File size: 5,430 Bytes
1c2357e
 
 
 
 
 
 
 
 
 
9bdbfd8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1c2357e
 
23dcfc6
1c2357e
23dcfc6
 
1c2357e
23dcfc6
 
 
 
 
 
1c2357e
23dcfc6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9bdbfd8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
---
base_model: unsloth/Llama-3.2-11B-Vision-Instruct
tags:
- text-generation-inference
- transformers
- unsloth
- mllama
license: apache-2.0
language:
- en
model-index:
- name: DocumentCogito
  results:
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: IFEval (0-Shot)
      type: wis-k/instruction-following-eval
      split: train
      args:
        num_few_shot: 0
    metrics:
    - type: inst_level_strict_acc and prompt_level_strict_acc
      value: 50.64
      name: averaged accuracy
    source:
      url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard#/?search=Daemontatox%2FDocumentCogito
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: BBH (3-Shot)
      type: SaylorTwift/bbh
      split: test
      args:
        num_few_shot: 3
    metrics:
    - type: acc_norm
      value: 29.79
      name: normalized accuracy
    source:
      url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard#/?search=Daemontatox%2FDocumentCogito
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: MATH Lvl 5 (4-Shot)
      type: lighteval/MATH-Hard
      split: test
      args:
        num_few_shot: 4
    metrics:
    - type: exact_match
      value: 16.24
      name: exact match
    source:
      url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard#/?search=Daemontatox%2FDocumentCogito
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: GPQA (0-shot)
      type: Idavidrein/gpqa
      split: train
      args:
        num_few_shot: 0
    metrics:
    - type: acc_norm
      value: 8.84
      name: acc_norm
    source:
      url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard#/?search=Daemontatox%2FDocumentCogito
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: MuSR (0-shot)
      type: TAUR-Lab/MuSR
      args:
        num_few_shot: 0
    metrics:
    - type: acc_norm
      value: 8.6
      name: acc_norm
    source:
      url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard#/?search=Daemontatox%2FDocumentCogito
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: MMLU-PRO (5-shot)
      type: TIGER-Lab/MMLU-Pro
      config: main
      split: test
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 31.14
      name: accuracy
    source:
      url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard#/?search=Daemontatox%2FDocumentCogito
      name: Open LLM Leaderboard
---

# **unsloth/Llama-3.2-11B-Vision-Instruct (Fine-Tuned)**

## **Model Overview**
This model, fine-tuned from the `unsloth/Llama-3.2-11B-Vision-Instruct` base, is optimized for vision-language tasks with enhanced instruction-following capabilities. Fine-tuning was completed 2x faster using the [Unsloth](https://github.com/unslothai/unsloth) framework combined with Hugging Face's TRL library, ensuring efficient training while maintaining high performance.

## **Key Information**
- **Developed by:** Daemontatox  
- **Base Model:** `unsloth/Llama-3.2-11B-Vision-Instruct`  
- **License:** Apache-2.0  
- **Language:** English (`en`)  
- **Frameworks Used:** Hugging Face Transformers, Unsloth, and TRL  

## **Performance and Use Cases**
This model is ideal for applications involving:  
- Vision-based text generation and description tasks  
- Instruction-following in multimodal contexts  
- General-purpose text generation with enhanced reasoning

### **Features**
- **2x Faster Training:** Leveraging the Unsloth framework for accelerated fine-tuning.  
- **Multimodal Capabilities:** Enhanced to handle vision-language interactions.  
- **Instruction Optimization:** Tailored for improved comprehension and execution of instructions.


## **How to Use**

### **Inference Example (Hugging Face Transformers)**

```python
from transformers import AutoTokenizer, AutoModelForCausalLM

tokenizer = AutoTokenizer.from_pretrained("Daemontatox/finetuned-llama-3.2-vision-instruct")
model = AutoModelForCausalLM.from_pretrained("Daemontatox/finetuned-llama-3.2-vision-instruct")

input_text = "Describe the image showing a sunset over mountains."
inputs = tokenizer(input_text, return_tensors="pt")
outputs = model.generate(**inputs, max_length=100)

print(tokenizer.decode(outputs[0], skip_special_tokens=True))
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/Daemontatox__DocumentCogito-details)!
Summarized results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/contents/viewer/default/train?q=Daemontatox%2FDocumentCogito&sort[column]=Average%20%E2%AC%86%EF%B8%8F&sort[direction]=desc)!

|      Metric       |Value (%)|
|-------------------|--------:|
|**Average**        |    24.21|
|IFEval (0-Shot)    |    50.64|
|BBH (3-Shot)       |    29.79|
|MATH Lvl 5 (4-Shot)|    16.24|
|GPQA (0-shot)      |     8.84|
|MuSR (0-shot)      |     8.60|
|MMLU-PRO (5-shot)  |    31.14|