File size: 6,573 Bytes
73534d1 faceaa8 73534d1 816cf8e 73534d1 faceaa8 73534d1 faceaa8 73534d1 faceaa8 73534d1 faceaa8 73534d1 faceaa8 816cf8e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 |
---
base_model: arcee-ai/Meraj-Mini
tags:
- text-generation-inference
- transformers
- unsloth
- qwen2
- trl
license: apache-2.0
language:
- ar
- en
model-index:
- name: MawaredT1
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: IFEval (0-Shot)
type: wis-k/instruction-following-eval
split: train
args:
num_few_shot: 0
metrics:
- type: inst_level_strict_acc and prompt_level_strict_acc
value: 41.99
name: averaged accuracy
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard#/?search=Daemontatox%2FMawaredT1
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: BBH (3-Shot)
type: SaylorTwift/bbh
split: test
args:
num_few_shot: 3
metrics:
- type: acc_norm
value: 31.9
name: normalized accuracy
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard#/?search=Daemontatox%2FMawaredT1
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MATH Lvl 5 (4-Shot)
type: lighteval/MATH-Hard
split: test
args:
num_few_shot: 4
metrics:
- type: exact_match
value: 14.58
name: exact match
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard#/?search=Daemontatox%2FMawaredT1
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: GPQA (0-shot)
type: Idavidrein/gpqa
split: train
args:
num_few_shot: 0
metrics:
- type: acc_norm
value: 11.3
name: acc_norm
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard#/?search=Daemontatox%2FMawaredT1
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MuSR (0-shot)
type: TAUR-Lab/MuSR
args:
num_few_shot: 0
metrics:
- type: acc_norm
value: 18.68
name: acc_norm
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard#/?search=Daemontatox%2FMawaredT1
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU-PRO (5-shot)
type: TIGER-Lab/MMLU-Pro
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 41.31
name: accuracy
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard#/?search=Daemontatox%2FMawaredT1
name: Open LLM Leaderboard
---
![image](./image.webp)
# Bilingual Assistant Model Card
## Overview
This bilingual language model is designed to support seamless text generation and understanding in both Arabic (ar) and English (en). Fine-tuned from the `arcee-ai/Meraj-Mini` base model, it offers robust multilingual capabilities optimized for various applications such as conversational agents, content creation, and multilingual text analysis.
### Key Highlights
- **Multilingual Proficiency:** Designed to handle complex linguistic nuances in both Arabic and English, ensuring high-quality outputs in both languages.
- **Performance Optimization:** Achieved 2x faster training through innovative methods provided by the [Unsloth](https://github.com/unslothai/unsloth) framework and the Hugging Face TRL library.
- **Transformer-Based Architecture:** Utilizes advanced transformer layers to deliver state-of-the-art performance in text generation and inference.
## Development Details
- **Developer:** Daemontatox
- **License:** Licensed under the Apache-2.0, ensuring open accessibility and flexibility for various use cases.
- **Base Model:** The model is a fine-tuned variant of `arcee-ai/Meraj-Mini`.
- **Frameworks Used:**
- [Unsloth](https://github.com/unslothai/unsloth): Enabled faster and more efficient training.
- Hugging Face TRL Library: Provided tools for reinforcement learning fine-tuning, enhancing model responsiveness and accuracy.
## Training Process
The fine-tuning process was conducted with a focus on:
- **Data Diversity:** Leveraged a bilingual corpus to ensure comprehensive language understanding across both supported languages.
- **Optimized Hardware Utilization:** Implemented Unsloth's accelerated training methods, significantly reducing resource consumption and training time.
- **Reinforcement Learning:** Used Hugging Face's TRL library to fine-tune the model's decision-making and response generation capabilities, particularly for conversational and contextual understanding.
## Applications
This model is suited for a variety of real-world applications, including:
1. **Conversational Agents:** Powering bilingual chatbots and virtual assistants for customer support and personal use.
2. **Content Generation:** Assisting in drafting multilingual articles, social media posts, and creative writing.
3. **Translation Support:** Providing context-aware translations and summaries across Arabic and English.
4. **Education:** Enhancing learning platforms by offering bilingual educational content and interactive learning experiences.
## Future Directions
Plans for extending the model's capabilities include:
- **Additional Language Support:** Exploring fine-tuning for additional languages.
- **Domain-Specific Training:** Specializing the model for industries such as healthcare, legal, and technical writing.
- **Optimization for Edge Devices:** Investigating quantization techniques to deploy the model on resource-constrained hardware like mobile devices and IoT platforms.
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/Daemontatox__MawaredT1-details)!
Summarized results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/contents/viewer/default/train?q=Daemontatox%2FMawaredT1&sort[column]=Average%20%E2%AC%86%EF%B8%8F&sort[direction]=desc)!
| Metric |Value (%)|
|-------------------|--------:|
|**Average** | 26.63|
|IFEval (0-Shot) | 41.99|
|BBH (3-Shot) | 31.90|
|MATH Lvl 5 (4-Shot)| 14.58|
|GPQA (0-shot) | 11.30|
|MuSR (0-shot) | 18.68|
|MMLU-PRO (5-shot) | 41.31|
|