finetuning-sentiment-model-distil-finalVersion

This model is a fine-tuned version of distilbert/distilbert-base-uncased on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6034
  • Precision Negative: 0.8333
  • Recall Negative: 0.5556
  • F1 Negative: 0.6667
  • Precision Neutral: 0.75
  • Recall Neutral: 0.9
  • F1 Neutral: 0.8182
  • Precision Positive: 0.8462
  • Recall Positive: 0.7857
  • F1 Positive: 0.8148
  • Accuracy: 0.7907
  • Confusion Matrix: [[20, 14, 2], [2, 72, 6], [2, 10, 44]]

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 32
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 6

Training results

Training Loss Epoch Step Validation Loss Precision Negative Recall Negative F1 Negative Precision Neutral Recall Neutral F1 Neutral Precision Positive Recall Positive F1 Positive Accuracy Confusion Matrix
0.9478 1.0 22 0.9752 0.0 0.0 0.0 0.5064 0.9875 0.6695 0.875 0.25 0.3889 0.5407 [[0, 35, 1], [0, 79, 1], [0, 42, 14]]
0.7207 2.0 44 0.6483 0.8667 0.3611 0.5098 0.6847 0.95 0.7958 0.8913 0.7321 0.8039 0.7558 [[13, 21, 2], [1, 76, 3], [1, 14, 41]]
0.4066 3.0 66 0.6153 0.7586 0.6111 0.6769 0.7308 0.95 0.8261 1.0 0.6964 0.8211 0.7965 [[22, 14, 0], [4, 76, 0], [3, 14, 39]]
0.2355 4.0 88 0.6367 0.8 0.5556 0.6557 0.7170 0.95 0.8172 0.9756 0.7143 0.8247 0.7907 [[20, 16, 0], [3, 76, 1], [2, 14, 40]]
0.1048 5.0 110 0.5976 0.8333 0.5556 0.6667 0.75 0.9 0.8182 0.8462 0.7857 0.8148 0.7907 [[20, 14, 2], [2, 72, 6], [2, 10, 44]]
0.0745 6.0 132 0.6034 0.8333 0.5556 0.6667 0.75 0.9 0.8182 0.8462 0.7857 0.8148 0.7907 [[20, 14, 2], [2, 72, 6], [2, 10, 44]]

Framework versions

  • Transformers 4.46.3
  • Pytorch 2.5.1+cu121
  • Datasets 3.1.0
  • Tokenizers 0.20.3
Downloads last month
5
Safetensors
Model size
67M params
Tensor type
F32
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for DaisyQue/finetuning-sentiment-model-distil-finalVersion

Finetuned
(8666)
this model