAAAALP08z8AAAAAoFwFPgAAAAD6+gBAAAAAAKjDCD0AAAAAAXv0vwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOH7pbYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAICQxbs9AAAAAMYR9L8AAAAAR8UFvgAAAAC8bfc/AAAAANsEuj0AAAAAywLvPwAAAABL3aw9AAAAAPWD/b8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABCf4y1AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAFPLhPQAAAADQjPi/AAAAABIH/r0AAAAAgoDnPwAAAAAILeM9AAAAAC8tAUAAAAAAZv+cvQAAAAAPwPS/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQIhSe7SRbKSMAWyUTegDjAF0lEdAmXvUHhS9/XV9lChoBkdAhhABaTwDvGgHTegDaAhHQJl9hFhG6PN1fZQoaAZHQIGFgu5BkZtoB03oA2gIR0CZf3/1QIlddX2UKGgGR0CD3LTvRZ2ZaAdN6ANoCEdAmYrrwKBuoHV9lChoBkdAinMMEq2BrmgHTegDaAhHQJmXw9xIatN1fZQoaAZHQIl7uDjBEa5oB03oA2gIR0CZmWZgXuVpdX2UKGgGR0CGOIfEn9ehaAdN6ANoCEdAmZtrbxmTT3V9lChoBkdAj/AJp35eq2gHTegDaAhHQJmnr/Q0GeN1fZQoaAZHQIyD5un/DLtoB03oA2gIR0CZtGk690zTdX2UKGgGR0CJDRhiLEUCaAdN6ANoCEdAmbYbUPQOWnV9lChoBkdAicRk+xGDtmgHTegDaAhHQJm4KiJwbVB1fZQoaAZHQIuzCowVTJhoB03oA2gIR0CZw2vqC6H1dX2UKGgGR0CD3J/5LytnaAdN6ANoCEdAmdA+Rs/IKnV9lChoBkdAijl59d/rjmgHTegDaAhHQJnR50r9VFR1fZQoaAZHQJCJwWgvlEJoB03oA2gIR0CZ0/bor4FidX2UKGgGR0CLmTarWAf/aAdN6ANoCEdAmd93eaa1C3V9lChoBkdAkyvc/IKc/mgHTegDaAhHQJnsslXzUZx1fZQoaAZHQIyY8RlHz6JoB03oA2gIR0CZ7mSyMUAUdX2UKGgGR0CRcQO9FnZkaAdN6ANoCEdAmfB/x2B8QnV9lChoBkdAkCBxwuM+/2gHTegDaAhHQJn72U+s5n11fZQoaAZHQJMAtGCqZMNoB03oA2gIR0CaCGbTMJQddX2UKGgGR0CTRDeBxxT9aAdN6ANoCEdAmgoRBE8aGnV9lChoBkdAkPp/5pJwsGgHTegDaAhHQJoMI3974SJ1fZQoaAZHQJPiSvUz9CNoB03oA2gIR0CaF3WKMvRJdX2UKGgGR0CUDJQHzH0caAdN6ANoCEdAmiWrOmixmnV9lChoBkdAkp+DJyQxOGgHTegDaAhHQJonT8baRIV1fZQoaAZHQJOE64x1xKhoB03oA2gIR0CaKWORkmQbdX2UKGgGR0CTjJlCkXUIaAdN6ANoCEdAmjR9mL9/BnV9lChoBkdAjVhIw/PgN2gHTegDaAhHQJpCSsgdOqN1fZQoaAZHQJS20GTs6aNoB03oA2gIR0CaRBmZ3LV4dX2UKGgGR0CTNK9fkWAPaAdN6ANoCEdAmkZReC04R3V9lChoBkdAkxzDRIBikWgHTegDaAhHQJpReDSPU8V1fZQoaAZHQJLJYWHk92ZoB03oA2gIR0CaXiI7Njb0dX2UKGgGR0CUHIgLJCBxaAdN6ANoCEdAml/KzNUwSXV9lChoBkdAlcSs2vStvGgHTegDaAhHQJph085jpcJ1fZQoaAZHQJJLEgq3EydoB03oA2gIR0CabQmozeoDdX2UKGgGR0CSzRpDu0CzaAdN6ANoCEdAmnnHEdeY2XV9lChoBkdAklcQtSQ5m2gHTegDaAhHQJp7cNDtw711fZQoaAZHQJGmYcS5AhVoB03oA2gIR0CafX+ZPVNIdX2UKGgGR0CThWQEIPbxaAdN6ANoCEdAmosSgGr0a3V9lChoBkdAkWg4jW07bWgHTegDaAhHQJqcqZ5Rjz91fZQoaAZHQJNCYqMFUyZoB03oA2gIR0Canj/SH/LldX2UKGgGR0CQOe9bHIZJaAdN6ANoCEdAmqBOsDGLk3V9lChoBkdAkaphs67ulWgHTegDaAhHQJqrbdYW+Gp1fZQoaAZHQIrAnxFy7wtoB03oA2gIR0CauCQDFId3dX2UKGgGR0CP/WWBz3h5aAdN6ANoCEdAmrnVRHf/FXV9lChoBkdAjPIvGyX2NGgHTegDaAhHQJq70wBYFJR1fZQoaAZHQJJaS/JvHcVoB03oA2gIR0Caxyv24/eMdX2UKGgGR0CQ8N18stkGaAdN6ANoCEdAmtPkuL74z3V9lChoBkdAkcq7/jsD4mgHTegDaAhHQJrVfQu27Wd1fZQoaAZHQJGi/CqIacZoB03oA2gIR0Ca14YkVvdedX2UKGgGR0CR1u7ulXRxaAdN6ANoCEdAmuLRuTA31nV9lChoBkdAkcKjb349HWgHTegDaAhHQJrvfBwdbPh1fZQoaAZHQJGcAsSTQmhoB03oA2gIR0Ca8S9Nvfj0dX2UKGgGR0CQnouGsV+JaAdN6ANoCEdAmvNRG2Cul3V9lChoBkdAkNkzMA3kxWgHTegDaAhHQJr+nqt5le51fZQoaAZHQJNL8JXyRSxoB03oA2gIR0CbC9g5R0lrdX2UKGgGR0CTBZR1oxpMaAdN6ANoCEdAmw2e5OJtSHV9lChoBkdAkx13bRF7U2gHTegDaAhHQJsPnyauwHJ1fZQoaAZHQJV0Tr0J4SpoB03oA2gIR0CbGvMcp9ZzdX2UKGgGR0CVNJmDUVi4aAdN6ANoCEdAmyeLc0tRN3V9lChoBkdAk45cPjGT92gHTegDaAhHQJspMmMOwxF1fZQoaAZHQJSQJtFa0QdoB03oA2gIR0CbK0t2s7uEdX2UKGgGR0CVl/dD6WPcaAdN6ANoCEdAmzakhRqGlHV9lChoBkdAk5CHbh3qzWgHTegDaAhHQJtDWG/N7jV1fZQoaAZHQJN9e8Gs3hpoB03oA2gIR0CbRRfMfRu1dX2UKGgGR0CF1L1p0wJxaAdN6ANoCEdAm0ce3x4IKXV9lChoBkdAkw+CmMwUQGgHTegDaAhHQJtSTAJswcp1fZQoaAZHQJLrnb/Ot4loB03oA2gIR0CbXyCW/rSmdX2UKGgGR0CSUX4kNWluaAdN6ANoCEdAm2DTg/C66XV9lChoBkdAk4Aaji4rjGgHTegDaAhHQJti2508vEl1fZQoaAZHQJA2ok7fYSRoB03oA2gIR0CbbhhPCVKPdX2UKGgGR0CTeM2wFC9iaAdN6ANoCEdAm3q3kcS5AnV9lChoBkdAkP3TJ6po9WgHTegDaAhHQJt8ZDMNc4Z1fZQoaAZHQI8CLzwtrbhoB03oA2gIR0CbfmoKlYU4dX2UKGgGR0CSfOVD8cdYaAdN6ANoCEdAm4pm9Htnf3V9lChoBkdAj/QL5ylvZWgHTegDaAhHQJuX4xwhnrZ1fZQoaAZHQJLtNMXaakRoB03oA2gIR0CbmZ779AHFdX2UKGgGR0CSkuq4H5aeaAdN6ANoCEdAm5uuotL+P3V9lChoBkdAk8Y8UIsyz2gHTegDaAhHQJum9xiobXJ1fZQoaAZHQJGADvF3pwFoB03oA2gIR0Cbs3sMiKR/dX2UKGgGR0CSfK6uGKyfaAdN6ANoCEdAm7UtytFKCnV9lChoBkdAkXprp7kXDWgHTegDaAhHQJu3MtGus911fZQoaAZHQJJ/vumaYu1oB03oA2gIR0CbwoenAIppdX2UKGgGR0CUvyZuQ6p6aAdN6ANoCEdAm88oEW69TXV9lChoBkdAlKG7zCk43mgHTegDaAhHQJvQ3nnuAqd1fZQoaAZHQJNBaEQGwA5oB03oA2gIR0Cb0ubHIZIhdX2UKGgGR0CRV5Q40dilaAdN6ANoCEdAm94e7g88tHV9lChoBkdAk2BtFKCg9WgHTegDaAhHQJvqtlAeJYV1fZQoaAZHQJLuw0TDfm9oB03oA2gIR0Cb7E9YOlO5dX2UKGgGR0CU033/Pw/gaAdN6ANoCEdAm+5pVOsT4HV9lChoBkdAlG/4XbdrPGgHTegDaAhHQJv5vo8p1A91fZQoaAZHQJLOgT8HfMxoB03oA2gIR0CcBxWo3rD7dX2UKGgGR0CTOAhHLA58aAdN6ANoCEdAnAjDwUg0THV9lChoBkdAjAHn9m6GxmgHTegDaAhHQJwK3fyf+S91fZQoaAZHQJDGmnAIpphoB03oA2gIR0CcFgckdFOPdX2UKGgGR0CPkQVAzHjqaAdN6ANoCEdAnCLPddmg8XV9lChoBkdAkdqGLUCq62gHTegDaAhHQJwkflLeyiV1fZQoaAZHQIMFkXvYvnNoB03oA2gIR0CcJooybhFWdX2UKGgGR0CTjXCDmKZVaAdN6ANoCEdAnDGqSLZSN3VlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 31250, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.001, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.27 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.16", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.0+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
replay.mp4 ADDED
Binary file (967 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 1167.4845028071663, "std_reward": 206.87441414872714, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-01-17T14:57:56.655820"}
vec_normalize.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:16d74f6984c246f30f3a365cfefcc137e7eb62da5561dcee54fff9e5c6cf5202
3
+ size 2521