Initial commit
Browse files- README.md +37 -0
- a2c-AntBulletEnv-v0.zip +3 -0
- a2c-AntBulletEnv-v0/_stable_baselines3_version +1 -0
- a2c-AntBulletEnv-v0/data +106 -0
- a2c-AntBulletEnv-v0/policy.optimizer.pth +3 -0
- a2c-AntBulletEnv-v0/policy.pth +3 -0
- a2c-AntBulletEnv-v0/pytorch_variables.pth +3 -0
- a2c-AntBulletEnv-v0/system_info.txt +7 -0
- config.json +1 -0
- replay.mp4 +0 -0
- results.json +1 -0
- vec_normalize.pkl +3 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- AntBulletEnv-v0
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: A2C
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: AntBulletEnv-v0
|
16 |
+
type: AntBulletEnv-v0
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 1167.48 +/- 206.87
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **A2C** Agent playing **AntBulletEnv-v0**
|
25 |
+
This is a trained model of a **A2C** agent playing **AntBulletEnv-v0**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
a2c-AntBulletEnv-v0.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b18e7ee01f1506cd40bbac8808378287d3c9cc0037ca596afafe1cec3ec7fba3
|
3 |
+
size 129260
|
a2c-AntBulletEnv-v0/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.7.0
|
a2c-AntBulletEnv-v0/data
ADDED
@@ -0,0 +1,106 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7ff23e7c58b0>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7ff23e7c5940>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7ff23e7c59d0>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7ff23e7c5a60>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7ff23e7c5af0>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7ff23e7c5b80>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7ff23e7c5c10>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7ff23e7c5ca0>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7ff23e7c5d30>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7ff23e7c5dc0>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7ff23e7c5e50>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7ff23e7c5ee0>",
|
19 |
+
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc_data object at 0x7ff23e7c1840>"
|
21 |
+
},
|
22 |
+
"verbose": 0,
|
23 |
+
"policy_kwargs": {
|
24 |
+
":type:": "<class 'dict'>",
|
25 |
+
":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu",
|
26 |
+
"log_std_init": -2,
|
27 |
+
"ortho_init": false,
|
28 |
+
"optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
|
29 |
+
"optimizer_kwargs": {
|
30 |
+
"alpha": 0.99,
|
31 |
+
"eps": 1e-05,
|
32 |
+
"weight_decay": 0
|
33 |
+
}
|
34 |
+
},
|
35 |
+
"observation_space": {
|
36 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
37 |
+
":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=",
|
38 |
+
"dtype": "float32",
|
39 |
+
"_shape": [
|
40 |
+
28
|
41 |
+
],
|
42 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]",
|
43 |
+
"high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]",
|
44 |
+
"bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
|
45 |
+
"bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
|
46 |
+
"_np_random": null
|
47 |
+
},
|
48 |
+
"action_space": {
|
49 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
50 |
+
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
51 |
+
"dtype": "float32",
|
52 |
+
"_shape": [
|
53 |
+
8
|
54 |
+
],
|
55 |
+
"low": "[-1. -1. -1. -1. -1. -1. -1. -1.]",
|
56 |
+
"high": "[1. 1. 1. 1. 1. 1. 1. 1.]",
|
57 |
+
"bounded_below": "[ True True True True True True True True]",
|
58 |
+
"bounded_above": "[ True True True True True True True True]",
|
59 |
+
"_np_random": null
|
60 |
+
},
|
61 |
+
"n_envs": 4,
|
62 |
+
"num_timesteps": 1000000,
|
63 |
+
"_total_timesteps": 1000000,
|
64 |
+
"_num_timesteps_at_start": 0,
|
65 |
+
"seed": null,
|
66 |
+
"action_noise": null,
|
67 |
+
"start_time": 1673965606013668805,
|
68 |
+
"learning_rate": 0.001,
|
69 |
+
"tensorboard_log": null,
|
70 |
+
"lr_schedule": {
|
71 |
+
":type:": "<class 'function'>",
|
72 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/UGJN0vGp/IWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
73 |
+
},
|
74 |
+
"_last_obs": {
|
75 |
+
":type:": "<class 'numpy.ndarray'>",
|
76 |
+
":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAHvRAD7RcDe/5MxiPqlmKkCBNya/NmDTPnwNA792hnG/otuCP786nT9K8aK+7tEnPI4elT9PsvM+YYQ3Pz2mND0uqaq9VpqPvk60tj11j/k+/HxZPzkSpT/jOTW/oQqkvfamvT7FAsw+orYOP/MxtL88CEa9ho2Yv55MAr9yxCc/Ne+SvzGKFz8PMMa++4Kkvv/IV76gvv+/pombvk9w4D4am8a9H35xv9XBDj9zwrg/r5sQvmhgXz+FZlU//I5/QJQ25z6SZaq+0lYDP03uKz/2pr0+xQLMPmWb5b/zMbS/72+DPn27hT9E50w/POTHvzgehz9SClnAxLa7voP7Ab+vnRo/tFwgwM4pkb48/F/AAvsdP7LVJMC3Z6o/AiqBwH9Kgr7N2xBAMH8hP2LTCEAXAbC/PgC3Pz63OT8cPQBAiMcswHGeIMBlm+W/8zG0v5R3zz5eG3i/lNeGvX/UAD/UckTAnVgYv9BVZL+rr36/KqoDP9rqdj+L66i+pk0RwKB/kT+zaaG+fkY4P/U0Fz2eiPY+Yp6yvjndQL81IHu/il+7vsD/fj4+3Da/6NTwvPamvT7FAsw+orYOP/MxtL+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
|
77 |
+
},
|
78 |
+
"_last_episode_starts": {
|
79 |
+
":type:": "<class 'numpy.ndarray'>",
|
80 |
+
":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
|
81 |
+
},
|
82 |
+
"_last_original_obs": {
|
83 |
+
":type:": "<class 'numpy.ndarray'>",
|
84 |
+
":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAADS0dA2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAWYf+PAAAAAA3n+C/AAAAAKMrCD4AAAAAIkHgPwAAAABs8qU9AAAAALDm4j8AAAAApleqvQAAAAB1Ct6/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAVgxDNQAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgElfqD0AAAAA20HfvwAAAABkzrA8AAAAALP08z8AAAAAoFwFPgAAAAD6+gBAAAAAAKjDCD0AAAAAAXv0vwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOH7pbYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAICQxbs9AAAAAMYR9L8AAAAAR8UFvgAAAAC8bfc/AAAAANsEuj0AAAAAywLvPwAAAABL3aw9AAAAAPWD/b8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABCf4y1AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAFPLhPQAAAADQjPi/AAAAABIH/r0AAAAAgoDnPwAAAAAILeM9AAAAAC8tAUAAAAAAZv+cvQAAAAAPwPS/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
|
85 |
+
},
|
86 |
+
"_episode_num": 0,
|
87 |
+
"use_sde": true,
|
88 |
+
"sde_sample_freq": -1,
|
89 |
+
"_current_progress_remaining": 0.0,
|
90 |
+
"ep_info_buffer": {
|
91 |
+
":type:": "<class 'collections.deque'>",
|
92 |
+
":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQIhSe7SRbKSMAWyUTegDjAF0lEdAmXvUHhS9/XV9lChoBkdAhhABaTwDvGgHTegDaAhHQJl9hFhG6PN1fZQoaAZHQIGFgu5BkZtoB03oA2gIR0CZf3/1QIlddX2UKGgGR0CD3LTvRZ2ZaAdN6ANoCEdAmYrrwKBuoHV9lChoBkdAinMMEq2BrmgHTegDaAhHQJmXw9xIatN1fZQoaAZHQIl7uDjBEa5oB03oA2gIR0CZmWZgXuVpdX2UKGgGR0CGOIfEn9ehaAdN6ANoCEdAmZtrbxmTT3V9lChoBkdAj/AJp35eq2gHTegDaAhHQJmnr/Q0GeN1fZQoaAZHQIyD5un/DLtoB03oA2gIR0CZtGk690zTdX2UKGgGR0CJDRhiLEUCaAdN6ANoCEdAmbYbUPQOWnV9lChoBkdAicRk+xGDtmgHTegDaAhHQJm4KiJwbVB1fZQoaAZHQIuzCowVTJhoB03oA2gIR0CZw2vqC6H1dX2UKGgGR0CD3J/5LytnaAdN6ANoCEdAmdA+Rs/IKnV9lChoBkdAijl59d/rjmgHTegDaAhHQJnR50r9VFR1fZQoaAZHQJCJwWgvlEJoB03oA2gIR0CZ0/bor4FidX2UKGgGR0CLmTarWAf/aAdN6ANoCEdAmd93eaa1C3V9lChoBkdAkyvc/IKc/mgHTegDaAhHQJnsslXzUZx1fZQoaAZHQIyY8RlHz6JoB03oA2gIR0CZ7mSyMUAUdX2UKGgGR0CRcQO9FnZkaAdN6ANoCEdAmfB/x2B8QnV9lChoBkdAkCBxwuM+/2gHTegDaAhHQJn72U+s5n11fZQoaAZHQJMAtGCqZMNoB03oA2gIR0CaCGbTMJQddX2UKGgGR0CTRDeBxxT9aAdN6ANoCEdAmgoRBE8aGnV9lChoBkdAkPp/5pJwsGgHTegDaAhHQJoMI3974SJ1fZQoaAZHQJPiSvUz9CNoB03oA2gIR0CaF3WKMvRJdX2UKGgGR0CUDJQHzH0caAdN6ANoCEdAmiWrOmixmnV9lChoBkdAkp+DJyQxOGgHTegDaAhHQJonT8baRIV1fZQoaAZHQJOE64x1xKhoB03oA2gIR0CaKWORkmQbdX2UKGgGR0CTjJlCkXUIaAdN6ANoCEdAmjR9mL9/BnV9lChoBkdAjVhIw/PgN2gHTegDaAhHQJpCSsgdOqN1fZQoaAZHQJS20GTs6aNoB03oA2gIR0CaRBmZ3LV4dX2UKGgGR0CTNK9fkWAPaAdN6ANoCEdAmkZReC04R3V9lChoBkdAkxzDRIBikWgHTegDaAhHQJpReDSPU8V1fZQoaAZHQJLJYWHk92ZoB03oA2gIR0CaXiI7Njb0dX2UKGgGR0CUHIgLJCBxaAdN6ANoCEdAml/KzNUwSXV9lChoBkdAlcSs2vStvGgHTegDaAhHQJph085jpcJ1fZQoaAZHQJJLEgq3EydoB03oA2gIR0CabQmozeoDdX2UKGgGR0CSzRpDu0CzaAdN6ANoCEdAmnnHEdeY2XV9lChoBkdAklcQtSQ5m2gHTegDaAhHQJp7cNDtw711fZQoaAZHQJGmYcS5AhVoB03oA2gIR0CafX+ZPVNIdX2UKGgGR0CThWQEIPbxaAdN6ANoCEdAmosSgGr0a3V9lChoBkdAkWg4jW07bWgHTegDaAhHQJqcqZ5Rjz91fZQoaAZHQJNCYqMFUyZoB03oA2gIR0Canj/SH/LldX2UKGgGR0CQOe9bHIZJaAdN6ANoCEdAmqBOsDGLk3V9lChoBkdAkaphs67ulWgHTegDaAhHQJqrbdYW+Gp1fZQoaAZHQIrAnxFy7wtoB03oA2gIR0CauCQDFId3dX2UKGgGR0CP/WWBz3h5aAdN6ANoCEdAmrnVRHf/FXV9lChoBkdAjPIvGyX2NGgHTegDaAhHQJq70wBYFJR1fZQoaAZHQJJaS/JvHcVoB03oA2gIR0Caxyv24/eMdX2UKGgGR0CQ8N18stkGaAdN6ANoCEdAmtPkuL74z3V9lChoBkdAkcq7/jsD4mgHTegDaAhHQJrVfQu27Wd1fZQoaAZHQJGi/CqIacZoB03oA2gIR0Ca14YkVvdedX2UKGgGR0CR1u7ulXRxaAdN6ANoCEdAmuLRuTA31nV9lChoBkdAkcKjb349HWgHTegDaAhHQJrvfBwdbPh1fZQoaAZHQJGcAsSTQmhoB03oA2gIR0Ca8S9Nvfj0dX2UKGgGR0CQnouGsV+JaAdN6ANoCEdAmvNRG2Cul3V9lChoBkdAkNkzMA3kxWgHTegDaAhHQJr+nqt5le51fZQoaAZHQJNL8JXyRSxoB03oA2gIR0CbC9g5R0lrdX2UKGgGR0CTBZR1oxpMaAdN6ANoCEdAmw2e5OJtSHV9lChoBkdAkx13bRF7U2gHTegDaAhHQJsPnyauwHJ1fZQoaAZHQJV0Tr0J4SpoB03oA2gIR0CbGvMcp9ZzdX2UKGgGR0CVNJmDUVi4aAdN6ANoCEdAmyeLc0tRN3V9lChoBkdAk45cPjGT92gHTegDaAhHQJspMmMOwxF1fZQoaAZHQJSQJtFa0QdoB03oA2gIR0CbK0t2s7uEdX2UKGgGR0CVl/dD6WPcaAdN6ANoCEdAmzakhRqGlHV9lChoBkdAk5CHbh3qzWgHTegDaAhHQJtDWG/N7jV1fZQoaAZHQJN9e8Gs3hpoB03oA2gIR0CbRRfMfRu1dX2UKGgGR0CF1L1p0wJxaAdN6ANoCEdAm0ce3x4IKXV9lChoBkdAkw+CmMwUQGgHTegDaAhHQJtSTAJswcp1fZQoaAZHQJLrnb/Ot4loB03oA2gIR0CbXyCW/rSmdX2UKGgGR0CSUX4kNWluaAdN6ANoCEdAm2DTg/C66XV9lChoBkdAk4Aaji4rjGgHTegDaAhHQJti2508vEl1fZQoaAZHQJA2ok7fYSRoB03oA2gIR0CbbhhPCVKPdX2UKGgGR0CTeM2wFC9iaAdN6ANoCEdAm3q3kcS5AnV9lChoBkdAkP3TJ6po9WgHTegDaAhHQJt8ZDMNc4Z1fZQoaAZHQI8CLzwtrbhoB03oA2gIR0CbfmoKlYU4dX2UKGgGR0CSfOVD8cdYaAdN6ANoCEdAm4pm9Htnf3V9lChoBkdAj/QL5ylvZWgHTegDaAhHQJuX4xwhnrZ1fZQoaAZHQJLtNMXaakRoB03oA2gIR0CbmZ779AHFdX2UKGgGR0CSkuq4H5aeaAdN6ANoCEdAm5uuotL+P3V9lChoBkdAk8Y8UIsyz2gHTegDaAhHQJum9xiobXJ1fZQoaAZHQJGADvF3pwFoB03oA2gIR0Cbs3sMiKR/dX2UKGgGR0CSfK6uGKyfaAdN6ANoCEdAm7UtytFKCnV9lChoBkdAkXprp7kXDWgHTegDaAhHQJu3MtGus911fZQoaAZHQJJ/vumaYu1oB03oA2gIR0CbwoenAIppdX2UKGgGR0CUvyZuQ6p6aAdN6ANoCEdAm88oEW69TXV9lChoBkdAlKG7zCk43mgHTegDaAhHQJvQ3nnuAqd1fZQoaAZHQJNBaEQGwA5oB03oA2gIR0Cb0ubHIZIhdX2UKGgGR0CRV5Q40dilaAdN6ANoCEdAm94e7g88tHV9lChoBkdAk2BtFKCg9WgHTegDaAhHQJvqtlAeJYV1fZQoaAZHQJLuw0TDfm9oB03oA2gIR0Cb7E9YOlO5dX2UKGgGR0CU033/Pw/gaAdN6ANoCEdAm+5pVOsT4HV9lChoBkdAlG/4XbdrPGgHTegDaAhHQJv5vo8p1A91fZQoaAZHQJLOgT8HfMxoB03oA2gIR0CcBxWo3rD7dX2UKGgGR0CTOAhHLA58aAdN6ANoCEdAnAjDwUg0THV9lChoBkdAjAHn9m6GxmgHTegDaAhHQJwK3fyf+S91fZQoaAZHQJDGmnAIpphoB03oA2gIR0CcFgckdFOPdX2UKGgGR0CPkQVAzHjqaAdN6ANoCEdAnCLPddmg8XV9lChoBkdAkdqGLUCq62gHTegDaAhHQJwkflLeyiV1fZQoaAZHQIMFkXvYvnNoB03oA2gIR0CcJooybhFWdX2UKGgGR0CTjXCDmKZVaAdN6ANoCEdAnDGqSLZSN3VlLg=="
|
93 |
+
},
|
94 |
+
"ep_success_buffer": {
|
95 |
+
":type:": "<class 'collections.deque'>",
|
96 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
97 |
+
},
|
98 |
+
"_n_updates": 31250,
|
99 |
+
"n_steps": 8,
|
100 |
+
"gamma": 0.99,
|
101 |
+
"gae_lambda": 0.9,
|
102 |
+
"ent_coef": 0.001,
|
103 |
+
"vf_coef": 0.4,
|
104 |
+
"max_grad_norm": 0.5,
|
105 |
+
"normalize_advantage": false
|
106 |
+
}
|
a2c-AntBulletEnv-v0/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e4422fd9d7fd3526dd81c58923b5c2c59e82dcd386a1c8093f02fa9c17a52575
|
3 |
+
size 56190
|
a2c-AntBulletEnv-v0/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:abb20128515c2980e14771b29882a234b100d1c1f09222ce2862ddcb36469042
|
3 |
+
size 56958
|
a2c-AntBulletEnv-v0/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
a2c-AntBulletEnv-v0/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.10.147+-x86_64-with-glibc2.27 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
|
2 |
+
- Python: 3.8.16
|
3 |
+
- Stable-Baselines3: 1.7.0
|
4 |
+
- PyTorch: 1.13.0+cu116
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.21.6
|
7 |
+
- Gym: 0.21.0
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7ff23e7c58b0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7ff23e7c5940>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7ff23e7c59d0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7ff23e7c5a60>", "_build": "<function ActorCriticPolicy._build at 0x7ff23e7c5af0>", "forward": "<function ActorCriticPolicy.forward at 0x7ff23e7c5b80>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7ff23e7c5c10>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7ff23e7c5ca0>", "_predict": "<function ActorCriticPolicy._predict at 0x7ff23e7c5d30>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7ff23e7c5dc0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7ff23e7c5e50>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7ff23e7c5ee0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7ff23e7c1840>"}, "verbose": 0, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1673965606013668805, "learning_rate": 0.001, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/UGJN0vGp/IWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAHvRAD7RcDe/5MxiPqlmKkCBNya/NmDTPnwNA792hnG/otuCP786nT9K8aK+7tEnPI4elT9PsvM+YYQ3Pz2mND0uqaq9VpqPvk60tj11j/k+/HxZPzkSpT/jOTW/oQqkvfamvT7FAsw+orYOP/MxtL88CEa9ho2Yv55MAr9yxCc/Ne+SvzGKFz8PMMa++4Kkvv/IV76gvv+/pombvk9w4D4am8a9H35xv9XBDj9zwrg/r5sQvmhgXz+FZlU//I5/QJQ25z6SZaq+0lYDP03uKz/2pr0+xQLMPmWb5b/zMbS/72+DPn27hT9E50w/POTHvzgehz9SClnAxLa7voP7Ab+vnRo/tFwgwM4pkb48/F/AAvsdP7LVJMC3Z6o/AiqBwH9Kgr7N2xBAMH8hP2LTCEAXAbC/PgC3Pz63OT8cPQBAiMcswHGeIMBlm+W/8zG0v5R3zz5eG3i/lNeGvX/UAD/UckTAnVgYv9BVZL+rr36/KqoDP9rqdj+L66i+pk0RwKB/kT+zaaG+fkY4P/U0Fz2eiPY+Yp6yvjndQL81IHu/il+7vsD/fj4+3Da/6NTwvPamvT7FAsw+orYOP/MxtL+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAADS0dA2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAWYf+PAAAAAA3n+C/AAAAAKMrCD4AAAAAIkHgPwAAAABs8qU9AAAAALDm4j8AAAAApleqvQAAAAB1Ct6/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAVgxDNQAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgElfqD0AAAAA20HfvwAAAABkzrA8AAAAALP08z8AAAAAoFwFPgAAAAD6+gBAAAAAAKjDCD0AAAAAAXv0vwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOH7pbYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAICQxbs9AAAAAMYR9L8AAAAAR8UFvgAAAAC8bfc/AAAAANsEuj0AAAAAywLvPwAAAABL3aw9AAAAAPWD/b8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABCf4y1AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAFPLhPQAAAADQjPi/AAAAABIH/r0AAAAAgoDnPwAAAAAILeM9AAAAAC8tAUAAAAAAZv+cvQAAAAAPwPS/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQIhSe7SRbKSMAWyUTegDjAF0lEdAmXvUHhS9/XV9lChoBkdAhhABaTwDvGgHTegDaAhHQJl9hFhG6PN1fZQoaAZHQIGFgu5BkZtoB03oA2gIR0CZf3/1QIlddX2UKGgGR0CD3LTvRZ2ZaAdN6ANoCEdAmYrrwKBuoHV9lChoBkdAinMMEq2BrmgHTegDaAhHQJmXw9xIatN1fZQoaAZHQIl7uDjBEa5oB03oA2gIR0CZmWZgXuVpdX2UKGgGR0CGOIfEn9ehaAdN6ANoCEdAmZtrbxmTT3V9lChoBkdAj/AJp35eq2gHTegDaAhHQJmnr/Q0GeN1fZQoaAZHQIyD5un/DLtoB03oA2gIR0CZtGk690zTdX2UKGgGR0CJDRhiLEUCaAdN6ANoCEdAmbYbUPQOWnV9lChoBkdAicRk+xGDtmgHTegDaAhHQJm4KiJwbVB1fZQoaAZHQIuzCowVTJhoB03oA2gIR0CZw2vqC6H1dX2UKGgGR0CD3J/5LytnaAdN6ANoCEdAmdA+Rs/IKnV9lChoBkdAijl59d/rjmgHTegDaAhHQJnR50r9VFR1fZQoaAZHQJCJwWgvlEJoB03oA2gIR0CZ0/bor4FidX2UKGgGR0CLmTarWAf/aAdN6ANoCEdAmd93eaa1C3V9lChoBkdAkyvc/IKc/mgHTegDaAhHQJnsslXzUZx1fZQoaAZHQIyY8RlHz6JoB03oA2gIR0CZ7mSyMUAUdX2UKGgGR0CRcQO9FnZkaAdN6ANoCEdAmfB/x2B8QnV9lChoBkdAkCBxwuM+/2gHTegDaAhHQJn72U+s5n11fZQoaAZHQJMAtGCqZMNoB03oA2gIR0CaCGbTMJQddX2UKGgGR0CTRDeBxxT9aAdN6ANoCEdAmgoRBE8aGnV9lChoBkdAkPp/5pJwsGgHTegDaAhHQJoMI3974SJ1fZQoaAZHQJPiSvUz9CNoB03oA2gIR0CaF3WKMvRJdX2UKGgGR0CUDJQHzH0caAdN6ANoCEdAmiWrOmixmnV9lChoBkdAkp+DJyQxOGgHTegDaAhHQJonT8baRIV1fZQoaAZHQJOE64x1xKhoB03oA2gIR0CaKWORkmQbdX2UKGgGR0CTjJlCkXUIaAdN6ANoCEdAmjR9mL9/BnV9lChoBkdAjVhIw/PgN2gHTegDaAhHQJpCSsgdOqN1fZQoaAZHQJS20GTs6aNoB03oA2gIR0CaRBmZ3LV4dX2UKGgGR0CTNK9fkWAPaAdN6ANoCEdAmkZReC04R3V9lChoBkdAkxzDRIBikWgHTegDaAhHQJpReDSPU8V1fZQoaAZHQJLJYWHk92ZoB03oA2gIR0CaXiI7Njb0dX2UKGgGR0CUHIgLJCBxaAdN6ANoCEdAml/KzNUwSXV9lChoBkdAlcSs2vStvGgHTegDaAhHQJph085jpcJ1fZQoaAZHQJJLEgq3EydoB03oA2gIR0CabQmozeoDdX2UKGgGR0CSzRpDu0CzaAdN6ANoCEdAmnnHEdeY2XV9lChoBkdAklcQtSQ5m2gHTegDaAhHQJp7cNDtw711fZQoaAZHQJGmYcS5AhVoB03oA2gIR0CafX+ZPVNIdX2UKGgGR0CThWQEIPbxaAdN6ANoCEdAmosSgGr0a3V9lChoBkdAkWg4jW07bWgHTegDaAhHQJqcqZ5Rjz91fZQoaAZHQJNCYqMFUyZoB03oA2gIR0Canj/SH/LldX2UKGgGR0CQOe9bHIZJaAdN6ANoCEdAmqBOsDGLk3V9lChoBkdAkaphs67ulWgHTegDaAhHQJqrbdYW+Gp1fZQoaAZHQIrAnxFy7wtoB03oA2gIR0CauCQDFId3dX2UKGgGR0CP/WWBz3h5aAdN6ANoCEdAmrnVRHf/FXV9lChoBkdAjPIvGyX2NGgHTegDaAhHQJq70wBYFJR1fZQoaAZHQJJaS/JvHcVoB03oA2gIR0Caxyv24/eMdX2UKGgGR0CQ8N18stkGaAdN6ANoCEdAmtPkuL74z3V9lChoBkdAkcq7/jsD4mgHTegDaAhHQJrVfQu27Wd1fZQoaAZHQJGi/CqIacZoB03oA2gIR0Ca14YkVvdedX2UKGgGR0CR1u7ulXRxaAdN6ANoCEdAmuLRuTA31nV9lChoBkdAkcKjb349HWgHTegDaAhHQJrvfBwdbPh1fZQoaAZHQJGcAsSTQmhoB03oA2gIR0Ca8S9Nvfj0dX2UKGgGR0CQnouGsV+JaAdN6ANoCEdAmvNRG2Cul3V9lChoBkdAkNkzMA3kxWgHTegDaAhHQJr+nqt5le51fZQoaAZHQJNL8JXyRSxoB03oA2gIR0CbC9g5R0lrdX2UKGgGR0CTBZR1oxpMaAdN6ANoCEdAmw2e5OJtSHV9lChoBkdAkx13bRF7U2gHTegDaAhHQJsPnyauwHJ1fZQoaAZHQJV0Tr0J4SpoB03oA2gIR0CbGvMcp9ZzdX2UKGgGR0CVNJmDUVi4aAdN6ANoCEdAmyeLc0tRN3V9lChoBkdAk45cPjGT92gHTegDaAhHQJspMmMOwxF1fZQoaAZHQJSQJtFa0QdoB03oA2gIR0CbK0t2s7uEdX2UKGgGR0CVl/dD6WPcaAdN6ANoCEdAmzakhRqGlHV9lChoBkdAk5CHbh3qzWgHTegDaAhHQJtDWG/N7jV1fZQoaAZHQJN9e8Gs3hpoB03oA2gIR0CbRRfMfRu1dX2UKGgGR0CF1L1p0wJxaAdN6ANoCEdAm0ce3x4IKXV9lChoBkdAkw+CmMwUQGgHTegDaAhHQJtSTAJswcp1fZQoaAZHQJLrnb/Ot4loB03oA2gIR0CbXyCW/rSmdX2UKGgGR0CSUX4kNWluaAdN6ANoCEdAm2DTg/C66XV9lChoBkdAk4Aaji4rjGgHTegDaAhHQJti2508vEl1fZQoaAZHQJA2ok7fYSRoB03oA2gIR0CbbhhPCVKPdX2UKGgGR0CTeM2wFC9iaAdN6ANoCEdAm3q3kcS5AnV9lChoBkdAkP3TJ6po9WgHTegDaAhHQJt8ZDMNc4Z1fZQoaAZHQI8CLzwtrbhoB03oA2gIR0CbfmoKlYU4dX2UKGgGR0CSfOVD8cdYaAdN6ANoCEdAm4pm9Htnf3V9lChoBkdAj/QL5ylvZWgHTegDaAhHQJuX4xwhnrZ1fZQoaAZHQJLtNMXaakRoB03oA2gIR0CbmZ779AHFdX2UKGgGR0CSkuq4H5aeaAdN6ANoCEdAm5uuotL+P3V9lChoBkdAk8Y8UIsyz2gHTegDaAhHQJum9xiobXJ1fZQoaAZHQJGADvF3pwFoB03oA2gIR0Cbs3sMiKR/dX2UKGgGR0CSfK6uGKyfaAdN6ANoCEdAm7UtytFKCnV9lChoBkdAkXprp7kXDWgHTegDaAhHQJu3MtGus911fZQoaAZHQJJ/vumaYu1oB03oA2gIR0CbwoenAIppdX2UKGgGR0CUvyZuQ6p6aAdN6ANoCEdAm88oEW69TXV9lChoBkdAlKG7zCk43mgHTegDaAhHQJvQ3nnuAqd1fZQoaAZHQJNBaEQGwA5oB03oA2gIR0Cb0ubHIZIhdX2UKGgGR0CRV5Q40dilaAdN6ANoCEdAm94e7g88tHV9lChoBkdAk2BtFKCg9WgHTegDaAhHQJvqtlAeJYV1fZQoaAZHQJLuw0TDfm9oB03oA2gIR0Cb7E9YOlO5dX2UKGgGR0CU033/Pw/gaAdN6ANoCEdAm+5pVOsT4HV9lChoBkdAlG/4XbdrPGgHTegDaAhHQJv5vo8p1A91fZQoaAZHQJLOgT8HfMxoB03oA2gIR0CcBxWo3rD7dX2UKGgGR0CTOAhHLA58aAdN6ANoCEdAnAjDwUg0THV9lChoBkdAjAHn9m6GxmgHTegDaAhHQJwK3fyf+S91fZQoaAZHQJDGmnAIpphoB03oA2gIR0CcFgckdFOPdX2UKGgGR0CPkQVAzHjqaAdN6ANoCEdAnCLPddmg8XV9lChoBkdAkdqGLUCq62gHTegDaAhHQJwkflLeyiV1fZQoaAZHQIMFkXvYvnNoB03oA2gIR0CcJooybhFWdX2UKGgGR0CTjXCDmKZVaAdN6ANoCEdAnDGqSLZSN3VlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 31250, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.001, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.27 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.16", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.0+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
replay.mp4
ADDED
Binary file (967 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 1167.4845028071663, "std_reward": 206.87441414872714, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-01-17T14:57:56.655820"}
|
vec_normalize.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:16d74f6984c246f30f3a365cfefcc137e7eb62da5561dcee54fff9e5c6cf5202
|
3 |
+
size 2521
|