File size: 5,430 Bytes
1c2357e 9bdbfd8 1c2357e 23dcfc6 1c2357e 23dcfc6 1c2357e 23dcfc6 1c2357e 23dcfc6 9bdbfd8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 |
---
base_model: unsloth/Llama-3.2-11B-Vision-Instruct
tags:
- text-generation-inference
- transformers
- unsloth
- mllama
license: apache-2.0
language:
- en
model-index:
- name: DocumentCogito
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: IFEval (0-Shot)
type: wis-k/instruction-following-eval
split: train
args:
num_few_shot: 0
metrics:
- type: inst_level_strict_acc and prompt_level_strict_acc
value: 50.64
name: averaged accuracy
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard#/?search=Daemontatox%2FDocumentCogito
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: BBH (3-Shot)
type: SaylorTwift/bbh
split: test
args:
num_few_shot: 3
metrics:
- type: acc_norm
value: 29.79
name: normalized accuracy
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard#/?search=Daemontatox%2FDocumentCogito
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MATH Lvl 5 (4-Shot)
type: lighteval/MATH-Hard
split: test
args:
num_few_shot: 4
metrics:
- type: exact_match
value: 16.24
name: exact match
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard#/?search=Daemontatox%2FDocumentCogito
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: GPQA (0-shot)
type: Idavidrein/gpqa
split: train
args:
num_few_shot: 0
metrics:
- type: acc_norm
value: 8.84
name: acc_norm
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard#/?search=Daemontatox%2FDocumentCogito
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MuSR (0-shot)
type: TAUR-Lab/MuSR
args:
num_few_shot: 0
metrics:
- type: acc_norm
value: 8.6
name: acc_norm
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard#/?search=Daemontatox%2FDocumentCogito
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU-PRO (5-shot)
type: TIGER-Lab/MMLU-Pro
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 31.14
name: accuracy
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard#/?search=Daemontatox%2FDocumentCogito
name: Open LLM Leaderboard
---
# **unsloth/Llama-3.2-11B-Vision-Instruct (Fine-Tuned)**
## **Model Overview**
This model, fine-tuned from the `unsloth/Llama-3.2-11B-Vision-Instruct` base, is optimized for vision-language tasks with enhanced instruction-following capabilities. Fine-tuning was completed 2x faster using the [Unsloth](https://github.com/unslothai/unsloth) framework combined with Hugging Face's TRL library, ensuring efficient training while maintaining high performance.
## **Key Information**
- **Developed by:** Daemontatox
- **Base Model:** `unsloth/Llama-3.2-11B-Vision-Instruct`
- **License:** Apache-2.0
- **Language:** English (`en`)
- **Frameworks Used:** Hugging Face Transformers, Unsloth, and TRL
## **Performance and Use Cases**
This model is ideal for applications involving:
- Vision-based text generation and description tasks
- Instruction-following in multimodal contexts
- General-purpose text generation with enhanced reasoning
### **Features**
- **2x Faster Training:** Leveraging the Unsloth framework for accelerated fine-tuning.
- **Multimodal Capabilities:** Enhanced to handle vision-language interactions.
- **Instruction Optimization:** Tailored for improved comprehension and execution of instructions.
## **How to Use**
### **Inference Example (Hugging Face Transformers)**
```python
from transformers import AutoTokenizer, AutoModelForCausalLM
tokenizer = AutoTokenizer.from_pretrained("Daemontatox/finetuned-llama-3.2-vision-instruct")
model = AutoModelForCausalLM.from_pretrained("Daemontatox/finetuned-llama-3.2-vision-instruct")
input_text = "Describe the image showing a sunset over mountains."
inputs = tokenizer(input_text, return_tensors="pt")
outputs = model.generate(**inputs, max_length=100)
print(tokenizer.decode(outputs[0], skip_special_tokens=True))
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/Daemontatox__DocumentCogito-details)!
Summarized results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/contents/viewer/default/train?q=Daemontatox%2FDocumentCogito&sort[column]=Average%20%E2%AC%86%EF%B8%8F&sort[direction]=desc)!
| Metric |Value (%)|
|-------------------|--------:|
|**Average** | 24.21|
|IFEval (0-Shot) | 50.64|
|BBH (3-Shot) | 29.79|
|MATH Lvl 5 (4-Shot)| 16.24|
|GPQA (0-shot) | 8.84|
|MuSR (0-shot) | 8.60|
|MMLU-PRO (5-shot) | 31.14|
|