Job_compatibility_model

This model is a fine-tuned version of distilbert/distilbert-base-uncased on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6238
  • Accuracy: 0.8598

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 25

Training results

Training Loss Epoch Step Validation Loss Accuracy
No log 1.0 32 0.6922 0.5
No log 2.0 64 0.6509 0.6238
No log 3.0 96 0.4218 0.8411
No log 4.0 128 0.3622 0.8481
No log 5.0 160 0.3383 0.8645
No log 6.0 192 0.3626 0.8528
No log 7.0 224 0.3939 0.8621
No log 8.0 256 0.4223 0.8715
No log 9.0 288 0.4271 0.8692
No log 10.0 320 0.4869 0.8621
No log 11.0 352 0.5057 0.8645
No log 12.0 384 0.5702 0.8528
No log 13.0 416 0.5277 0.8692
No log 14.0 448 0.5228 0.8785
No log 15.0 480 0.5332 0.8762
0.2235 16.0 512 0.5859 0.8715
0.2235 17.0 544 0.5938 0.8762
0.2235 18.0 576 0.6005 0.8715
0.2235 19.0 608 0.5941 0.8715
0.2235 20.0 640 0.6115 0.8762
0.2235 21.0 672 0.6098 0.8715
0.2235 22.0 704 0.6091 0.8715
0.2235 23.0 736 0.6223 0.8621
0.2235 24.0 768 0.6309 0.8598
0.2235 25.0 800 0.6238 0.8598

Framework versions

  • Transformers 4.38.2
  • Pytorch 2.1.2
  • Datasets 2.1.0
  • Tokenizers 0.15.2
Downloads last month
17
Safetensors
Model size
67M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for DaJulster/Job_compatibility_model

Finetuned
(7198)
this model